
mPlane	
 Architecture	
  
and	
 Protocol

Brian Trammell, Architecture (WP1) lead 
ETH Zürich
mPlane final workshop 
30 November 2015, Heidelberg

2

mPlane	
 architecture	

in	
 one	
 slide
■ Components make measurements

available to clients via the mPlane
protocol.
❑ Components can be probes, which

measure, or repositories, which
store and analyze.

■ These measurements are completely
defined in terms of capabilities
advertised by the components.

■ Clients send specifications to invoke
these capabilities.

■ Specifications can lead to results, or to
components sending bulk data to
others via indirect export.

client

component

n

m

mPlane Protocol

ca
pa

bi
lit

ie
s

specifications

3

Probes,	
 Repositories,	

and	
 Reasoners

■ Probes are components
that can measure
something now.

■ Repositories are
components that can
answer queries about
the past.

■ Reasoners are clients
with learning
component for
(semi-)automation of
measurement
workflows.

probe repository

supervisor

client /
reasoner

capability -
specification -

result

capability -
specification -

result

indirect export

capability -
specification -

result

4

Coordination	
 and	
 Federation

■ A supervisor mediates between
clients and components:
❑ Measurement aggregation
❑ Access control centralization
❑ Interdomain federation

■ Not a measurement controller in the
traditional sense due to delegation of
responsibility to components.

■ Requires application-specific logic for
control distribution and result collection

supervisor

client

component

n

1

mPlane Protocol

ca
pa

bi
lit

ie
s

specifications

client

component

1

m

mPlane Protocol

ca
pa

bi
lit

ie
s

specifications

5

Architectural	
 Principles
■ Schema-centric measurement definition: a measurement

is completely described by the parameters it takes and the
columns in the results it produces.

■ Weak imperativeness: capabilities aren’t guarantees,
normal exceptions discovered in later analysis, state and
responsibility dynamically distributed throughout an
infrastructure.

■ Component management left out of scope

❑ assume components too heterogeneous anyway.

6

Schema-­‐centric	
 measurement	
 definition
■ Traditional RPC:  

 ping -c 3 -w 5 10.2.3.4 
 ping(count, period, dest) => [int]

❑ Need to register entry points, argument names.

❑ “Can I compare ping() to webping() to
nmap_christmas_tree_warning_very_beta()?”

■ Schema-centric: 
 measure(param(singleton_measurement_count,  
 period,  
 destination_ip4); 
 result(delay_oneway_icmp))

■ Requires rigorous control over the set of column names, but allows
more or less infinite combination (cf. www.iana.org/assignments/ipfix)

http://www.iana.org/assignments/ipfix/ipfix.xhtml

7

Weak	
 imperativeness
■ Failure is inevitable. Embrace it.
■ Two kinds of failure:

❑ Things that are part of what you’re measuring (e.g. variable
connectivity on mobile probes)

❑ Things that need a forklift to fix.
■ For the second class, you need completely separate

infrastructure monitoring anyway.
■ For the first class, export enough metadata to allow analysis

as part of the normal measurement workflow.

8

The	
 mPlane	
 Protocol
■ Error-tolerant, distributed RPC protocol comprised of an information model (message

types and contents), a representation (JSON), and a session protocol (HTTPS)

❑ Flexibility in future representation (e.g. CBOR) and session protocols (e.g.
WebSockets, SSH).

■ Under submission to IETF for standardization (draft-trammell-mplane-protocol)

messages sent by components

messages sent by clients

Capability

Specification

Result

Receipt

RedemptionInterrupt

Withdrawal Indirection

what a client wants a component to do

what a component says it can do what the component did

9

Capability	
 Advertisement

supervisor
client
interfaceCCcCeCe

repositoryprobeprobe

client/
reasoner

registration

component
interface

10

Capability	
 Composition

supervisor
client
interface

component
interface

CCcCeCe

repositoryprobeprobe

client/
reasoner

composition

C C

11

Delegation

supervisor
client

interfaceCCcCeCe Se Se

repositoryprobeprobe

client/
reasoner

Ex

indirect export

component
interface

C SC

splitting

12

Query	
 and	
 Iteration

supervisor
client

interfaceCCcCeCe S

repositoryprobeprobe

client/
reasoner

Ex

indirect export

R

result
relay

component
interface

C SC

13

An	
 mPlane	
 Domain

■ mPlane clients and
components organized
into domains by:
❑ which supervisor (if

any) they use for
coordination and
federation

❑ common issuer of
X.509 certificates
for all entities in a
domain

supervisor
client

interface

repositoryprobeprobe

client/
reasoner

component
interface

Domain
Issuer

CA Client
Cert

Component
Cert

Component
Cert

Component
Cert

Supervisor
Cert

14

Capability	
 Example
■ Case study: path

transparency
measurement for ECN

■ Each component
advertises its
willingness to perform a
specified measurement
in a capability

■ Capability lists
parameters (which the
client needs to fill in)
and results (which the
component will
measure)

{
 "capability" : "measure",
 "version": 1,
 "registry": “http://mplane.corvid.ch/ecnspider.json",
 "label": "ecnspider-ip4",
 "when": "now ... future",
 "parameters" : {
 "source.ip4": “192.0.2.33”,
 "destination.ip4": "[*]",
 },
 "results": [
 "destination.ip4",
 "ecnspider.ecnstate",
 "connectivity.ip",
 "octets.layer5",
 "ecnspider.initflags.fwd",
 "ecnspider.synflags.fwd",
 "ecnspider.unionflags.fwd",
 "ecnspider.initflags.rev",
 "ecnspider.synflags.rev",
 "ecnspider.unionflags.rev"
]
}

15

Capability	
 Schema
■ The verb and set

of parameters
and results
together define
the
measurement’s
schema.

■ The schema is
equivalent to the
name of the RPC
entry point.

{
 "capability" : "measure",
 "version": 1,
 "registry": “http://mplane.corvid.ch/ecnspider.json",
 "label": "ecnspider-ip4",
 "when": "now ... future",
 "parameters" : {
 "source.ip4": “192.0.2.33”,
 "destination.ip4": "[*]",
 },
 "results": [
 "destination.ip4",
 "ecnspider.ecnstate",
 "connectivity.ip",
 "octets.layer5",
 "ecnspider.initflags.fwd",
 "ecnspider.synflags.fwd",
 "ecnspider.unionflags.fwd",
 "ecnspider.initflags.rev",
 "ecnspider.synflags.rev",
 "ecnspider.unionflags.rev"
]
}

16

Registry	
 Extensibility
■ Each

measurement is
bound to a registry
of elements.

■ Registries inherit
elements from the
base registry.

■ Here, ECN-
specific elements
have been added.

{
 "capability" : "measure",
 "version": 1,
 "registry": “http://mplane.corvid.ch/ecnspider.json",
 "label": "ecnspider-ip4",
 "when": "now ... future",
 "parameters" : {
 "source.ip4": “192.0.2.33”,
 "destination.ip4": "[*]",
 },
 "results": [
 "destination.ip4",
 "ecnspider.ecnstate",
 "connectivity.ip",
 "octets.layer5",
 "ecnspider.initflags.fwd",
 "ecnspider.synflags.fwd",
 "ecnspider.unionflags.fwd",
 "ecnspider.initflags.rev",
 "ecnspider.synflags.rev",
 "ecnspider.unionflags.rev"
]
}

17

Specification	
 Example
■ Specification

completely defines
the measurement
to be performed

■ Client sends a list
of targets to each
component.

■ Component will
return a single
result per
specification.

{
 "specification" : "measure",
 "version": 1,
 "registry": “http://mplane.corvid.ch/ecnspider.json",
 "label": "ecnspider-ip4",
 "when": "now”,
 “token”: “d41d8cd98f00b204e9800998ecf8427e”,
 "parameters" : {
 "source.ip4": “192.0.2.33”,
 "destination.ip4": [
 “192.0.2.67”,
 “192.0.2.89”,
 “192.0.2.123”]
 },
 "results": [
 "destination.ip4",
 "ecnspider.ecnstate",
 "connectivity.ip",
 "octets.layer5",
 "ecnspider.initflags.fwd",
 "ecnspider.synflags.fwd",
 "ecnspider.unionflags.fwd",
 "ecnspider.initflags.rev",
 "ecnspider.synflags.rev",
 "ecnspider.unionflags.rev"
]
}

18

mPlane	
 SDK

■ Open-source toolkit for
building mPlane clients
and components in
Python 3
❑ $ pip install
mplane-sdk

■ Current release: feature
freeze for today’s
demos

■ 1.0 release: post-project
❑ improved

configuration
❑ multiple value

support

mplane.model

mplane.scheduler

MultiJob

Envelope Exception

Statement

Parameter

Capability Specification Result

Metavalue

Constraint

SetConstraintRangeConstraint

Element

Primitive

ResultColumn

When

Service Job

Scheduler

StatementNotification

Receipt Redemption

InterruptWithdrawal

19

mPlane	
 SDK	

component/client	
 framework
■ mplane/component.py provides a framework for building

components and proxies for existing components in three
easy steps:
❑ (1) Implement logic for each activity in run() method in a

subclass of mplane.scheduler.Service.
❑ (2) Build capabilities to describe the specifications this

run() method will accept.
❑ (3) Wrap these in a Python module that returns these

subclasses via a services() method.

■ Common and component-specific configuration via a unified
configuration file

20

How	
 do	
 I	
 get	
 started?
■ https://github.com/fp7mplane/protocol-ri

❑ README.md: how to build stuff on top of the SDK
❑ doc/protocol-spec.md: protocol specification

■ Repository is active
❑ master branch stable for demonstration
❑ 1.0 release in sdk-rc1.0 branch
❑ Something broken? read the docs, then file an issue.

https://github.com/fp7mplane/protocol-ri

