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mPlane	
  architecture	
  
in	
  one	
  slide
■ Components make measurements 

available to clients via the mPlane 
protocol. 
❑ Components can be probes, which 

measure, or repositories, which 
store and analyze. 

■ These measurements are completely 
defined in terms of capabilities 
advertised by the components. 

■ Clients send specifications to invoke 
these capabilities. 

■ Specifications can lead to results, or to 
components sending bulk data to 
others via indirect export.
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Probes,	
  Repositories,	
  
and	
  Reasoners

■ Probes are components 
that can measure 
something now. 

■ Repositories are 
components that can 
answer queries about 
the past. 

■ Reasoners are clients 
with learning 
component for 
(semi-)automation of 
measurement 
workflows.
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Coordination	
  and	
  Federation

■ A supervisor mediates between 
clients and components: 
❑ Measurement aggregation 
❑ Access control centralization 
❑ Interdomain federation 

■ Not a measurement controller in the 
traditional sense due to delegation of 
responsibility to components. 

■ Requires application-specific logic for 
control distribution and result collection
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Architectural	
  Principles
■ Schema-centric measurement definition: a measurement 

is completely described by the parameters it takes and the 
columns in the results it produces. 

■ Weak imperativeness: capabilities aren’t guarantees, 
normal exceptions discovered in later analysis, state and 
responsibility dynamically distributed throughout an 
infrastructure. 

■ Component management left out of scope 

❑ assume components too heterogeneous anyway.
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Schema-­‐centric	
  measurement	
  definition
■ Traditional RPC:  

  ping -c 3 -w 5 10.2.3.4 
  ping(count, period, dest) => [int]  

❑ Need to register entry points, argument names. 

❑ “Can I compare ping() to webping() to 
nmap_christmas_tree_warning_very_beta()?” 

■ Schema-centric: 
  measure(param(singleton_measurement_count,  
                period,  
                destination_ip4); 
          result(delay_oneway_icmp)) 

■ Requires rigorous control over the set of column names, but allows 
more or less infinite combination (cf. www.iana.org/assignments/ipfix) 

http://www.iana.org/assignments/ipfix/ipfix.xhtml
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Weak	
  imperativeness
■ Failure is inevitable. Embrace it. 
■ Two kinds of failure: 

❑ Things that are part of what you’re measuring (e.g. variable 
connectivity on mobile probes) 

❑ Things that need a forklift to fix. 
■ For the second class, you need completely separate 

infrastructure monitoring anyway. 
■ For the first class, export enough metadata to allow analysis 

as part of the normal measurement workflow.
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The	
  mPlane	
  Protocol
■ Error-tolerant, distributed RPC protocol comprised of an information model (message 

types and contents), a representation (JSON), and a session protocol (HTTPS) 

❑ Flexibility in future representation (e.g. CBOR) and session protocols (e.g. 
WebSockets, SSH). 

■ Under submission to IETF for standardization (draft-trammell-mplane-protocol)
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Capability	
  Advertisement
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Capability	
  Composition
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Delegation
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Query	
  and	
  Iteration

supervisor
client

interfaceCCcCeCe S

repositoryprobeprobe

client/
reasoner

Ex

indirect export

R

result
relay

component
interface

C SC



13

An	
  mPlane	
  Domain

■ mPlane clients and 
components organized 
into domains by: 
❑ which supervisor (if 

any) they use for 
coordination and 
federation 

❑ common issuer of 
X.509 certificates 
for all entities in a 
domain
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Capability	
  Example
■ Case study: path 

transparency 
measurement for ECN 

■ Each component 
advertises its 
willingness to perform a 
specified measurement 
in a capability 

■ Capability lists 
parameters (which the 
client needs to fill in) 
and results (which the 
component will 
measure)

{ 
    "capability" : "measure", 
    "version":     1, 
    "registry":    “http://mplane.corvid.ch/ecnspider.json", 
    "label":       "ecnspider-ip4", 
    "when":        "now ... future", 
    "parameters" : { 
        "source.ip4": “192.0.2.33”, 
        "destination.ip4": "[*]", 
    }, 
    "results": [ 
        "destination.ip4", 
        "ecnspider.ecnstate", 
        "connectivity.ip", 
        "octets.layer5", 
        "ecnspider.initflags.fwd", 
        "ecnspider.synflags.fwd", 
        "ecnspider.unionflags.fwd", 
        "ecnspider.initflags.rev", 
        "ecnspider.synflags.rev", 
        "ecnspider.unionflags.rev" 
    ] 
}
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Capability	
  Schema
■ The verb and set 

of parameters 
and results 
together define 
the 
measurement’s 
schema. 

■ The schema is 
equivalent to the 
name of the RPC 
entry point.

{ 
    "capability" : "measure", 
    "version":     1, 
    "registry":    “http://mplane.corvid.ch/ecnspider.json", 
    "label":       "ecnspider-ip4", 
    "when":        "now ... future", 
    "parameters" : { 
        "source.ip4": “192.0.2.33”, 
        "destination.ip4": "[*]", 
    }, 
    "results": [ 
        "destination.ip4", 
        "ecnspider.ecnstate", 
        "connectivity.ip", 
        "octets.layer5", 
        "ecnspider.initflags.fwd", 
        "ecnspider.synflags.fwd", 
        "ecnspider.unionflags.fwd", 
        "ecnspider.initflags.rev", 
        "ecnspider.synflags.rev", 
        "ecnspider.unionflags.rev" 
    ] 
}
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Registry	
  Extensibility
■ Each 

measurement is 
bound to a registry 
of elements. 

■ Registries inherit 
elements from the 
base registry. 

■ Here, ECN-
specific elements 
have been added.

{ 
    "capability" : "measure", 
    "version":     1, 
    "registry":    “http://mplane.corvid.ch/ecnspider.json", 
    "label":       "ecnspider-ip4", 
    "when":        "now ... future", 
    "parameters" : { 
        "source.ip4": “192.0.2.33”, 
        "destination.ip4": "[*]", 
    }, 
    "results": [ 
        "destination.ip4", 
        "ecnspider.ecnstate", 
        "connectivity.ip", 
        "octets.layer5", 
        "ecnspider.initflags.fwd", 
        "ecnspider.synflags.fwd", 
        "ecnspider.unionflags.fwd", 
        "ecnspider.initflags.rev", 
        "ecnspider.synflags.rev", 
        "ecnspider.unionflags.rev" 
    ] 
}
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Specification	
  Example
■ Specification 

completely defines 
the measurement 
to be performed 

■ Client sends a list 
of targets to each 
component. 

■ Component will 
return a single 
result per 
specification.

{ 
    "specification" : "measure", 
    "version":     1, 
    "registry":    “http://mplane.corvid.ch/ecnspider.json", 
    "label":       "ecnspider-ip4", 
    "when":        "now”, 
    “token”:       “d41d8cd98f00b204e9800998ecf8427e”, 
    "parameters" : { 
        "source.ip4": “192.0.2.33”, 
        "destination.ip4": [  
            “192.0.2.67”, 
            “192.0.2.89”, 
            “192.0.2.123”] 
    }, 
    "results": [ 
        "destination.ip4", 
        "ecnspider.ecnstate", 
        "connectivity.ip", 
        "octets.layer5", 
        "ecnspider.initflags.fwd", 
        "ecnspider.synflags.fwd", 
        "ecnspider.unionflags.fwd", 
        "ecnspider.initflags.rev", 
        "ecnspider.synflags.rev", 
        "ecnspider.unionflags.rev" 
    ] 
}
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mPlane	
  SDK

■ Open-source toolkit for 
building mPlane clients 
and components in 
Python 3 
❑ $ pip install 
mplane-sdk 

■ Current release: feature 
freeze for today’s 
demos 

■ 1.0 release: post-project 
❑ improved 

configuration 
❑ multiple value 

support
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mPlane	
  SDK	
  
component/client	
  framework
■ mplane/component.py provides a framework for building 

components and proxies for existing components in three 
easy steps: 
❑ (1) Implement logic for each activity in run() method in a 

subclass of mplane.scheduler.Service. 
❑ (2) Build capabilities to describe the specifications this 

run() method will accept. 
❑ (3) Wrap these in a Python module that returns these 

subclasses via a services() method. 

■ Common and component-specific configuration via a unified 
configuration file
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How	
  do	
  I	
  get	
  started?
■ https://github.com/fp7mplane/protocol-ri 

❑ README.md: how to build stuff on top of the SDK 
❑ doc/protocol-spec.md: protocol specification 

■ Repository is active 
❑ master branch stable for demonstration  
❑ 1.0 release in sdk-rc1.0 branch 
❑ Something broken? read the docs, then file an issue.

https://github.com/fp7mplane/protocol-ri

