
Plane
mPlane

an Intelligent Measurement Plane for Future Network and Applica on Management

ICT FP7-318627

Design of Analysis Modules

Author(s): Author names
A-LBELL D. Papadimitriou
ALBLF Z. Ben Houidi, S. Ghamri-Doudane
ENST D. Rossi
Eurecom M. Milanesio
FTW P. Casas, A. D'Alconzo
FUB E. Tego, F. Matera
NEC M. Dusi
NETvisor T. Szemethy, D. Máthé
POLITO S. Traverso, A. Finamore
TID I. Leon adis, L. Baltrunas, Y. Grunenburger
ULg (editor) B. Donnet, G. Leduc, Y. Liao

Document Number: D4.1
Revision: 1.0
Revision Date: 31 Oct 2013
Deliverable Type: RTD
Due Date of Delivery: 31 Oct 2013
Actual Date of Delivery: 31 Oct 2013
Nature of the Deliverable: (R)eport
Dissemina on Level: Public



318627-mPlane
Design of Analysis Modules

Abstract:

This public deliverable describes the design and specifica on of a first set of basic analysismodules for addressing the use cases
iden fied in WP1. The document focuses on the required algorithms, which use as input the measurements and analysis pro-
vided by the lower layers (WP2 andWP3) of the mPlane architecture to provide more advanced analysis and answers towards
the resolu on of the problem addressed by the use case. These analysis modules include both stream and batch processing
algorithms and address issues such as classifica ons, es ma ons, predic ons, detec ons, correla ons and diagnosis.
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1 Introduc on

Deliverable D3.1 has already de ined and described basic algorithms that operate on the data stor-
age and large-scale analysis layer (WP3)of themPlanearchitecture, generally onvery large amounts
of data. Their associated repositories expect to receive input data fromamultitude of probes, as de-
ined inWP2. This amount of data is processed, analyzed and aggregated in the storage layer using
parallel and scalable frameworks, and later served to the data analysis layer (WP4), which makes
use of it through more advanced and with higher-visibility algorithms and through the Reasoner.
Basic algorithms in WP3 thus produce data that is consumed by other algorithms (recursively at
WP3, or at WP4) and/or by the Reasoner (WP4). By construction, WP4 algorithms most often ac-
cept data of smaller size, relying on other algorithms de ined in WP3 that already aggregate data
and extract a set of features conveying a summary of information and which size is more conve-
nient and feasible to be treated by the algorithms at WP4. Note that WP4 algorithms might receive
as input data directly coming fromWP2, but only for speci ic time frames and/or data-size-limited
analysis tasks, specially in the case of instantiation of new functionality at the probes, during the
iterative process.

The algorithm de inition is use case driven and follows the use cases described in D1.1. For each
use case we identify:

• the available measurements produced by the probes at WP2 (available in D2.1 and D5.1),

• the basic algorithms necessary to process them at WP3 (available in D3.1),

• the WP4 analysis algorithms (the focus of this document).

The design of the different analysis algorithms in WP4 is related to the different use cases, but
whenever possible, re-utilization of the different algorithmic techniques will be envisaged. In this
sense, the analysis algorithms should be designed and implemented as analysismodules, whichwill
expose different functionalities to its inal user, i.e., the Reasoner, whichwill be further investigated
in D4.2.
Therefore the structure of this deliverable is as follows. The next chapter will describe the analysis
algorithmsassociatedwith eachandeverymPlaneuse case,while someothermoregeneric analysis
algorithms which are applicable to several use cases, possibly beyond those considered in mPlane
right now, are postponed to a subsequent chapter.
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2 Analysis algorithms associated with mPlane use cases

Each use case is the topic of one section, and it is described according to the following structure:
irst, a brief introduction to the use case is provided, with an emphasis on the splitting of its func-
tionality in the various mPlane layers: probes used (WP2), stored and pre-processed data (WP3),
and need for further analysis (WP4). The goal is to provide a high level description of the steps
to solve the problem addressed by the use case, matching the mPlane layered structure. Then, a
description of the analysis algorithms themselves is provided. Finally, and only in those cases
where available, preliminary results showing the application of the corresponding algorithms are
included. Note that at this stage, the preliminary results presented in this deliverable are not strictly
considering the complete integration of the mPlane, but rather showing the feasibility and applica-
bility of the designed algorithms.
This is the main focus of this document. As described in the Introduction and in the DoW, the algo-
rithms in WP4 are used to dig into the data gathered and pre-processed across the lower layers of
mPlane (both WP2 andWP3).
The complexity of the WP4 algorithms depends on the particular use case they are intended to ad-
dress, but in general terms, WP4 algorithms aremore specialized and have a broader picture of the
problem they are tackling than in previous analysis stages performed either locally at WP2 probes
or globally at WP3. For example, let us consider the interaction between WP3-type data analy-
sis and the analysis done by WP4 algorithms; while WP3 performs basic statistical data analysis
on large amounts of historical and highly distributed data coming from the WP2 probes, WP4 al-
gorithms access only a reduced part of this pre-processed data for more elaborated analysis (e.g.,
analyze all those users who have sentmore than N packets in the last hour). Similarly, while probes
at WP2 perform local analysis at the vantage points where they operate, WP4 algorithms combine
and correlate the information coming from multiple of these probes and at different times to get
more clear and global view of the analysis.
The algorithms must have a clear spatio-temporal notion of the problem they address, as they are
capable ofmerging the local real-time analysis performedby the probes ofWP2at different physical
locations with the historical global data analysis performed at WP3.
Data mining, machine learning, statistical inference, signal processing and information theory ap-
proaches are the bases of WP4 algorithms. These algorithms provide different degrees of insight
based on the quality and type of the data they use. For example, limited insights if only coarser-
grained, fewer dimensional data is available, andmore accurate and detailed insights if richer, more
relevant and iner-grained data is used. The insights provided byWP4 algorithms serve as input to
the Reasoner, which pushes forward the following steps of the iterative process.
For each use case, we provide a clear speci ication of the relevant analysis algorithm, as well as of
its input (i.e., the link with the storage layer and possibly the use of speci ic probes) and output.

2.1 Suppor ng DaaS troubleshoo ng

2.1.1 Use case introduc on

Running desktop-as-a-service (DaaS) solutions in remote data centers is an emerging means of
delivering virtual PCs in an inexpensive, secure, and easy-to-maintain way. The fact that such solu-
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e.g., pkt-size, rate, 
RTT, inter-time 

e.g., RTT 

e.g., SVM 

probe 
repository Analysis 

module 
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Figure 1: Detecting the QoE of users accessing content using Desktop-as-a-Service solutions
through thin-client connections: overall schema in the mPlane context.

tions rely on the presence of connectivity between users and their virtual PCs poses a challenging
operational question that mPlane can address: what is the quality of experience of the user when
running a particular application over the thin-client protocol?

Thegoal of this scenario is to exploitmPlane tounderstandwhether thepathbetween the thin client
and the remote server has enough resources to sustain the rendering of the speci ic application. The
idea is to usemPlane to collect and correlate information about the application being requested and
the available network resources, in order to infer the quality of the service as perceived by the end-
user and to pinpoint the reasons of any performance degradation.
Here follows the overview of the end-to-end process taking place within themPlane stack to detect
the Quality of Experience of users accessing content using Desktop-as-a-Service solutions through
thin-client connections.
An mPlane probe continuously and passively collects features that can be accessed from the thin-
client connectionwhile it is running. The idea is that each probemonitors all the thin-client connec-
tions that are happening over time and collects the features needed to infer the application running
on top of them, and eventually the QoE perceived by the users. As thin-client connections usually
make use of encryption to protect the content being exchanged, the mPlane probes collect IP-level
features of the packets of the connections, such as packet size, rate, inter-arrival time, and TCP-
level features such as payload length and number of observed packets, whether they carry data or
acknowledge only, TCP lags, etc. These features are collected on a per-connection basis, i.e., on a
per-thin client basis, and within sliding observation time-window.
Periodically, the probe sends the features extracted from a given thin-client connection to the cen-
tral repository, which stores them for the Analysismodule to use. Based on these features, the Anal-
ysis module implemented on the Reasoner is responsible for classifying the connection, that is, in-
ferring the application running on top of the thin-client connection during a time-window through
statistical traf ic classi ication techniques.
By combining the information from the Analysis module with the network conditions along the
path between the thin-client and the remote server, the Reasoner can eventually infer the temporal
evolutionof users'QoE.Note that thosenetwork conditions are collected in the irst placebymPlane
probes, which periodically send them to the central repository.
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The overall schema of the process is outline in Figure 1: the role of each mPlane component, that
is, probe, repository and reasoner, is shown.

2.1.2 Descrip on of the associated analysis algorithms

To detect the application on top of a given thin-client connection, we consider the use of statistical
classi ication techniques. The main goal here is the design and tuning of an effective statistical
classi ication technique which can effectively take advantage of the available features provided by
the mPlane probes.
We plan to evaluate the accuracy of several supervised statistical classi ication techniques widely-
used in the traf ic classi ication ield [84], such as Support Vector Machines, Random Forest, Naive
Bayes andDecision Tree, in detecting the applications running on top of the thin-client connections.
Supervised approaches require a trainingphasebeforebeing exploited for classi ication. During the
training phase, a supervised machine-learning algorithm requires as input a collection of samples
for each class of interest. Starting from these samples, the algorithm extracts the features needed
to build a mapping function between the samples themselves and the class they belong to. In our
case, the class of interest is a particular application running inside the thin-client connections, or a
class of them thereof, such as Data, Audio, Video; the features will be instead the ones collected by
the mPlane probes, and stored in the repository, from which the Analysis module can query them.
During the classi ication, the features related to the thin-client connectionwill be tested against the
training models and the connection will be labeled as belonging to one (or none) of the available
models.
Given the class of applications run by the thin-client user, the Reasoner has to combine the average
Round Trip Time of the connectionwithin an observationwindow against a set of threshold values,
and returns a QoE category. Threshold values are set for each class of applications, i.e., Data, Audio,
Video, and are based on latency values: network latency is the key factor that affects the QoE of
users when they interact with thin-client applications, as shown in [73]. As a result, for each class
of applications we are able to identify requirements in terms of RTT values that make the users
experience a good, suf icient or bad quality of the RDP connections.
Once the application currently running on top of the thin-client connection is known, the QoS re-
quirements are evaluated with respect to passive measurements like RTT, available capacity on
the path, packet loss rate, etc. When one of the above observations exceeds a certain threshold,
additional measurements are triggered to identify the bottleneck along the path. Furthermore, the
mPlane reasoner can react to these conditions, for instance bymigrating the virtualmachinewhere
the cloud service runs closer to the user.
Information about the bottleneck along the path can be then derived on demand via an active mea-
surement tool (like a traceroute) or via themPlane Repositories (that continuously stores informa-
tion about the network status in various segments of the network). Such sequential measurements
can be iterated until the root cause of the problem is identi ied.

2.1.3 Preliminary evalua on

As a irst evaluation of these methods, we started collecting an initial dataset of Remote-Desktop-
Protocol (RDP) connections and investigating how the techniques perform when the dataset used
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for training and the one used for testing include the same class of applications and are collected
under the samenetwork conditions. To this purpose, we considered as testing set the data collected
with a bandwidth of 1Mbps uplink and 6Mbps downlink and no impairments on the network by
running the same class of applications as the one included in the training set, such asweb-browsing,
media-player video and audio data.
Given an epoch, we observe the traf ic lowing into the RDP connection, extract the features for
each epoch and classify it to the class of application it belongs to. By considering time-windows
(epochs) of 10 seconds, we achieved maximum accuracy (over 90%) when applying SVM, whereas
weachieved around85%withDecisionTree andRandomForest, and78%whenusingNaivebayes.

2.2 Es ma ng content and service popularity for network op -
miza on

2.2.1 Use case introduc on

The capability of estimating the future popularity trends of services and contents (both managed
and user-generated) has a wide range of applications. For instance, operators could optimize their
resource management to improve QoS, as well as CDN providers could design smart cachingmech-
anisms or improve the spatial distribution of cacheswithin the ISP network (e.g., in the aggregation
network [12] or in the user set-top-box [68]).
Currently, very simple yet unrealisticworkloadmodels are used: rather generally indeed, the object
catalog is stationary, and additionally the popularity of each object is stationary as well. Given the
importance of video on today Internet, we clearly see that this is clearly not in line with the typical
catalogs of popular Internet movie-streaming platform (e.g., Net lix) or video-on-demand portals
(e.g. YouTube), that signi icantly evolve over time (e.g., see [12] for an analysis of theNe lix dataset).
Hence, as stationaryworkloads currently in use are unrealistic, there is need formore realisticmod-
els. While trace-driven evaluation (e.g., as we use for the assessment of caching performance of the
Net lix [12] and YouTube [68] catalogs) constitutes a irst step in this direction, modeling of the
system dynamics would offer the community a more powerful tool. A non-stationary workload
model, it on real traces, would not only be extremely useful for realistic performance evaluation
(being simpler to share than actual datasets for privacy reasons, and due to the sheer size of the
dataset) but also possibly enhance system performance (e.g., by allowing to exploit forecast of pop-
ularity evolution). Having a general methodology that is not bound on the speci ic application (e.g.,
video as in the previous example), will allow mPlane solution to be useful even in case of changes
in the Internet ecosystem.
The goal of this scenario is to employmPlane tomonitor the arrival process of requests towards the
services and the contents and store this information to run predictive algorithms. The architecture
of mPlane perfectly its for this process, since we aim to collect large amounts of traf ic information
such as the contents/services being requested by the users in several points of the network and
produce a list of the most likely to be popular in the future.
Here follows the overview of the end-to-end process taking place within the mPlane stack to esti-
mate the popularity trends of contents by a passive observation of the network traf ic.
Several mPlane probes are located in different points of the network to continuously and passively
collect information about contents and services being accessed from users. As web contents are
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Figure 2: Predicting the popularity trends of contents by a passive observation of network traf ic.

usually delivered through HTTP, the probes collect traf ic at transport layer (TCP-level), so that
we can easily rebuild HTTP conversations between users' devices and the servers hosting the re-
quested contents. The probes are programmed to generate a time-series of requests, reporting the
content being requested, a timestamp and the network location of the probe.
At regular time intervals, say every few minutes, the probe sends the extracted information to the
central repository, which stores them for the Predictor module to use. The Predictor module im-
plemented on the Reasoner extracts the arrival process of requests for each observed content and
separately for each probe location. Then, employing statistical classi ication techniques, request
arrival processes are grouped to retrieve their possible future growth rate.
Finally, the Predictor generates a list of contents that are likely to become popular in the future, sep-
arately for different portions of the network. In Figure 2 we report the overall prediction process.
The role of each mPlane component, that is, probe, repository and reasoner, is shown.

2.2.2 Descrip on of the associated analysis algorithms

Conceptually, there are three component steps to understanding and estimating the future popu-
larity of contents. In order of appearance, we must irst collect a suf icient sample of the data in
order to be able to build a feature space that we can characterise. In effect we build a training set.
Although the term a 'training set' implies that we are focused on supervised learning techniques
alone, this is not in fact the case. Having a suf icient training set means sampling the problem space
in order to be able to characterise it. Second, we come to the characterisation, although this may
be merged with the next stage of estimation, conceptually here, we are focused on identifying the
patterns of popularity evolution displayed by the data. Identifying such patterns enable us to relate
new and so far unseen objects to past observations. Finally, estimation, here we are interested in
ascribing a value to the future popularity of content, based on the understanding we have built of
its growth process.
Within mPlane, we are interested in applying data driven techniques to understand the how users'
consume content, in affect the evolution in the demand for individual contents.

Plane
10



318627-mPlane
Design of Analysis Modules

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

04/28 05/05 05/12 05/19 05/26 06/02

C
um

ul
at

iv
e 

nu
m

be
r 

of
 r

eq
ue

st
s

Time [days]

Figure 3: Cumulative number of requests
over time for a subset of videos observed in
a traf ic trace spanning one month of 2012;
only the requests within the life-span of the
content are shown.

Trace 03

 0  5  10  15  20  25  30  35  40

l
^
m [days]

 10

 100

 1000

V^
m

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

Figure4: Densitymapof contentswithVm ≥
10 observed in a traf ic trace, based on esti-
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2.2.3 Preliminary classifica on approach

With respect to this, we analysed a trace of passive traf ic measurements, and we characterised the
popularity pro iles of YouTube videos observed in the operational network of a large Italian ISP. 1

From Fig. 3, we see that YouTube videos display extremely heterogeneous request distributions
and exhibit strong time-localities. For instance, we observe that the popularity of some videos (red
lines in the plot) vanishes after only a few days - these are usually videos belonging to the news
or sport categories -, while others (green lines in the plot) continue to attract requests for almost
the entire duration of the trace - such as videos belonging to the music category -, re lecting the
diversity in user interest. As a result, to capture the evolution of content popularity over time, we
focus just on the this cause, and characterise each individual content object m with the following
two parameters:

• The total number of requests Vm generated by the content.

• The effective life-span lm of the content, which is de ined as the duration of the interval in
which we see the bulk of its requests.

The density map in Fig. 4 reveals that, as expected, contents exhibit wide heterogeneity in terms of
estimated life-spans lm and estimated volumes Vm. Themap also shows that there exists a peculiar
correlations between lm and Vm. This suggests that a traf ic model should consider the joint dis-
tribution of these metrics. In fact, from the results, we observe that a non-marginal share of videos
(7-10%) exhibit a very small life-span (lm ≤ 5 days), while 2% of videos have Vm ≥ 10, but account
for a share of requests that is greater than 27% (these results hold for all the traces considered
in the data set analysed in [80]). These two observations should be carefully taken into account
during the classi ication process.

1Measurements were collected on both incoming and outgoing traf ic carrying YouTube videos for a period of three
months, from mid March 2012 to late May 2012. During this period, we observed the activity of more than 60,000 end-
users accessing the Internet normally.
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Class Life-span [days] Trace %Reqs %Videos E[lm] E[Vm]

Class 1 l̂ ≤ 2

Trace 1 9.15 3.17 1.14 86.4
Trace 2 10.05 4.17 1.09 76.2
Trace 3 9.44 3.73 1.04 76.0
Trace 4 7.77 3.34 1.06 74.0

Class 2 2 < l̂ ≤ 5

Trace 1 6.80 4.9 3.36 41.9
Trace 2 12.55 7.83 3.34 50.7
Trace 3 6.55 4.54 3.32 43.3
Trace 4 6.12 4.06 3.41 48.0

Class 3 5 < l̂ ≤ 8

Trace 1 5.87 2.95 6.40 59.5
Trace 2 6.72 4.74 6.31 44.9
Trace 3 6.05 2.87 6.42 63.3
Trace 4 5.14 2.71 6.45 60.3

Class 4 8 < l̂ ≤ 13

Trace 1 5.49 4.45 10.53 36.9
Trace 2 10.79 8.61 10.86 39.6
Trace 3 4.84 3.68 10.62 39.5
Trace 4 5.34 4.48 10.65 37.8

Class 5 l̂ > 13

Trace 1 72.69 84.58 24.61 25.7
Trace 2 59.89 74.65 19.29 25.3
Trace 3 73.11 85.17 28.19 25.8
Trace 4 75.63 85.41 24.59 28.1

Table 1: Observed features for different classes of contents.

It is also worth emphasising that the two parameters Vm and lm alone do not completely charac-
terise the temporal evolution of content popularity, which as shown in Fig.3, can exhibit complex
growth patterns. In fact, recent studies [86, 56, 5] conducted on much larger data sets reveal that
the popularity of different contents, including videos, follow a limited number of “archetypal” tem-
poral pro iles, which essentially depend on the nature of the content and on the way it becomes
popular. However, as shown in [80] speci ically for the case of CDNs, the single cache performance
is essentially driven by the parameters Vm and lm, while the shape of the popularity pro ile has only
a second-order effect.
In Table 1we report the result of a time-based approach to classify YouTube videos: considering all
the traces available in our data set, for each observed content we measured its life-span lm and the
number of requests Vm it attracted, i.e. features fairly easy to extract from a passive traf ic trace.
We thus divided contents by looking at their life-spans. Observe that this classi ication has been
performed for all contents showingVm ≥ 10. For each content class, Table 1 reports the percentage
of total requests attracted by the class, the percentage of contents belonging to it, and their average
estimated values Vm and lm. Notice from Table 1 that contents in Class 1, whose life-span is smaller
than 2 days, represent less than 4% of the total number of contents but attract approximately 10%
of all requests. Therefore, referring to the context of CDNs, since these contents exhibit a large
degree of temporal locality, they can be expected to have signi icant impact on cache performance.
Observe also from Table 1 that the values related to each class are quite similar across the four
traces (within a factor of 2). This is signi icant, because it suggests that this broad classi ication
captures some invariant properties of the considered traf ic. Further details about the classi ication
approach and employed traf ic traces can be found in [80].

2.2.4 Advanced classifica on approaches and popularity predic on

Above results about the classi ication of contents are preliminary for our objective of exploring a
range of more sophisticated statistical classi ication and inference techniques (i.e. mixture model-
ing, and decision trees) in order to identify underlying patterns of growth, and use this information
to build pro iles that can be utilized by the Reasoner to classify and estimate the future popularity
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of contents.
Given thepopularity pro iles of each request arrival process, theReasoner has to combine the future
expected number of requests against a set of threshold values, and returns a popularity category.
As a result, the Reasoner will pinpoint those contents and service which are expected to become
hot in the near future. Once the Reasoner has retrieved the required popularity information for
each observed network portion, it can, for instance, directly contact the CDN provider to suggest
contents to be pro-actively pushed to the caches, thus improving the QoE perceived by the users.
Furthermore, given the wide range of services and web contents available in the current Internet,
the Reasoner must be able to automatically detect upcoming trends in order to evolve with traf-
ic pro iles observed. For this purpose, the repository should support storing long term statistics
regarding the popular of contents and services observed in the network.

2.3 Passive content cura on

2.3.1 Use case introduc on

Content andmedia curation is the act of using both automatic and human resources for the purpose
of aggregating, sorting, organizing and presenting only ``interesting'' content to end-users. The ra-
tionale behind its advent is that the Internet today contains muchmore content than what humans
can individually consume and sort by themselves. We, as users of the Internet, need therefore tools
that ``cure'' the content for us so that we see preferably the content that is more likely to interest
us. Examples of such tools include Reddit [67], Digg [30] and Pinterest [64]; even social networks
like Twitter can be themselves seen as media curation tools [48].
A family of curation tools uses mainly the so-called ``wisdom of the crowd'' to present and select
interesting contents. The rationale behind this approach is that the collective answer of a large
group of individuals to a given question is often better than the individuals' responses. With this
respect, we argue that ISPs are better positioned to provide such service thanks to the Internet-
wide view that they have on the traf ic.
By ``simply''monitoring content requests that lowwithin their networks, ISPs can infer the content
that is capturing the largest interest. By tracking trends and with appropriate models, it would be
even possible to predict early enough which content will become popular, and therefore present
it early enough to users. Such a service can be done passively without user engagement, and in an
aggregatemanner, thus not offending users' privacy. In fact, we assume that if a content (e.g., a URL)
is visited, it is because it captured some user's interest. The more a content is clicked, the higher
the chances that it deserves to be watched. Finally, unlike current curation systems whose results
can be manipulated by a small community of users [61], passive media curation is by design more
immune to such biases.
Fig. 5 gives an overview of the media curator achitecture, our ISP-provided content curation sys-
tem. At the bottomwe have ``probes'' installed at network level that extract requested objects. The
requests from different probes are aggregated and sent to a content iltering and popularity anal-
ysis module which elects the most popular contents, and sends the rankings to the presentation
module which will make these content items (pointers to them) available online.
The raw data extraction module exposes the following information about content requests: probe
location, timestamp, URL, an anonymized user id, as well as the referrer and user agent ields ex-
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Figure 5: An overview of the content curation system.

posed in the HTTP requests.

The content iltering and popularity analysis module, de facto the core of this system, processes
the data generated by the content requests extractors. As an output, it provides a list of ``hot''
contents, e.g., URLs pointing to pages that are likely to interest Internet users. Basically, it builds
``popularity'' measurement to rank objects. This module can work in both push and pop mode. It
irst can push alarms about content items which are likely to become hot. It can also respond on
demand to provide statistics about the history of popularity. As such, it should be able to return the
list of the most popular contents in a given period of time.

This module consists of ive sub-blocks as depicted in Fig. 5. The irst block applies iltering to
discern relevant URLs. In order to check their relevance, this block might need to actively query
some speci ic URLs. This can be done thanks to an active probe sub-block (i.e., a web scraper). The
ilteredURLs are thenanalyzed topredict their futurepopularity trend: irst, contents aredivided in
categories by the classi ication sub-block. The role of this block is to cluster the iltered contents so
that different predictors blocks can run on them. Finally, a last sub-block will take care of providing
statistics about the history of popularity of observed content.

The output of the content iltering and popularity analysismodule is then provided to the presenta-
tionmodulewhose aim is to present the popular contents, gouping themby topic. The presentation
module also runs similarity detection algorithms to group together different URLs pointing to the
same news or object. Finally, it uses a web scraper to query URLs to offer a preview of the content
to be shown on the frontpage.

In the following we describe the algorithms which compose the content iltering and popularity
analysis module.
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Figure 6: Extraction and curation of contents lowing on the network.

2.3.2 Descrip on of the associated analysis algorithms

Herewepresent the algorithms that constitute the content iltering andpopularity analysismodule,
i.e., the core of the media curatordesign. The ultimate goal of this module is to provide a ranked list
of the most popular content observed in the network. We consider as content the URL of a web
page that was visited by a user.

2.3.2.1 Iden fica on of user-URLs

First of all, most of the HTTP requests lowing in a network are not relevant for our system. For
instance, many URLs point to different objects such as CSS and javascript iles. These are not the
type of contents media curatorshould promote. Therefore a crucial step in the content popularity
analysis module is the iltering of irrelevant URL requests. We distinguish between two types of
URLs: browser-URLs, i.e., HTTP requested objects that are part of awebpage and thus transparently
downloaded by the browser; and user-URLs, i.e., URLs of pages intentionally visited by users. media
curator seeks only user-URLs.
The irst step in the iltering is to distinguish browser-URLs from user-URLs, i.e. contents that have
been automatically required by the browsers from those that have actually been clicked by the user.
Several methods have been proposed in the literature [23, 11, 43]. Themost accurate for nowadays
web traf ic is the one presented in [43]. However, its methodology needs tomonitor HTTP requests
and corresponding responses, which dramatically increases the complexity of the content extractor
module. Besides, this method does not work for all web content, but only on pages that contain the
google analytics beacon. According to the authors [43], this beacon is present in only 40% of the
pages.
Therefore, we believe that new and simpler methods must be devised to identify user-URLs. As a
design choice, we rely only on the parsing of only HTTP requests (and not responses) to reduce the
algorithm complexity.
In this context, we devised several iltering mechanisms that we are currently studying. We enu-
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merate them as follows.
1) Referer-based ilter: This method exploits the complex structure of web pages and the referer2
ield. When the URL of a web page is clicked, a sequence of HTTP requests is generated by the
browser to retrieve all the objects that are necessary to render this web page. As such, all these ob-
ject URLs have, as a referer the irst clicked URL. Therefore, by focusing on the referer ield instead
of requested URL, we are sure of capturing the original user-URL. In reality, this method captures
all complex web objects whose loading requires the browser to load other objects (e.g. ``complex''
css iles calling other css iles).

2) Type-based ilter: Thismethod is similar to [23]. It ilters out URLs based on their type. However,
instead of relying on the content type, we inspect the extensions of the objets queried by the HTTP
requests: in particular, we discard URLs pointing to .js, .css and .swf iles.

3) Ad-based ilter: This approach relies on the observation that a large amount of advertisement
is nowadays embedded in web pages. Unfortunately, since advertisements can be complex html
objects, they can be detected as user URLs using the refer-based ilter above. To counter this phe-
nomenon, we blacklist such URLs (using the AdBlock ilter [4]). This method has however, the
counter effect of removing advertisement that were actually intentionally visited by the users.

4) Children-based ilter: By counting the number of URLs seenwith a given referer URL, it is possible
to know the number of objects (children) composing the corresponding parent URL (in the referer
ield). Given the tendency of today's complex web pages to include a large number of objects, we
can safely ilter out URLs that have a very low number of children, e.g., simple objects that include
only few other objects.

Finally, in our work, we also test the Time-based ilter [11, 43]. This method relies on the intuition
that a cascade of browser-URLs always follow the initial user-URL: browser-URLs would be tightly
grouped in time after the user-URL request has been observed. As such, the irst request after a
given inactivity period is considered to be the user-URL, while all the following HTTP requests that
come after a given threshold are assumed to be browser-URLs. Both the inactivity period or the
threshold are clearly dependent on user habits (e.g. opening multiple tabs at the same time), the
network conditions and DNS response times etc. They are as such dif icult to estimate.

2.3.2.1.1 Preliminary evaluation To evaluate thesemethods, wemanually collected, similarly
to [43], a ground truth trace by visiting URLs hosted by the top 100most popular web sites accord-
ing to Alexa ranking. In each of these sites, we randomly visit up to 10 links contained in them. We
store all the clicked URLs as they are shown in the browser bar. In parallel, we capture all HTTP
requests generated by the browser. This resulted in a total list of 905 user-URLs, corresponding to
39025 browser-URLs.
We start our analysis by applying the referermethod irst. Fig. 7 depicts the resulting Venndiagram,
which shows that the referermethod alone has a high `` iltering capacity''. In fact, it reduces the set
of browser-URLs from39025URLs to only 2616URLs. Besides, it has a high recall3 (98,34%). How-

2A ield in the HTTP request that speci ies from which previous page the URL has been referred
3The number of URLs correctly labeled as user-URLs (true positives, here 890) over the real number of user-URLs

(ground truth, here 905).
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Figure 7: Venn diagram reporting the effects of different ilteringmethods on our ground truth data
set.

Method (applied after referer) Recall Precision
Time-based (0.01s) 97,90% 37,67%
Time-based (0.1s) 96,13% 41,09%
Time-based (1s) 87,51% 55,15%

Children (remove<= 1) 94,8% 43,13%
Children (remove<= 2) 93,14% 49,76%

Type-based 98,34% 46,35%
Ad-based 96,57% 44,14%

Type-based + ad-based 96,57% 66,41%
Type + Ad + children-based (remove<= 1) 93,14% 72,67%

Table 2: Performance of iltering methods

ever, its precision4 is low (34%). Therefore, to reduce the set of false positives, we apply our other
methods on top of the URLs detected by the referer method. We also consider different thresholds.
The results are summarized in Tab. 2.
Both the time-based and the children-based methods enhance the precision when we increase re-
spectively the time threshold and theminimumnumber of children. However, they come at the cost
of a decreasing the recall (invalidating valid visited URLs). On the other hand, the type-based and
the ad-based let us enhance the precision, with almost no impact on the recall. In reality, the ad-
based ilter removes 16 valid user URLs, but these were unintentionally visited when we collected
the trace5.
As a start, we opt for the most conservative approach that favors recall over precision: we retain
the type-based coupled with ad-based ilters applied after the referer method. We leave their en-
hancement for future work.

2.3.2.1.2 Additional problems/ iltering When trying to apply the above-mentioned iltering
mechanisms on real data, we noticed some additional sources of error that called for more ingenu-
ity. In particular, we encountred twomain problems; we propose two simple mechanisms to factor
them out:

i) URLs generated by non-browser applications: Most applications use HTTP to automatically down-
load content, e.g., Dropbox or games on smartphones. The queried URLs are clearly not interesting

4The number of true positives over the number of items labeled as positive by the method (here 2616).
5Although we acknowledge that some advertisements might interest people, we decide to skip them for now.
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for media curator, and must be ignored. We can easily identify those URLs by inspecting the user-
agent ield6 in the HTTP request header.

ii) In lated popularity induced by some users: Sometimes browsers generatemultipleHTTP requests
for the same content, e.g., automatically reloading a page, or downloading videos in chunks. This
phenomenon in lates the popularity of some URLs. We counter this effect by counting a URL only
once for each user-id.

2.3.2.2 Pinpoin ng Interes ng URLs

Applying the retained iltering method on our data set, and looking manually at the most popular
URLs, we found that they still do not correspond to what we expect the media curator portal to
promote. In fact, among the popular user URLs, we ind popular web pages that might not interest
users (e.g the web portal of an online bank). Therefore, the next step in the iltering is how to go
from user-URLs to interesting URLs, i.e., URLs that are likely to attract users' attention.
Finding ameasure of interest is challenging since it involves human subjects and tastes. Wedevelop
a preliminary simple heuristic that leverages online social network meta-information. We assume
that interesting URLs should be rich with ``social'' features (e.g., share buttons). The idea is that if
a web page is meant to be shared, then it might interest other people. Based on this rationale, we
propose two methods to understand which user-URLs are ``social-networks enabled'':

1) Active method: In order to know if a user URL is as well an interesting URL, this method actively
queries the URL and parses the returned HTML header looking for the presence of the OpenGraph
protocol7 [63]. If the protocol is present, the user URL is classi ied as an interesting URL. This
method is meant to use the web scraping capability of the content popularity analysis module.

2) Passive method: This approach aims at passively detecting if a web page contains any of the well
known social networks buttons. We inspect a user-URL children (URLs seen with the user-URL
as a referer) and match them against a list of URLs necessary to load such buttons. We study the
different social networks web development guidelines to construct such a list.

2.3.3 Preliminary evalua on

As a irst evaluation of these methods, we test if they already work on platforms that are known
to be interesting. In particular, we test them against Google News. For this purpose, we visit 1000
URLs promoted by Google News. Applying the active and the passivemethods on this trace, we ind
that they classify as interesting respectively 79% and 70,72% of Google News URLs. By inspecting
manually the misses, we ind that (1) not all the web pages implement the OpenGraph protocol
and (2) there are ad-hoc ways of implementing the social networks buttons that our list fails to
identify. In particular, YouTube uses an ad-hoc solution, but it is OpengGraph compliant, so our
active method correctly detects it.

6The user-agent informs about which application generated the HTTP request
7The OpenGraph protocol was developed by Facebook to helpweb pages getting integrated in ``the social graph''. The

OpenGraph metadata in web pages helps the social web scrapers (e.g. Facebook scraper) forming a preview of a page
when it is shared in a social network.
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Figure 8: Content items popularity before and after iltering the considered traf ic trace.

Given the early stage of development of our heuristics, these results look promising, and we leave
their enhancement for future work. Finally, in order to have a preliminary estimate of their `` ilter-
ing capacity'', we apply them on the more neutral (not necessarily entertainment) Alexa ranking
arti icial trace. Both methods gave similar results: 33% of URLs were labeled interesting using the
active method, and 35% using the passive one.

2.3.3.1 Ranking and Classifying URLs

Once contents have been properly iltered, the next step is to run popularity prediction algorithms
to retrieve, early enough, content items that are most likely to attract users' attention. With this
respect, the algorithms presented in Sec. 2.2 will be of a great help.
As shown in Fig. 6 the output of this inal processwill be a list of the hottest contents observed in the
network. This list can be further personnalized and provided on a per-region basis, by ``zooming''
on particular probes in the network.
To get an idea about how such a ranking would look like and how our retained iltering algorithms
would behave on real data, we apply them on a three-days long http trace. The trace contained
around 190 millions of HTTP requests.
Fig. 8 shows the popularity of all-URLs, user-URLs and interesting user-URLs. As expected, the
user-URLs represent a tiny fraction of all the URLs lowing in the network: ourmethod detects that
only 1% of all-URLs are actual user-URLs. Among these user URLs, around 25% were detected as
interesting.
We analyze the interesting user-URLs. We irst manually classify the top 1000 URLs to build a set
of rules to help us having a preliminary classi ication of the rest of the URLs. Among the top 1000
URLs, we ind that 482 are news (or blogs), 336 are services (e.g., online shops, travel engines,
etc.) and only 91 were videos. Extending a similar classi ication on the rest of the interesting user-
URLs, we ind that (at least) 18% correspond to Video coming from 9 different platforms (YouTube
alone 15%) and 22% correspond to news coming from around 80 different news web sites. This
observation con irms that the ISP is probably the only entity that has such a rich cross-OTT view
on Internet content.
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2.4 Measurements for mul media content delivery

2.4.1 Use case introduc on

Evaluating the quality for multimedia stream delivery is important for

1. ISPs who are interested in assessing the true quality of their networks for popular applica-
tions (such as multimedia streaming)

2. Streaming service (infrastructure) providers who are interested in knowing the quality of
their services as delivered by ISPs to different locations over different access technologies

Figure 9: Architecture for monitoring the multimedia service infrastructure

In both cases, active testing substitutes or augments monitoring performed at ``real'' end-user ter-
minals. Performing end user measurements in many cases is problematic - among the reasons
are users' unwillingness to participate, lacking support for various end user devices by the mea-
surement platform, or the unability to install additional measurement plugins for administrative
reasons etc.
Active probes on the other hand are deployed at known (key) locations, are able to perform mea-
surements any time, and can be con igured to receive and measure any of the streams carried by
the network. Active probes are capable to evaluate adaptive streaming protocols, such as Apple
HLS or Microsoft Smooth Streaming: these protocols provide multiple, different quality (i.e. band-
width) alternatives for each stream. These protocols also provide means for smooth (i.e. licker-
free) switching between these alternatives, thus a player can dynamically set the stream quality
to the momentary bandwidth conditions. Support for smooth switching is usually achieved by en-
coding the stream into time-synchronized equal-duration segment sequences of different bitrates

Plane
20



318627-mPlane
Design of Analysis Modules

- reaching the end of a segment the receiver can continue by playing out the next segment from
a different-bitrate alternative. The active probes discussed implement buffered player emulation,
that is able to perform this adaptation and measure the achieved quality (bitrate).
Also in both cases introduced above, activemeasurements should be supplementedbypassivemea-
surements performed by high-performance passive (TSTAT) probes deployed at stream service en-
try points. For an ISP, it is the peering point with the content provider, and for the infrastructure
provider it is the point(s) where the streams leave the server segments, typically implemented by
HTTP load balancers. TSTATprobes log eachTCP/HTTP/Streamdelivery sessionwithmetrics such
as total duration and bitrate, number of TCP retransmits, stream metadata (e.g. video format, de-
pending on depth of inspection implemented). TSTAT probes can alsomeasure generic, yet insight-
ful, quality of service metrics (QoS) such as queueing delay, that can provide important hints on
users' perceived quality of experience (QoE) through perceptual mapping8. In many cases, passive
probing also indicates client system type (iOS, Android etc.). As TSTAT probes have the capability
to measure and log eachmedia access session, they provide input for comprehensive performance
evaluation.
Itmust also be noted (as explained inD1.1), thatmeasuring the quality of streamdelivery is not suf-
icient for assessing the overall quality of a multimedia streaming service: there are also a number
of auxiliary services, such as index pages listing content, search functionality, and - optionally - user
feedback channels (e.g. forums, comments for content etc). While scienti ically not as challenging,
measuring the availability and functionality of these services make the monitoring task complete.
Such auxiliary service are usually monitored by automating simple HTTP download operations. In
the case of interactive functions (search, feedback channels), measurements are implemented via
scripted HTTP transactions.
Figure 9 shows the schematic architecture of the monitoring system.
Streaming service providers usually purchase test subscriptions from ISPswithin their service area,
via different access technologies, and deploy active probes to continuouslymonitor service delivery
at each end point.

2.4.2 Descrip on of the associated analysis algorithms

2.4.2.1 Metrics collected

The analysis algorithm works on the following metrics collected by the active probes:
If themonitoring architecture also contains passive (TSTAT) probes, their logs are available aswell,
and can be correlated to probe measurements.
In addition, for each active probe the following information is available:

• connections's nominal bandwidth and other deployment characteristics of concern (i.e. ac-
cess technology)

• topology and further classi ication information for the probe (e.g. responsible ISP)
8Mapping between QoSmetrics and QoEmetrics can be done through standard perceptual framework: as QoS to QoE

mapping is not necessarily bound to a single application, such as the multimedia streaming of this use case, we defer a
more thorough description in Sec. 3.3
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Metric Unit Description
nominalBitrate bps media segment’s advertised bitrate
actualBitrate bps actual bitrate achieved
bandwidthUtilization % actual vs. nominal bitrate
qualityIndex % bandwidth of selected stream alternative vs. best one
chunkInterArrivalJitter msec jitter of L7 data chunks received
replyDelay msec delay of 1st chunk of the segment
bufferLevel % buffer level of (emulated) player
httpCode int HTTP status code of the last reply
protocolError enum protocol violaton (e.g. malformed data)
serverAddress ipaddr IP address of the server providing the stream
queuingDelay msec queuing delay, per-chunk or windowed

Table 3: Metrics collected by active probes

The task of the analysis is

• identify subsets of probes with less than adequate performance

• match these subsets against probe topology and other deployment attributes available (e.g.
ISP)

• and try to conclude if the degradations observed can be attributed probe deployment infor-
mation

This way, the following problems can be identi ied:

• network bottlenecks on behalf of ISPs

• network bottlenecks tied to congestion in the user access paths

• regional problems caused by CDNmis-con iguration or lack of servers

• less than adequate service coverage (group of endpoints with too little bandwidth to get
streams)

2.5 Quality of Experience for Web browsing

2.5.1 Use case introduc on

Sur ing the Internet via a Web browser is the most common way of accessing information. When
clicking on aWebpage, the user expects that the page gets rendered quickly, otherwise hewill loose
interest and may abort the page load. However, in reality, multiple causes can affect the loading
speed of a Web page, causing it to be slowly or not completely loaded. This is due to the number
of different actors involved in a browsing session (i.e., a time interval in which the user accesses
information on the Internet via a Web browser).
In Figure 10 we can identify 7 different elements which can cause a Web page to load slowly:
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Figure 10: Segments involved in a browsing session.

1. Local Client: e.g., the local machine is overloaded, miscon igured, and so on;

2. Local Network: e.g., the local home network can be experiencing heavy traf ic load due to
other local clients;

3. Gateway: e.g., the gateway can be miscon igured;

4. Middle Box: e.g., irewall, NAT, …;

5. DNS: e.g., failure to resolve properly one or more of the names referenced in the Web page;

6. Internet: e.g., something is wrong ``in the wild'', such as high loss rate between certain inter-
mediate routers;

7. Web Server: e.g., the Web server serving the Web page is overloaded and will return its con-
tent slowly.

From the end user point of view, the result of a problem in any of the aforementioned segments will
result in a poor quality of experience (QoE), being the Web page slowly loaded.

2.5.2 Descrip on of the associated analysis algorithms

2.5.2.1 Measurement Metrics

The analysis algorithm takes as input data taken from the following metrics:
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Symbol Metric Tool Passive or Active
Tnhop RTT to the nth hop Ping Active
∆n T(n+1)hop − Tnhop Simple Computation -
Tidle Client idle time Firelog Passive
Ttot Total Web page downloading time Firelog Passive
TDNS DNS response time Firelog Passive
Ttcp TCP response time Firelog Passive
Thttp HTTP response time Firelog Passive

Table 4: Measurement Metrics

• Client idle time: a passive measurement representing the idle time periods while download-
ing a Web page;

• Total Web page downloading time: passively collected during the browsing session;
• DNS response time: the difference between the time at which the DNS request is sent and the
time at which the response is received (passively collected);

• TCP response time: the time needed for receiving the TCP ACK packet corresponding the irst
TCP SYN packet sent (passively collected);

• HTTP response time: the time needed for receiving the irst data packet corresponding the
irst http GET packet sent (passively collected);

• RTT towards a given node, collected by actively running a ping towards the node of interest,
when a problem signal is raised by the user;

• ∆i: the difference between RTTs towards consecutive routing hops i− 1 and i (computed).

All the described metrics can be simply obtained by using the following tools:

• Tracebox: proposed in [3], it is used to detect the presence of middle boxes in the network
• Traceroute: used to ind out the sequence of the irst hopsmade by a packet when leaving the
local network

• Firelog: this tool, that was irst proposed in [26], is used to perform all the passive measure-
ments

All themetrics are summarised in table 4, where we also report the tools that can be used to collect
them.
As explained in the next section, the metrics in table 4 are used to update cumulative statistics that
are compared, in case a problem signal is raised, to an appropriate threshold to verify if the metric
has some ``anomalous'' behaviour. For instance, measures such as queueing delay experienced by
Web traf ic (e.g., due to competing traf ic in the user LAN) can be inferred from simple RTT mea-
surement: though generic, such a metric can provide insigthful hints about the users' perceived
quality of experience (QoE) through perceptual mapping9.

9Mapping between QoSmetrics and QoEmetrics can be done through standard perceptual framework: as QoS to QoE
mapping is not necessarily bound to a single application, such as the Web browsing of this use case, we defer a more
thorough description in Sec. 3.3.
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2.5.2.2 Algorithm descrip on

The proposed algorithm aims at identifying the segment that is responsible for the high Web page
loading time.

The main idea is to try to perform as much of the troubleshooting process as possible exploiting
the passive measurement [26], without requiring active measurements and by exploiting the ad-
vantages of having more than one device in the local client network.

First of all, when a user raises a problem signal, by clicking on the button provided in the Web
browser, indicating that the Web page is taking a too long to load, the algorithm starts the process
to locate the problem.

The irst check is made on the local client, by simply checking the CPU usage of the local machine
and the ratio Tidle

Ttot
. If the ratio exceeds a given threshold then the algorithm concludes that the

problem is in the local host.

Otherwise, if the local host does not present any problem, the algorithm performs a check on Thttp

(average value over all the values corresponding to the different objects of the loaded Web page),
by verifying if the cumulative statistics applied to this metric has exceeded a given threshold. Note
that this metric can be considered as a rough approximation of the time required for getting the
irst data packet from the remote Web server, thus in case it is normal it can be concluded that the
problem is not in the network (neither local nor backbone) and neither is in the remote host.

Hence, the algorithm performs a check, at irst, on the size of the Web page (verifying if the num-
ber of objects/bytes of the page exceeds a threshold) and then, in case the Web page dimension is
not responsible for the problem, it checks Ttcp and TDNS possibly concluding that the problem is
generated by the long distance towards the remote Web server or in the DNS server, respectively.

Instead, in case Thttp is normal, the algorithm automatically excludes the DNS and the page dimen-
sion cases and proceeds by requiring some cooperation from the other devices of the local network.
In more details it ``asks'' the other devices to report any experienced problem.

At this point, there can be three distinct cases: all the other devices are experiencing some prob-
lems, none of the other devices is experiencing any problem, and just some of the other devices are
experiencing some problems, that is:

In case all the different devices are experiencing some problems the algorithm can directly exclude
that the problem is due to the remote server (assuming that not all the devices are contacting the
same remote server). Among the remaining cases (i.e., gateway, local network, middle boxes, and
backbone network), the algorithm can assume that the problem is located, with high probability,
close to the devices (otherwise probably not all the devices would experience problems) and thus
it begins the diagnosis phase by checking the gateway and the local network. If the problem is
neither in the gateway nor in the local network, it check the middle boxes. If the problem is not in
themiddle boxes, it concludes that the problem is in the backbone network (probably in the portion
of the backbone that is close to the local network, given that all the local devices are traversing it).
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2.6 Mobile network performance issue cause analysis

2.6.1 Use case introduc on

This scenario addresses the issue of identifying the root cause of problems related to connectivity
and poor quality of experience onmobile devices. More speci ically, we explore howmeasurements
that are collected at various points of the infrastructure can be used to automatically identify the
reason for poor mobile network performance (e.g., video buffering, disconnections, poor browsing
experience).
Identifying the root cause of poor connectivity on a device is not a trivial task. For instance, when a
mobile device is trying to load a webpage or a video then any of the involved parties along the path
of the information could be the bottleneck:

• Device issues: The user's phone might not be able to correctly load and display the content
for various reasons: inadequate CPUormemory,missing codecs, lack of cachingmechanisms,
poorly con igured drivers, lack of hardware acceleration or even the wrong video quality was
selected by the application.

• Mobile ISP issues: The user might be in an area with poor cellular reception (low SNR,
with only limited physical modulations usable) or where no high-speed data connectivity is
available (lack of HSPA support, limited physical bitrate available on the radio channel). In
some cases (e.g., football games, concerts) there might be a very high demand at a given ge-
ographic area that may affect a number of local users. Furthermore, incorrect settings at the
RNC can result in long delays to connect to the network or alter the latency signi icantly. Fi-
nally, the mobile operator might be running low in backbone capacity (e.g., when microwave
links or old wired technologies are used) resulting in lack of capacity to carry data until the
base station.

• Fixed ISP: If a device is connected via a ixed network (e.g., home via WiFi or ethernet) then
traf ic fromother devices in the same local network (e.g., connected to the same router)might
be creating the problems. Furthermore, the ADSL router or the DSLAM might be miscon ig-
ured or congested. Finally, the backbone of the ISP or the peering points with the service
providers or the core network might be congested.

• Core network issues: The issuemight be generated by a congested or badly con igured core
network (routing issues), lack of peering points between the provider and the video hosting
service.

• Service and CDN provider: : This includes issues with the content distribution network or
the servers that support the service (e.g., congested video servers).

Due to the fact that these measurement probes rely on different legal and physical entities (e.g.,
user devices, ISPs, service providers) cannot freely exchange the collected information. Apart from
de ining the measurement points and the algorithms that are required to identify mobile connec-
tivity issues, a key challenge is the fact that it addresses issues related to data ownership, sharing
and federation of the monitored information.
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2.6.2 Descrip on of the associated analysis algorithms

As described, the mPlane platform involves a number of measurement agents that reside within
different entities (e.g., user devices, the ISP where the device is connected, service providers) in
order to discover quality of experience problems and identify the root cause along the path.

2.6.2.1 Overview of Measurements at each en ty

User’s Devices:

Instrumented applications provide measurements from the device and application point of view.
For instance, a video application monitors “buffering” events that affect the perceived quality of
service. A mobile device OS (e.g., laptop/phone) monitors the signal strength with the associated
cell or WiFi station. Furthermore, the users can manually report problems that include subjective
opinion about the network connections. This enables the platform to connect ground truth about
the actual quality of experience. Finally, the device probe contains a troubleshooting engine that is
responsible to combine the measured or reported information to detect and handle any network-
related quality of experience issues. Furthermore, the troubleshooting engine is responsible to
collaborate with the probes within other legal entities (e.g., ISP, service provider).
More speci ically, this probe:

• Allows the users to report “quality of service” issues related to their connectivity (by press-
ing, for instance, a “my internet is not working properly” button). The information is used
to identify local issues within the users’ device and to further forward this information to
the involved ISPs and service providers. This also enables the providers to collect subjective
ground-truth information about each application (e.g., what are accepted latencies for web
content, what are acceptable speeds/qualities for video browsing. Finally, this information is
then associated with the data that are gathered by the sensors and the network (e.g., are the
users moving, are they at home connected to WiFi, are they in a speci ic geographic region?).

• Contains various measurement probes that passively and actively collect
Measurements related to the application’s performance. For example, if a video player is

loaded information such as number of events related to “buffering”, average bitrate, dropped
frames etc. For web browsing, statistics about transferring, loading and rendering each com-
ponent are collected. Finally, for a gaming application information such as latency and jitter
are collected.

Measurements related to wireless connectivity: type of connectivity (e.g., edge, 3G, LTE,
802.11gm, Ethernet, ZigBee, Bluetooth), signal strength, disconnection history, association
history, etc.

Network measurements: MAC layer and TCP/UDP statistics, bandwidth usage, etc.
Device related statistics: CPU usage, memory usage, running apps, etc.

• Finally, a troubleshooting engine combines themeasureddatawith themanual reports to cre-
ate a mapping between the conditions that can lead to perceived quality degradation. Semi-
supervised learning algorithms are used to automatically identify application issueswith lim-
ited user interaction. More speci ically, prior user-initiated reports are associated to speci ic

Plane
27



318627-mPlane
Design of Analysis Modules

network conditions. When similar conditions aremet (by the same or any other user), an au-
tomatic report is generated without the user interaction. Notice that, in some cases the user
might be probed for further feedback. Finally, a combination of static thresholds is used to
also trigger an automated report (e.g., if number of buffering events exceeds a threshold).

Mobile ISP :

If the device is connected to a cellular network, the provider uses an probe to troubleshoot issues
from their point of view of the network. For example, to identify congestion in certain parts of the
network (e.g., a tower) or to pinpoint underperforming middle-boxes within the network. As with
themobile device, a troubleshooting engine is responsible to collect andhandle themeasured infor-
mation and the troubleshooting requests. Similarly with the device probe, the mobile ISP contains
a module that:

• Passively collect information related to each base station: number of users, utilization, QoS
policies.

• Passively collect information related to the backbone connectivity: utilization, TCP/UDP per-
formance (RTT, loss rates, etc.).

• Passively collect information related to theperformance anymiddle-boxes: webproxies, deep
packet inspectors, routers, etc.

• Maintain the topology of the object exchanged so the path thatwas taken through the network
can be traced if required by an inquiry.

• Aswith the previous probes, the troubleshooting engine is also used to automatically identify
errors or investigate issues reported by the users’ mobile devices.

Wired ISP :

Similarly to a mobile ISP probe, the Wired ISP probes are responsible to identify issues within the
ISPs network. For residential connections the home router is instrumented with a measurement
probe to identify issues related to the quality of the local wireless and wired connectivity. Further-
more, probes deeper in the ISP (e.g., DSLAM, routers, peering points) also provide measurements.
As with the mobile device, a troubleshooting engine is responsible to collect and handle the mea-
sured information and the troubleshooting requests.

• Instrumented gateway (router): Passively collect information related to:
The connectivity of eachassociatedwireless andwired client of thehome/business/public

network (e.g., signal strength, utilization, bitrate, packet loss).
Information about the network status and load of the wireless and the wired interfaces

(e.g., bandwidth utilization, loss rates, retransmissions, round trip times).
Information related to the con iguration of the router (QoS policies, allowed ports, access

lists etc.).

• Similarly to the mobile ISP, the wired ISP installs probes across its own backbone to collect
information related to the performance any middle-boxes, routers, peering etc.
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Figure 11: The iterative process of consulting with with reasoners across different entities.

• Finally, aswith the previous probes, the troubleshooting engine is used to automatically iden-
tify errors or investigate device reported issues related to local Wi-Fi connectivity or within
the ISPs network.

Core Network and Service Provider:

Core Network probes are used to identify issues with peering and backbone congestion or miscon-
iguration as with the mobile wired ISP bones middle boxes are used to take measurements and a
troubleshooting engine is used to automatically identify errors and to investigate any device/ISP
initiated requests.

2.6.2.2 Distributed troubleshoo ng and Data sharing

Due to the fact that data is generated within the network of various legal entities (e.g., the user,
the ISP providers, core network providers) our troubleshooting detection algorithms follows a dis-
tributed approach in terms of data collection analysis.
In our platform each entity is running an instance of the reasoner, however, each of these instances
are considered as a “black box”.

• Data is collected and owned separately by each involved entity (e.g., the user’s device, the
mobile ISP, etc.).

• Each entity runs its own instance of a troubleshooting agent that can only access the internal
data to identify any possible causes within the organization.

• Finally, the agents across different organizations are using the proposed architecture to col-
laborate in order to identify the exact cause of a problem. In that process only the abstracted
information is revealed between the involved parties.

• A query to identify an issue is only forwarded to the next entity along the path of the data only
when the local data indicate that there is no local problem.

For instance, Figure 11 shows an example of a user reported connectivity problem. In this example:

• The user reports an issue with connectivity or quality of experience (notice that the request
to troubleshoot an issue can also be automatically generated).

• The application and device probes use the collected data to identify if the reason is within
the device (e.g., poor signal strength, missing codecs, not enoughmemory, other applications
are using the bandwidth). Only information that is collected and owned by the user’s device
is used. If the reason is identi ied the issue is considered solved and the user and/or the
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service provider are noti ied. If the reason is not identi ied then the local troubleshooting
probe generates a request for further investigation is forwarded to the instance running at
the ISP (mobile or ixed) that provides the connectivity. Only the required information such
as the timestamp, the objects that caused the issue is shared to help the ISP identify the low
within its own network.

• Similarly, when the probe of the ISP receives a request from a mobile user, it uses its own
repository to identify if the problem lies within its own network. Information owned by the
ISP such as base station load is used to identify any problems at the speci ic time/location
of the user. Similarly, collected information from the backbone and middle-boxes are also
used to identify any causes there. As with the device probe, if no issue is detected within the
ISP a request if forwarded further towards the core network that served this request. Notice
that the troubleshooting engine of the ISP can also detect a problem (even when initiated
by a user’s device. As before a request is forwarded to the corresponding probes to further
investigate the root cause of the issue.

• In a similar manner, if the issue is not identi ied, further requests can be further forwarded
all the way to the service provider (e.g., web host or video provider). Therefore, in our ar-
chitecture this sand-boxed iterative process addresses all the aforementioned data sharing
issues while providing the ability to track problems across different entities.

2.6.2.3 Troubleshoo ng Algorithms

At each site, the reasoner engine in our scenario offers three different capabilities i) rule-based trou-
bleshooting, ii) machine learning detection and iii) spatio-temporal correlation of multiple reports.
We now describe each one of these capabilities.
Rule-based troubleshooting:

When a request is made either by an external entity or internally (e.g., by the user or by ameasure-
ment) then the passively collected information in the database is used to pinpoint the exact cause.
Standard rule-based mechanisms are used in this case. For instance the engine evaluates whether
there was enough available bandwidth at the links that the object went through (e.g., only GPRS
connection when trying to watch a video). An example is given in Figure 5.
The advantage of using rules lies into the fact that these are lightweight computations that can be
used in mobile (battery operated) devices. The disadvantage of using this approach is how to set
the threshold values. In some cases it is obvious (e.g, we can detect a problem when the CPU or
the connectivity type is not enough to play a video) but in other cases it is harder (e.g., what is the
number of retransmissions that generates poor video experience).
To make these correlations our system processes the data to identify threshold values with high
con idence. If a signi icant correlation is found a rule-based model is used. Otherwise a more com-
plex (and demanding) machine learning model is constructed.
Machine learning troubleshooting:

The main goals of the applied machine learning are ease/eliminate the human effort in manually
building the complex rule based system. Usually such systems perform as good or even better than
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Issue Entity detected Possible measurements
Con iguration issues User’s device Application API, OS API (e.g., missing codecs)

Inadequate CPU User’s device Device CPU usage, video frames dropped
Inadequate memory User’s device Low device memory, low refresh rates, high object alloca-

tion latency, swapping
Poor signal strength User’s device Low RSSI, dropped packets, high mac-layer retransmis-

sions
Frequent disconnections/mobility User’s device Network state (connected non-connected), AP changes,

rapid modulation and state changes
Poor wireless network speeds User’s device Type of connectivity (GPRS, Edge, 3g, LTE)

High network usage User’s device High traf ic from other apps or the OS.
Network inaccessible User’s device Network not con igured (e.g., no IP) or no packets ex-

changed with gateway
Wi-Fi Congestion Router Signal strength, high contention windows, percentage of

time medium was busy, high transfer rates
ADSL/cable/FTTH link issues Router/DSLAM/ISP High utilization, high transfer rates, high ping times, packet

loss, TCP/IP metrics
Gateway Router issues Router High router CPU/Memory usage, large latency to forward a

packet, queues, miscon iguration
Cellular base station congestion Mobile ISP High utilization, number of associated clients, lost frames,

frequencies in use
Cellular base station issues Mobile ISP High latency, lost packets, RNC miscon iguration

Mobile ISP backbone Mobile ISP High utilization, high transfer rates, high ping times, packet
loss, TCP/IP metrics, router statistics

Mobile ISP middle boxes Mobile ISP CPU/Memory, latency to process a request, logs
Mobile ISP peering Mobile ISP Peering utilization, latency, lost packets
Fixed ISP backbone Fixed ISP High utilization, high transfer rates, high ping times, packet

loss, TCP/IP metrics, router statistics
Core Network Issues Core Network High utilization, high transfer rates, high ping times, packet

loss, TCP/IP metrics, router statistics
Content Delivery Network CDN Selected server, load, CPU load, memory load, network uti-

lization, latency to serve an object/query, disk/memory ac-
cess time and utilization, cache hit ratios, number of users
served

Service provider Service provider Selected server, load, CPU load, memory load, network uti-
lization, latency to serve an object/query, disk/memory ac-
cess time and utilization, number of users served

Table 5: Examples of detected errors using rules in a mobile scenario.

the human expertswhen complex environments are considered. Note, that these also could be used
only as a automatic rule mining systems and the inal decision could be made by a human expert.
The statistical machine learning can be used to detect the issues without explicitly specifying the
rules for iring the alarm. These techniques could be divided into supervised (semi-supervised)
learning or unsupervised learning. The basic idea of supervised learning lies in correlating the user
reported issues with the measured variables. When a user reports a problem, previously observed
correlation patterns can be investigated in an automatic way and most likely causes of problem
reported to the user. Unsupervised learning, on the other hand, models a "normal" values of the
observed variableswithout any user feedback and rises alarm if something unexpected is observed.
Different learning techniques can be used on different entities. The requirements for algorithms
should be based on the entity type and data type that the entity collects. For example, on mo-
bile devices algorithms are limited by slow CPU and limited storage resources. Therefore, simple
stream processing algorithms should be considered. These do not store data on the disk and can
process it on the arrival time. One example of such algorithm can be recursive linear regression
with a sampling techniques to increase the performance. A streaming linear learning algorithm is
use to associate possible issues to measurements. For instance as people click the “my internet is
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not working button” then the learning algorithm associates possible local conditions that typically
result in poor experience. One can perform factor analysis of the builtmodel to identify correlations
between problems and the causing factors. This information is used to automatically generate fu-
ture reportswithout requesting explicit user interaction. This is a key part of our systemas it allows
the ISP to collect ground-truth and crowd source quality of experience issues.
Inside the entities with higher computational power, energy and storage resources, more powerful
and accurate models can be considered. This is also due to the fact that less and less explicit user
feedback will reach entities further from the user. Such models include one class SVMs, time series
causality detection, and outlier detection algorithms for time series.
Automatically identify issues as they happen: Similarly, machine learning is used to identify issues
as they build up and warn the interested parties before they affect their network. Here, unsuper-
vised learning algorithms can detect abnormal measurements and automatically ask neighbor en-
tities to explain such statistical discrepancies.
Distributed troubleshooting: The topology information is used in every stage to identify the paths
that eachobject tookwithin thenetwork. Therefore, if an error is not foundwithin anentity then the
troubleshooting engine is responsible to forwarda troubleshooting request to the appropriate “next
hop” that handled thedata andhandle any replies. Furthermore, as replies back the troubleshooting
engine associates measurements to external problems.
For this purposes, we are implementing a system developed on top of storm to run streaming algo-
rithms machine learning algorithms on top of the stream of incoming data.
Spatio-Temporal troubleshooting:

In the case of mobile devices, certain problems can occur in speci ic geographic regions. For ex-
amples, even within the same cell sector there might be areas with poor coverage. Furthermore,
certain sectors, cell sites, RNCs, NodeDBs might be congested or miscon igured.
Our approach that allows external entities (e.g., user's smartphones) to report errors to the next
entity along the data path (e.g., themobile ISP) allows us to correlate reports frommultiple devices
in order to construct a spatio-temporal mapping of the reported issues for each data object or for
group of objects (e.g., videos to the same CDN cluster).
To do this, the data produced by our monbilt probes are in geoJSON format where the most accu-
rate information available is used (GPS,WiFi or GSMbased localization). Furthermore, information
about the mobile network deployment and the network topology is used to identify potential bot-
tlenecks.

2.7 Anomaly detec on and root cause analysis in large-scale net-
works

2.7.1 Use case introduc on

CDNs are a vital part of the current Internet infrastructure. By deploying servers in multiple data
centres across the Internet, content can be served to end-users with high availability and perfor-
mance. However, CDNs pose challenges for ISPs, since changes in server allocation policies can
cause sudden changes to the traf ic carried by ISPs, impacting traf ic engineering and possibly im-
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Figure 12: Scheme of a possible CDNs traf ic monitoring system.

pairing end-user quality of experience. As such, ISPs need advanced tools to track the traf ic served
by CDNs.

In the context of mPlane, Fig. 12 shows a possible placement and combination of the different
mPlane layers to monitor and detect anomalous behaviors in CDNs traf ic. The ISP network can
be seen as a composition of nodes interconnecting user clients to CDN servers. The role of mPlane
in this speci ic scenario is to track the performance from users' access links up to CDNs peering
link. The role of each of the mPlane layers to tackle this problem is the following:

The probes perform passive and/or active measurements, and represent the source of measure-
ment data, which can be continuously produced (e.g., a passive probe monitoring links and
exporting newdata in a stream-like fashion), or can be generated on demand (e.g., by running
commands such as ping to occasionally investigate a network path toward a server). Instru-
menting this use case requires the installation a few high-end probes to monitor selected
high-speed links possibly considering both the network edge (e.g., the traf ic generated by an
aggregate of end users) and the network core (e.g., the traf ic traversing a peering link). Ad-
ditionally, to cover ``the last mile'', a precious and critical resource for mobile carries, probes
can be deployed to act as user devices, or end-users can instrument their devices to run some
lightweight software (e.g., a browser plug-in) to automatically report measurements to the
monitoring plane.

The repositories store, correlate, and pre-analyze the large amounts of data collected by the
probes, both continuous data provided by the probes and static data such as routing tables
topology descriptions, and other external data sources (please refer to the deliverable D3.2
for more details [59]).

The Supervisor handles themechanics of the distributedmeasurement platform, aswell as the i-
nal analysis, correlation, and compilation of the intermediate pre-processing results obtained
from the repositories' analysis. The Reasoner is responsible for the automated iteration to
ilter or drill down to the root cause analysis of the detected anomalies.
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2.7.2 Descrip on of the associated analysis algorithms

2.7.2.1 Example of tracking Akamai CDN traffic policies

We describe the algorithms through a practical example on the detection of anomalies in CDNs'
traf ic: in particular, we address the problem of tracking Akamai CDN cache selection policies. Let
us begin by detailing the components of the different mPlane layers associated to this analysis:

Probes: We refer to a data set collected from a passive probe installed at the network edge of a
major European ISP tomonitor an aggregation of about 50,000ADSL customers. The probe is
instrumented to run Tstat, an Open Source passive monitoring tool developed by Politecnico
di Torino, and to collect per-connection logs, i.e., text iles reporting a set of statistics on each
monitored connection (see D2.1 and D5.1 deliverables for more details [59]). We use a one-
week long data set collected starting from May 13th 2012, corresponding to 496 GB of data
and containing 1.052 billion TCP connections.

Repository: The collected data are loaded into DBStream, a novel continuous analytics system
developed by FTW. DBStream combines on-the- ly data processing of Data Stream Manage-
ment Systems (DSMSs) with the storage and analytic capabilities of Data Base Management
Systems (DBMSs) and typical ``big data'' analysis systems such as Hadoop. In contrast to
DSMSs, data are stored persistently and are directly available for later visualization or fur-
ther processing. As opposed to traditional data analytics systems, typically importing and
transforming data in large batches (e.g., days or weeks), DBStream imports and processes
data in small batches (in the order of minutes). Therefore, DBStream is like a DSMS in the
way that data can be processed fast, but streams can be re-played from past data. The only
limitation is the size of available storage. DBStream thus supports a native concept of time. At
the same time DBStream provides a lexible interface for data loading and processing, based
on the declarative SQL language used by all relational DBMSs.

Reasoner: in the considered scenario, the reasoner is not present and the iterative steps are run
manually, using the basic analysis capabilities of DBStream to look for the root causes of the
detected anomalies (in section 2.7.2.2 we give a description of the speci ic anomaly detection
algorithm). To identify Akamai traf ic, we rely on the MaxMind Organization Database which
is capable to map an IP address to the name of its ``owner''. More speci ically, we consider
a connection to be related to the Akamai CDN if the destination IP address owner name con-
tains the keyword Akamai. The MaxMind database has been loaded in DBStream to enhance
the information provided in Tstat logs. In this context DBStream acts as a repository which
performs join and ilter operations among different data set.
Additionally, we track a single /25 subnet hosting Akamai caches. Servers in this network are
reached by a direct peering agreement between the ISP and Akamai. Nodes in this subnet are
very close, typically less than 5ms far away from customers in the monitored PoPs, and we
refer to this subset of caches as ``Preferred'' in the following. The scope of the analysis is to
investigate on the traf ic of such preferred caches. In this context DBStreamacts as a reasoner
by performing some root cause analysis to investigate on the nature of the traf ic captured.

Fig. 13 (left) details the evolution of the number of connections served by Akamai CDN nodes on
Monday and Tuesday as seen from the vantage point. The preferred caches serve about 30% of
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Figure 13: Evolution of number of connections served by Akamai CDN (left) and difference of num-
ber of connections served in consecutive 5 minutes time windows (right). UTC time is used.
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Figure 15: Evolution of server elaboration
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traf ic at peak time. Surprisingly, traf ic served by the preferred caches presents occasional drops.
These are effects of the CDN server selection policies shifting traf ic back and forth among CDN
nodes. To better capture the effect, Fig. 13 (right) reports the evolution of the difference of the
number of connections served by the preferred cache in two consecutive time windows of 5 min-
utes.
We found this characteristic being present for the whole week but we did not observed any clear
indication of periodicity. Moreover, results from the other vantage points are consistent, with the
same effect being present at the same time periods. We use DBStream to further study the cause-
effect relationship behind this phenomenon.

Single servers load: Westart by checking if the sudden traf ic shifts are due to some server failure
in the preferred subnet. Three consideration hold for this analysis: (i) we found only 40 IP
addresses being active and constantly used in the /25 subnet; (ii) there are a few (preferred)
IP addresses handling up to 62% of requests but (iii) all servers presents almost absence of
traf ic in correspondence of the traf ic shift. Thus, we can rule out the hypothesis of some
speci ic node failing.

Per service analysis: CDN nodes host very different content, e.g., the same CDN server can serve
both Facebook and iTunes/AppleStore objects. Tstat exposes this information by snooping
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the Full Quali ied Domain Name (FQDN) of the requested content [13]. We thus check if
the observed traf ic shifts are due to the CDN moving some speci ic content, e.g., only face-
book.com, or instead involves all contents, independently from their popularity.
DBStream is used to group rows by service names10. DBStream considers time bins of 5min-
utes, and for each service name it computes the fraction of requests served by preferred and
other caches. The obtained values are represented by the heatmap shown in Fig. 14. We se-
lected themost popular services, and sorted themby the probability of being served by a pre-
ferred server. Results clearly show two groups: the bottom 300 services are normally served
by some server among the preferred caches (red dots). The other 200 services are served ex-
clusively by other Akamai CDN servers (green dots). Services not accessed anymore during
off peak time are left white.
Also in this case, when some traf ic shifts occurs, practically all services aremigrated to other
caches, as testi ied by the green vertical bars. Only a group of about 20 services is never mi-
grated, except during a 2 hours from 5am to 7am on Tuesday, when traf ic from the preferred
data center goes practically to zero (see Fig. 13). Services on this group refer to Facebook
static content being servedbyAkamai (e.g., photos-N.ak. bcdn.net, bcdn-photos-N.akamaihd.net).
All other services are instead migrated to other CDN servers.
In general, results indicate that the traf ic shifts are not related to some particular service,
but are rather the effect of changes in the server allocation policies impacting all services.

Impact on performance: We conclude our analysis investigating the impact of the traf ic shifts
on the end-user offered performance. Fig. 15 (top) reports the evolution of the 5th, 25th,
50th, and 75th percentiles of the elaboration time3 for the considered time period (y-axis is
in log scale). In this case DBStream considers a time interval of 5minutes to retrieve accurate
percentile estimations. Results show that during the traf ic shift occurring on Monday, some
impairment of the elaboration time is visible. In particular, the 50-percentile grows from
about 10ms to about 20ms before and during the shifts happening at 18:00. This would sug-
gests that CDN server re-allocation could be triggered by some performance issues. However,
this is not con irmed during Tuesday, when no practical impact on performance is visible in
correspondence of traf ic shift. Extending the analysis to the whole week (results not re-
ported due to lack of space), we see that the same behavior observed on Monday is present
also for the days before. Instead, since Tuesday the server response time does not present
any oscillations anymore, while traf ic shifts are still evident during the days.

In this example analysis wewere not able to identify the causes behind ``the anomaly'' in the traf ic
of the preferred Akamai caches. Notice that this is not a negative result per-se. In fact, the exam-
ple underline how the need of an automated reasoner capable of performing a root cause analysis.
By extending the capabilities of the reasoner the analysis could be much more deep. For exam-
ple, triggering active experiments (e.g., a traceroute) when the anomaly is in place would allow to
further investigate the nature of the anomaly captured by the analysis delay observed via passive
measurements.
Similarly, checking the presence of the same anomaly in the traf ic observed by other vantage points
could also improve the knowledge about the phenomenon. For example, if different probes do not
show the same effect there might be problem along the path, i.e., there might be some problem in
the ISP network.

10Some string pre-processing is applied to group together FQDN such as a1.da1.facebook.akamai.net,
a2.da1.fecebook.akamai.net, etc.
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2.7.2.2 Web services anomaly detec on

With respect to the previous example, we tackle here the Anomaly Detection problem from a differ-
ent angle, by focusing on the characterization of the traf ic and the delivery behavior of a speci ic
(yet extremely popular) web-service heavily relying on CDNs for being accessed. The purpose is
to gain an understanding of the interplay among different hosting and delivering organizations, an
by that to build an anomaly detection system capable of automatically detecting possible anoma-
lies in the delivering mechanism. In fact, as we will show, the way Internet-scale web-services are
delivered is very dynamic and complex to characterize, thus putting several challenges upon an
automatic anomaly detection system.
As an example we perform an analysis of Facebook, the most popular and widely spread Online So-
cial Network, as well as of the main CDNs and caches serving its content, i.e., Akamai, Facebook AS,
and other important caches observed in our traces. Facebook represents an excellent case study
for investigating the content provisioning complexity typical of Internet-scale web-services, as it
is distributed by the most dynamic and widely deployed CDN so far. Indeed, due to the high num-
ber of daily users and the high volume of served traf ic, Facebook has to deploy a sophisticated
content delivery strategy. Indeed, in the traces collected at our vantage point (in the production
network of a major European Mobile Operator) we observed more than 6000 server IPs serving
Facebook contents, distributed across 20 Countries, and 250 different Autonomous Systems (AS),
over 4 weeks. This con irms the wide-spread usage of several third-party content providers which
adopt completely different working paradigms, as we show in the following.

2.7.2.2.1 Distribution of traf ic across ASes To illustrate the role of the different Facebook
content providers and their resource allocation policies, we plot in Fig. 16 the time series of the
5-minutes count of lows and exposed IP addresses (i.e., servers) per AS (for the top-5 ASes), for
4 consecutive days from July the 29th to Aug. the 1st, 2013. The igure shows that the low share
across the top-5 ASes11 remains practically constant during the day. There is a clear daily pattern
in the number of active IPs, and it is worth noting that Akamai systematically doubles the num-
ber of deployed servers during the peak hours (9pm - 10pm). Akamai and Facebook AS serve the
largest share of Facebook lows. However, Akamai employs much more servers than Facebook AS,
as we found it serves the largest lows corresponding to static contents, showing the role break-
down through the different ASes.
The igure also shows four ``anomalous'' events, identi ied asA,B, C andD, which break the nor-
mal traf ic patterns and unveil the nature of the agreements between the ASes. Events A and B
have similar characteristics. During the anomalies, even if the number of IPs steeply increases,
the number of lows and volume of traf ic served by Akamai abruptly decreases. NO and TeliaNet,
which usually serve a negligible share of Facebook traf ic, immediately deploy a number of back-
up machines (i.e., IP addresses) to take over Akamai traf ic. To get a better view on this event, we
plot in Fig. 17 a 12 hours zoom around the events C andD. During the event C , the Akamai glitch
is again compensated by TeliaNet and by NO in terms of volume. However, unlike Telianet, there
is no evident peak in the the number of lows served by NO, suggesting that the latter takes over
the largest lows from Akamai. Event D differs from the previous ones since it does not involve
Akamai and it is characterized by a swap between the number of lows served by NO and TeliaNet.
The analysis of the four events suggests the existence of a chain of agreements between the ASes:
Akamai gets support from NO, which in turn co-operates with TeliaNet. Therefore, whenever NO

11From hereafter, we refer to the Local Operator as LO, and the Neighbouring Operator as NO.
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Figure 16: Count of lows (up) and server IPs (down) during 5minutes, per AS. Actual lownumbers
are rescaled for privacy reasons.

cannot copewith the traf ic load handed over formAkamai, TeliaNet comes in support. Notably, we
did not observe any anomaly in the total traf ic, throughput, average RTT of the active IPs, nor in the
number of erroneous HTTP responses, during the events A-D, suggesting that the load balancing
policy worked effectively towards the objective of preserving the end-user perceived quality of ex-
perience. Still, these eventsmight be critical for a network operator, as they entail signi icant traf ic
shifts and could have an impact on the Operator's network and traf ic planning. In this speci ic case
we veri ied via traceroutes that Akamai, TeliaNet, and NO are neighbours to LO. As reported in the
Internet AS-level topology [2], the nature of the commercial agreement between LO and these three
ASes is very different. Thus, we argue that such events might have economical implications for the
LO, therefore they are worth to be reported.
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2.7.2.2.2 Temporal Characteristics of Traf ic Distributions To get further insights into the
waydifferent organizations serveFacebook traf ic, we investigatehowvolumeand lowsdistributes
across the IP addresses exposed by the CDNs over time. In particular, for each individual server IP
address we keep individual counters for the volume and the number of lows. Counters are cumu-
lated at different time-scales from 1 to 60 minutes, to enable multi-scale analysis. At the end of a
time interval we compute the distribution of the counters across the server IP addresses, and by
that we obtain timeseries of distributions. By comparing the distributions referring to the different
time intervals, we get an insight on how IP addresses of the different organizations complement
each other and implement a load balancing policy. To quantify the degree of similarity between
two distributions, we resort to a symmetrized and normalized version of the Kullback-Leibler di-
vergence [29]. However, to fully understand the complex temporal structure of the CDN traf ic,
we need to visualize and quantify the degree of (dis)similarity of a large number of distributions
over days and even weeks. For this purpose, we employ an ad-hoc graphical tool already proposed
in [29], referred to as Temporal Similarity Plot (TSP). The TSP allows pointing out the presence of
temporal patterns and (ir)regularities in distribution timeseries, by simple graphical inspection.
The TSP represents, via a heat map, the reciprocal of the dissimilarity (i.e., the degree of similarity)
between the traf ic distributions in two time bins. Figure 18 gives an example of TSP for the dis-
tributions of all the Facebook lows across all the server IP addresses providing Facebook content,
over T = 28 days. The blue colour represents low similarity (high divergence), while red corre-
sponds to high similarity (low divergence). Because of the symmetry of the adopted discrepancy
metric, the TSP is symmetric around the 45◦ diagonal.

Figure 18: TSP of low distributions at 1h time scale, over 28 days.

The TSP in Fig.18 refers to the distributions on a time-scale of 1 hour. Note the regular ``tile-wise''
texture within a period of 24 hours, due to the daily cycle. The lighter zones correspond to the time
of the day, whereas the dark blue zones correspond to the night-time periods when the traf ic load
is low. The low similarity (blue areas) at night (2am-5am) is caused by the low number lowswhich
induces larger statistical luctuations in the compared empirical distributions. This pattern repeats
almost identical for few days, formingmultiple daysmacro-blocks around themain diagonal of size
ranging from 2 up to 6 days. Besides the basic tile-texture, the analysis of the entire observation
period reveals the presence of a more complex temporal strategy in the (re)usage of the IP address
space. Indeed, it discloses a reusage of (almost) the same address range between 12-17th and 21-
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22th, and between 18-20th and 23-24th of July. Finally, we observe a sharp discontinuity on July
the 26-27th.
To get a better understanding of such a complex behaviour, it is worth analysing separately the
two main sources of Facebook traf ic volume-wise, that is Akamai and the Facebook AS. The visual
comparison of Fig. 2.19(a) and Fig. 2.19(b) against Fig. 18 explains the complexity of the latter
as the superposition of the very different allocation policies used by Akamai and Facebook AS. In
particular, Akamai uses the same addresses/servers, for 4 to 7 days (see multi-days blocks around
the main diagonal). When it changes the addresses used for serving Facebook traf ic, the shift is
not complete as we can observe the macro-blocks slowly fading out over time. This suggests a
rotation policy of the address space of Akamai, on a time-scale longer than a month. However, we
cannot prove this conjecture because of the limited duration of the analysed dataset. On the other
hand, Facebook AS does not reveal such a clear temporal allocation policy. It alternates periods of
high stability (e.g. between the 12-17th of July) with periods during which the allocation policy is
extremely dynamic (e.g., form July the 26th onward). It is interesting noticing that Facebook AS is
the responsible for the address space re-usage, between 12-17th and 21-22th, and between the 18-
20th and the 23-24th of July, and for the abrupt change on July the 26-27th, both already identi ied
in the total traf ic (see Fig.18). Finally, NO always uses two distinct address sets during the night-
time and the day-time (see Fig. 2.20(b)). Similar results have been obtained analysing the TSPs of
the volume distributions across the IP addresses, for the top-5 ASes.

(a) Akamai (b) Facebook AS

Figure 19: TSP of low distributions at 1h time-scale.

The TSP also allows identifying anomalies in the traf ic distributions. Indeed, a transient anoma-
lous event appears in TSP as a blue cross centered on the main diagonal, and positioned around
the time of the event. Figs. 2.20(b), 2.20(a), and 2.20(c) show the TSPs of the low distributions
between July the 29th and August the 1st at 5 minutes time-scale, for Akamai, NO, and Facebook
AS respectively. As expected, the events A, B, and C are clearly visible in the TSPs of Akamai and
NO, and are totally absent from the Facebook AS TSP. These events are also clearly visible in the
TSP of Telianet (not reported for space limitations), and are in total accordance with the analysis
of the total lows time-series in Fig. 16 and Fig. 17. Regarding the eventD, it is observable in all the
TSPs of Fig. 20, including the one of Facebook AS, even though it is completely invisible in the time-
series of the total lows and volume of Facebook AS (see Fig. 17). Furthermore, Figs. 2.20(b) and
2.20(a) pinpoint the presence of two more anomalous events in the Akamai and NO traf ic, namely
the eventE and F , that are completely invisible in the total low and volume plots. In the following
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section, we provide guidelines and discussion on how to conceive a system capable of automatically
detecting the kind of observed anomalous events.

(a) Akamai (b) Neighbor Operator (c) Facebook AS

Figure 20: TSP of low distributions on 5min. time-scale.

2.7.2.2.3 Design of an anomaly detector for web-services Network operators are particu-
larly concerned with revealing macro-anomalies, i.e., those events that affect many of their cus-
tomers accessing aweb-service. Thismotivates us to consider adistribution-based approachwhere
the network traf ic can be represented by traf ic distributions across the IP addresses of an AS. In
this way, it is possible to pro ile the aggregated behaviour of the traf ic served by a whole organi-
zation.
Therefore, we propose the adoption of a variation the AD scheme originally proposed in [29]. The
algorithm relies on the analysis of distributions implements a "change-point detector"� for dis-
tribution timeseries, that can reveal deviations in the temporal trajectory of the entire distribution
from the "normal" behaviour observed in the past. The consideredmethod is designed to copewith
the temporal variability of both the sample size and distribution, leveraging the daily and weekly
pseudo-seasonality of the real traf ic process to dynamically identify the set of past observations
(i.e., distributions) "most similar" to the current one. It does so in away that is robust to the intrinsic
irregularities in the pseudo-cycles - due for example toweekend-like patterns occurring in national
festivities, or solar/legal time shifts - as it does not rely on any external information like calendar
day nor absolute time. This set is then taken as the reference baseline to evaluate the consistency of
the current distributionwith respect to "thepast"�: in otherwords, pseudo-seasonality is exploited
to compensate for non-stationarity. That is, the traf ic at the same hour of different days tend to be
pretty similar, therefore they can be used to evaluate future samples at the same hour of future days
(see for example Fig. 2.20(b)). Remarkably, themethod is designed to exploit pseudo-seasonality if
present, but does not requires it as it does not assume any particular temporal structure of the traf-
ic distribution trajectory: in fact traf ic features might exhibit different temporal structures. Being
not designed upon any speci ic traf ic characteristic, themethod can be applied to traf ic dimension
with very different structural characteristics and at different timescales, regardless to the shape of
the distribution and the adopted binning. For details about the reference identi ication algorithm
we refer the reader to [28].
The former aspect assumes a paramount relevance in the context of CDNs' traf ic AD, as CDNs host
and serve the web-service contents in a highly dynamic way. Indeed, most of the AD schemes con-
siders training once-and-for-ever and tests the current sample against the most recent ones. How-
ever, in our context a reference based only on the most recent samples (i.e., distributions) would

Plane
41



318627-mPlane
Design of Analysis Modules

not be able to follow, for example, the steep variation in the total volume as well as in traf ic dis-
tribution in the morning and in the late evening, causing a series of false alarms, therefore leading
to inaccurate conclusions. On the other hand, from initial trials with the proposed algorithm we
found that it successfully adapts to the time of day variations, while remaining still able to detect
the eventsA-F .

However, for some organizations such as Akamai and Facebook AS (see Figs. 2.19(a) and 2.19(b)),
the pseudo-cyclical behaviour is broken by periodic traf ic shifts to different address pools, with-
out any apparent alignment with the working-days/weekend-days cycle. This poses a serious chal-
lenge to the reference identi ication algorithm as it implies a "working point"� shift and calls for
restarting the algorithm training. We are currently working to overcome this limitation investigat-
ing two possible directions. One possibility is to extend the training to a time window long enough
to accommodate all the possible ``legitimate'' working states. This solution, however, has evident
scalability problems. The alternative is to force the algorithm retraining as soon as the alarm burst
length exceeds a given threshold. In this case the assumption is that the alarm burst is due to con-
iguration shift rather than to a long lasting transient anomaly.

2.7.2.2.4 Required functionality of the AD approach We depict in igure 21 the breakdown
of the required functionalities at each of the mPlane layer (i.e., WPs). We assume that the probes
capture, parse the HTTP traf ic, and ilter the relevant web-service. Then, at the repository (WP4)
DB-Stream performs the count of the lows/packets per server IP address for each aggregation
timescale. Starting from the individual counters DB-Stream periodically calculates the relevant
feature distributions. Finally, the actual AD algorithm, consisting of the reference identi ication
algorithm and the actual AD test, runs at WP4. The output of the AD tool is treated as a warning
form a ``reasoning'' functionwhich takes both the detection results (frommultiple traf ic features),
and context information, to decide about the nature and the root cause of each event. Indeed, the
decision about the nature of a warning may completely change depending on the purpose of the
detection. If the objective is optimizing end-user perceived quality, even dramatic changes such
as the events A-D discussed in the former Sections are not relevant, as they do not result in any
perceivable degradation of the average RTT and throughput (at least out of our analysis). On the
other hand, if the purpose is cost optimization for an access operator, the same events might be
extremely relevant. In fact, delivering traf ic to the end-users from different CDNs may result in
different cost igures, depending on the nature of the commercial agreements with the transit op-
erators (e.g., peering vs. customer-provider agreement). Therefore, delegating to the reasoner the
ultimate decision about the nature of an event allows decoupling the detection rule design from the
inal usage of the AD system. Still the output of the reasoner should be feedback to the detector as
it has an effect on the reference update policy. Finally, note that the reasoning function is not only
on charge of correlating available results but is expected to be able to trigger additional (possibly
active) measurements (e.g., traceroutes) for the purpose of further investigating the root cause of
an event.
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Figure 21: Scheme of the AD tool.

2.8 Verifica on and cer fica on of service level agreements

2.8.1 Use case introduc on

One of the case study is the veri ication of Service Level Agreement and one of the investigation
carried out in these irst month of the project has been an experimental analysis on correlation
among quality of experience, quality of service and channel capacity, pointing out the enormous
differences that can be present in ultra broadband accesses as in the case of FTTx accesses. The
results presented in D5.1 about the measurements on GPON, show that concept of Service Level
Agreement has to be de ined for each of the OSI layers to take into account both the requirements
of users and ISP. From such results we have de ined a novel procedure to simultaneously measure
channel capacity, throughput and goodput, and in this deliverable we show the algorithm that we
propose for a suitable active probe.

2.8.2 Descrip on of the associated analysis algorithms

The algorithm that FUB is developing executes as shown in the lowcharts of igure 22 and 23. The
detailed the steps of the algorithm are the following:

1. Start the measure, the algorithm checks continuously the repository (every time it receives
new data for a certain ID), it checks the data integrity, if the data is complete ect.

2. Estimates the Capacity with the TCP data that are from the server part of the probe (agent &
server), the data are different from the ones that are used by the agent (probe), because the
algorithm uses the medium value of all the mediums values in a period of time (that are sent
to the repository by the agent and the server part of the probe)

3. It confront the estimated value with the estimated value that was reported by the probe, a
difference with delta is allowed. If the values correspond go to point 7.

4. If the values do not correspond, then the algorithm increments a variable NrError (number
of error for the speci ic ID) with 1, and tests this variable if it is under a certain threshold or
not. If it is under the threshold go to point 6.

5. If not, the algorithm noti ies the probe to stop the test and sends to the client an error mes-
sage, after that it noti ies an administrator for the error.
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6. If NrError is less than the threshold, the algorithm will put a lag to the corresponding mea-
sure andwill end the process of veri ication for that measure. (all measures with the lag will
not be used for the calculation and the release of the certi icate)

7. If the estimated capacities will corresponds, the algorithms continues, it will estimate the
capacity of UDP in base of capacity reported by the probe (the server part), the error reported
of UDP +(-) a small variable delta1

8. Then it checks if all the estimated capacities andmeasured capacities correspond or not (with
small differences allowed delta and delta1). If they correspond go to point 12.

9. If they do not correspond go to point 4.

10. Verify if there is any error with the measures, strange results etc. If no do nothing let the
procedure continue.

11. If yes, discard the test, delete data from repository, is useless data, prepare and send a report
to the user, with the problem encountered and if the problem is made by the user, a possible
ixme.

12. If they (estimated capacity TCP & UDP, measured capacity UDP, small difference is allowed,
delta & delta1) correspond calculate the mean, a inal one, of the capacity based on all esti-
mation and all measurements so far.

13. Check for possible channel errors (noise) ect. Verify from the ID, the capacity of the channel
of the zone.

14. Final con irmation of all estimation andmeasurement, with the inal mean, with both data of
the probe (Agent and Server). All estimation and calculation should be nearly the same (+[-]
delta &/ delta1)

15. Prepare certi icate, report all useful information.

16. Send Certi icate/report to user.

17. END.
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Figure 22: First part of the lowchart of the algorithm.
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Figure 23: Second part of the lowchart of the algorithm.
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3 Generic analysis algorithms

In this chapter we have collected a irst small set of algorithms and approaches that are felt to have
a more generic character and are therefore usable in several mPlane use cases and also possibly in
other scenarios not currently considered in this project.
The ive examples that will be further elaborated in the sequel address important topics. The
irst one is measurement prediction whereby some properties of some network paths are inferred
(rather than measured directly) from the measurements of other paths. This technique has a clear
scalability asset in large-scale systems where the number of paths can be fairly large. This infer-
ence problem is cast as a matrix completion problem and then solved in a distributed way, without
having to rely on central nodes or central repositories. The generic character of the approach is due
to its applicability to different sorts of metrics (symmetric or not, additive or not, represented by
exact values or by classes).
The second family of generic algorithms deals with topology discovery and inference beyond tra-
ditional traceroute programs. The proposed new techniques already allow to detect middleboxes,
TCP proxies and NATs, and other techniques are being explored to infer the weights of the links of
the discovered topologies.
The third section proposes a set of algorithms to measure one-way delay variations (whose actual
implementation in probes is the object of WP2, and is therefore reported in Deliverables therein),
and the way to relate variations of one-way delay to performance of generic classes of applications.
These information can be encoded and used by mPlane reasoners, e.g., to re ine the drill down
method, or to differentiate branching in speci ic use case (which is thus more it to WP4 purposes,
and is therefore reported here).
The fourth section addresses graph-based modeling, which provides a foundation for explaining
phenomena and/or investigating problems involving one-to-one relationships/interactions (rep-
resented by edges) among entities (represented by vertices) allowing data analysis and mining to
understand relations between these entities. The technique is applied to the analysis of the re-
lationships between (attributes of) traf ic directed to certain Autonomous Systems (AS)/address
pre ixes and content caches/servers. The technique is then extended to probabilistic hypergraphs
and hierarchical directed acyclic graphs.
The ifth section focuses on the interest of Statistical Relational Learning (SRL) that combines prob-
abilistic graphical models (probabilistic learning and inference) to model and reason about uncer-
tainty with representation language to describe relational properties of the data and complex de-
pendencies between them (logical learning and inference). The goal of SRL is of particular interest
in the context of mPlane where the reasoner aims at learning hidden dependencies betweenmulti-
relational, heterogeneous and semi-structured but also noisy and uncertain data.

3.1 Predic on of unmeasured paths

3.1.1 Network Inference

The generic tool proposed in this section is useful to estimate the properties of all paths, such as
round-trip time (RTT) and available bandwidth (ABW), in a large-scale system, without having to
measure them all, which would requireO(n2)measurement cost, where n is the number of nodes.
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(a) A network of 8 nodes.
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(b) Node 3 probes node 1, 2, 6 and 8.
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(c) Node 5 probes node 2, 4, 7 and 8.
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(d) A matrix with missing entries is formed.

Figure 24: A matrix completion view of network inference. In (d), the blue entries are measured
path properties and the green ones are missing. Note that the diagonal entries are empty as they
represent the performance of the path from each node to itself which carries no information.

To address this issue, a natural idea is network inferencewhereby only a subset of paths are actually
measured while all others are predicted. Although less accurate compared to the measurment of
all paths, this ``measure a few and predict many'' framework is much more scalable due to the
signi icant reduction of measurement overheads.
We have carried out active research on network inference. In particular, the prediction of unmea-
sured paths is cast as a matrix completion problemwhere a partially observedmatrix is to be com-
pleted [85, 50]. In this context, thematrix to be completed,X , is a performancematrix, with the ijth
entry, xij , representing the performance of the path from node i to node j, measured by a chosen
path property such as RTT and ABW. Each node probes a few other nodes, measures the perfor-
mance of the paths between them. The measurements are put at the corresponding entries of X ,
and themissing entries are the performances of those unmeasured paths and need to be predicted.
The process is illustrated in Figure 24 with an example of a network of 8 nodes. Comparing to pre-
vious approaches to network inference [27, 19, 24, 70], the matrix completion formulation relies
on neither topology or routing information of the network nor geometric constraints. Instead, it
exploits the spatial correlations across network measurements on different paths which have long
been observed in various research.
A great bene it of thematrix completion formulation is that it can dealwith qualitative performance
measures such as binary performance classes and ordinal ratings. Conventionally, the performance
of a network path is represented by the real value of some path property. While this quantitative
representation has been commonly accepted by the networking community, it does not re lect the
QoS experience perceived by end users which by de inition is what network performance is con-
cernedwith. Thus, we have investigatedmore qualitative than quantitative performance represen-
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tations based on binary classes (The performance is ``good'' or ``bad''.) and on ordinal ratings (The
performance is quantized from 1 star to 5 stars) which have the following advantages.

1. Classes and ratings carry suf icient information that already ful ills the requirements ofmany
applications.

2. Classes and ratings are roughmeasures that are cheaper to obtain than exact property values.

3. Classes and Ratings are quantized measures and can be encoded in a few bits, saving storage
and transmission costs.

4. Classes and ratings are dimensionless or pure numbers with no unit. This feature uni ies
different path properties and eases their processing in applications.

Furthermore, we have developed a fully decentralized approach that solves the matrix completion
problem with matrix factorization based on Stochastic Gradient Descent (SGD) [85, 50]. The so-
called DMFSGD approach has some distinct features.

1. It requires neither explicit constructions of matrices nor special nodes such as landmarks
and central servers where measurements are collected and processed. Instead, by letting
network nodes exchange messages with each other, matrix factorization is collaboratively
and iteratively achieved at all nodes, with each node equally retrieving a small number of
measurements.

2. It is lexible to deal with various properties such as RTT and ABW and to deal with not only
property values but also performance classes and ratings.

3. It is simple and computationally lightweight, containing only vector operations.

These features make DMFSGD suitable for dealing with practical problems, when deployed in real
applications, suchasmeasurementdynamics,wherenetworkmeasurements vary largelyover time,
and network churn, where nodes join and leave a network frequently.

3.1.2 Network inference algorithm: DMFSGD

3.1.2.1 Matrix Factoriza on (MF)

As mentioned earlier, the network inference problem illustrated in Figure 24 is solved by matrix
factorization (MF) which exploits the low-rank nature of matrices of real-world data. Mathemat-
ically, a n by n matrix of rank r, where r ≪ n, has only r non-zero singular values and it can be
factorized as

X = UV T , (3.1)
where U and V are matrices of n × r. In practice, due to data noise, X is often full-rank but with
a rank r dominant component. That is,X has only r signi icant singular values and the others are
negligible. In this case, a rank-r matrix X̂ can be found that approximates X with high accuracy,
i.e.,

X ≈ X̂ = UV T . (3.2)
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Figure 25: Matrix factorization.

MF can be used for solving the problem of matrix completion, which generally minimizes an objec-
tive function of the following form:

min
∑
ij∈Ω

l(xij , uiv
T
j ), (3.3)

where Ω is the set of observed entries, xij is the ijth entry ofX , and ui and vj are the ith and jth
row of U and of V respectively. l is a loss function that penalizes the difference between the two
inputs. In words, we search for (U, V ) so that X̂ = UV T best approximates X at the observed
entries in Ω. The unknown entries inX are predicted by

x̂ij = uiv
T
j , for ij /∈ Ω. (3.4)

Figure 25 illustrates MF for matrix completion.

3.1.2.2 DMFSGD

It is natural to require that MF be integrated in network applications with a decentralized architec-
ture. To this end, the following measures are taken in the system design:

• (ui, vi)s, i = 1, . . . , n are distributively stored, i.e., (ui, vi) is stored at node i. (ui, vi) is called
the coordinate of node i.

• Each node selectively probes a number of other nodes, called neighbors. DenoteNi the neigh-
bor set of node i, i = 1, . . . , n.

• Each node updates its coordinate by collaborating and exchanging messages with its neigh-
bors.

• The system architecture integrates the prediction algorithm and the measurement method-
ology for the chosen metric.
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These measures lead to the so-called Decentralized Matrix Factorization by Stochastic Gradient De-
scent approach (DMFSGD). In particular, the neighbors of each node can generally be randomly se-
lected from the set of available nodes in the network. The system architecture needs to bemodi ied
for differentmetrics due to their differentmeasurementmethodologies. For example, themeasure-
ment of RTT is probed and computed by the sender, whereas that of ABW is probed by the sender
but computed by the receiver. Figure 26 and 27 illustrate howDMFSGDworks for RTT and for ABW
by incorporating their different measurement methodologies. Figure 28 illustrates how a property
of a network path is computed from the coordinates of the two end nodes.

3.1.3 DMFSGD implementa on and results

We have implemented DMFSGD in Python and tested it on the platform of PlanetLab. The imple-
mentation requires the numpy library of Python for vector operations and themeasurement tool of
ping for acquiring RTT and of pathchirp for acquiring ABW.

We have successfully deployed DMFSGD for RTT on more than 500 Planetlab nodes. To evaluate
the performance of DMFSGD, we used the criterion of stress, de ined as

stress =

√∑n
i,j=1 (xij − x̂ij)

2∑n
i,j=1 xij

2
.

Figure 29 shows the evolution of stress during three days fromOctober 18th, 2013 to October 20th,
2013. The u and v of each Planetlab node and the RTT measurements were collected every 30
minutes. We summarized each network path with the median RTT for this path and calculate the
stresses on the predicted RTTs and the median RTTs. It is can be seen that DMFSGD performed
stably and produced accurate predictions.

3.1.4 DMFSGD in the mPlane architecture

DMFSGD is a distributed algorithm that executes a high-level reasoning on measurements to pre-
dict path properties. It is therefore better understood as an mPlane WP4 algorithm that relies
on lower-level measurements from some probes (e.g. RTT and/or available bandwidth measure-
ments), which are considered as WP2 components. DMFSGD is an example of a spatio-temporal
technique, because it combines measurements from different locations at different points in time.

One typical use-case application would be in a CDN service where the path characteristics between
a client and the available CDN servers should be estimated (to reduce measurement load) in order
to direct the client toward themost appropriate server. Another examplewould be the construction
of an overlay network in which the edges are selected on the basis of their estimated properties. In
P2P networks peers could also be selected based on some locality awareness inferred in this way.

Plane
51



318627-mPlane
Design of Analysis Modules

1

2

3
4

(u1, v1)

(u2, v2)

(u3, v3)(u4, v4)

(a) A network of 4 nodes.
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(b) Node 1 probes node 2 for the RTT.
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(e) Node 1 updates u1 and v1.

Figure 26: An example that shows how DMFSGD works for RTT.
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Figure 27: An example that shows how DMFSGD works for ABW.
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Figure 28: An example that shows how a node infers the performance, either RTT or ABW, of the
paths connected to another node. Here, node 1 infers x̂12 and x̂21 by using its coordinate (u1, v1)
and by retrieving the coordinate of node 2 (u2, v2).
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Figure 29: Evolution of the stress on RTT predictions among 500 PlanetLab nodes

3.2 Topology discovery

3.2.1 IGP Weight Inference

Routing simulations, as well as theoretical Internet graph understanding [37], need ground truth
data to provide realistic and signi icant results. However, lots of such studies lack of recent and
reliable routing topologies. In worst cases, concerned authors only consider small toy topologies
while, in best ones, they use data sources coming with strong limitations. For instance, for more
than ten years now, routing authors make use of weighted ISP topologies [52] collected with Rock-
etfuel [71]. Based on traceroute data collected from several vantage points, Mahajan et al. build a
linear constraint-based model to approximate IGP link weights. However, it is known that Rock-
etfuel suffers from several limitations (see, for instance, Teixeira et al. [76] and Coyle et al. [25]).
Since the seminal paper by Mahajan et al., little efforts have been made in improving the quality of
weighted ISP maps. Even the very recent Internet Topology Zoo does not contain any link weight
information [46].
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3.2.1.1 Measurement Mechanisms

We basically rely on the M platform [54] for collecting topology information of the targeted
AS. M is based on IGMP probing. It basically sends multicast management requests that are
able to retrieve, within a single probe, all multicast interfaces and links of a targeted router. It is
worth tonotice that purely unicast information canalsobe revealed [57]. IGMPprobing cannatively
discover multicast topologies at the router level with a low probing cost, avoiding so the use of any
alias resolution techniques [44].
The M platform is centralized, i.e., each vantage point is commanded by a central server. The
central server is located in the University of Napoli. For this data collection, we use four M
vantage points located in New-Zealand, USA, France, and Italy.
Unfortunately, some routers do not reply to IGMP probes sent byM , leading to an anonymous
behavior that is similar to the one observed with traceroute. This phenomenon is called IGMP il-
tering [55] and is due to routers refusing to respond to IGMP probes (i.e., local iltering) and routers
refusing to forward IGMPmessages (i.e., transit forwarding). As a consequence, topologies collected
with M might be fragmented.
The relevance of this phenomenon depends on the AS under investigation. Although there exist
techniques for glueing together isolated components [55]. If iltering becomes an issue, we may
envision to replace M by exploreNET [79], a new active probing tool that aims at revealing
subnetworks of targeted ASes
Once the data has been collected, we launch a large-scale Paris Traceroute [9] campaign from Plan-
etLab nodes targeting one (or more) destination(s) for each subnet /24 included in each collected
AS. Those destination are selected among the addresses reported by M within largest con-
nected components.
We use the scamper Paris Traceroute implementation [51]. In addition, we enable the MDA algo-
rithm [10] (this corresponds to the tracelb option in scamper) to trace all per- low load-balanced
paths between each PlanetLab node and destination.
Note that the collected traces are successively manipulated such that the addresses belonging to
the same router of the largest component are substituted with a unique identi ier.
This Paris Traceroute campaign may discover additional links between routers, but also interfaces
belonging to already reported routers and not yet reported ones. This is due to the fact that IGMP
probingmainly focus onmulticast portion of the network. All these newly elicited links and routers
are added to the largest component of the AS of interest. The largest component of each AS and the
set of traceroute traces collected from the Planetlab nodes represent the input for the IGP weights
process.
A threshold must be found between the number of Paris Traceroute source and the accuracy of
resulting weights. For being accurate, weights requires constraints on the sytem. The constraints
can be revealed with the traf ic injected on the topologies. We evaluate the potential accuracy of
traf ic injected using the coverage metric, i.e., the fraction of (source, destination) pairs of the TR-
Graph (i.e., directed graphmade by IGMP nodes and links augmentedwith Paris Traceroute unicast
links) that are connected by a trace revealed by our campaign.
At this point, we have M topologies with injected traf ic. Basically, the classical weight in-
ference method relies on inequality constraints based on sums of IGP weights. This forms a con-
strained system that is solvable using Linear Programming and a given objective function (we de-
cide to minimize the sum of weights in the graph, for example). It is also possible to encode ad-
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S MB1 R1 R2 D

1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5

(a) topology
# tracebox -p 'IP / TCP / mss(9000)' -n 5.5.5.5
tracebox to 5.5.5.5 (5.5.5.5): 30 hops max
1: 3.3.3.3 TCP::SequenceNumber
2: 4.4.4.4 IP::TTL IP::CheckSum TCP::CheckSum TCP::SequenceNumber

TCPOptionMaxSegSize::MaxSegSize
3: 5.5.5.5

(b) output
Figure 30: tracebox example

ditional constraints such as the weight symmetry or the fact that a direct edge between nodes is
always the best.
One of the key point of using the MDA algorithm is that it provides a directed acyclic graph (DAG)
vision of the network instead of the classical tree provided by standard traceroute. With a DAG,
equality weight constraints are easier to retrieve.

3.2.2 Tracebox

tracebox is a traceroute [81] successor that enables network operators to detect which middle-
boxes modify packets on almost any path. tracebox allows one to easily generate complex probes
to send to any destination. By using the quoted packet inside of ICMP replies, it allows to identify
various types of packet modi ications and can be used to pinpoint where a givenmodi ication takes
place.
tracebox embeds LUA [42] bindings to allow a lexible description of the probes aswell to ease the
development of more complex middlebox detection scripts. tracebox aims at providing the user
with a simple and lexible way of de ining probes without requiring a lot of lines of code. tracebox
indeed allows to use a single line to de ine a probe (see as example the argument -p of tracebox in
Fig. 3.30(b)) similarly to Scapy [14]. tracebox provides a complete API to easily de ine IPv4/IPv6
as well as TCP, UDP, ICMP headers and options on top of a raw payload. Several LUA scripts are al-
ready available and allows one to detect various types of middleboxes from Application-level Gate-
ways to HTTP proxies.
Sec. 3.2.2.1 and3.2.2.2 give examples of algorithmsor scripts that canbe given as input totracebox.

3.2.2.1 Proxy Detec on

tracebox can alsobeused todetect TCPproxies. Tobe able todetect aTCPproxy, traceboxmust be
able to send TCP segments that are intercepted by the proxy and other packets that are forwarded
beyond it. HTTP proxies are frequently used in cellular and enterprise networks [83]. Some of
them are con igured to transparently proxy all TCP connections on port 80. To test the ability of
detecting proxies with tracebox, we used a script that sends a SYN probe to port 80 and, then, to
port 21. If there is an HTTP proxy on the path, it should intercept the SYN probe on port 80 while
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ignoring the SYN on port 21. We next analyze the ICMP messages returned.
We deployed tracebox on the PlanetLab testbed and we identi ied two oddities. First, we found
an HTTP proxy or more probably an IDS within a National Research Network (SUNET) as it only
operated for a few destinations and that the path for port 80 was shorter than for port 21. Second,
and more disturbing, tracebox identi ied that several destinations where behind a proxy whose
con iguration, inferred from the returned ICMPmessages, resulted in a forwarding loop for probes
that are not HTTP. We observed that the SYN probe on port 21, after reaching the supposed proxy,
bounced from one router to the other in a loop as tracebox received ICMP replies from one router
then another alternatively.

3.2.2.2 NAT Detec on

NATs are probably the most widely deployed middleboxes. Detecting them by using tracebox
would likely be useful for network operators. However, in addition to changing addresses and port
numbers of the packets that they forward, NATs often also change back the returned ICMPmessage
and the quoted packet. This implies that, when inspecting the received ICMP message, tracebox
would not be able to detect the modi ication.
This doesnotpreventtracebox fromdetectingmanyNATs. Indeed,mostNATs implementApplication-
level Gateways (ALGs) [72] for protocols such as FTP. Such an ALG modi ies the payload of for-
warded packets that contain the PORT command on the ftp-control connection. tracebox can
detect these ALGs by noting that they do not translate the quoted packet in the returned ICMPmes-
sages. This detection is written as a simple script (shown in Fig 31) that interacts with tracebox. It
builds and sends a SYN for the FTP port number and, then, waits for the SYN+ACK. The scriptmakes
sure that the SYN+ACK is not handled by the TCP stack of the host by con iguring the local ire-
wall (using the ilter functionality, shown at line 7, of tracebox that con igures iptables on Linux
and ipfw on Mac OS X). It then sends a valid segment with the PORT command and the encoded
IP address and port number as payload. tracebox then compares the transmitted packet with the
quoted packet returned inside an ICMP message by an
RFC1812-compliant router and stores the modi ication applied to the packet. If a change occurs
and a callback function has been passed as argument, tracebox triggers the callback function. In
Fig 31, the callback cb checks whether there has been a payload modi ication. If it is the case a
message showing the approximate position of the ALG on the path is printed (see line 29).

3.2.2.3 Results

We deployed tracebox on PlanetLab, using 72 machines as vantage points (VPs). Each VP had a
target list of 5,000 items build with the top 5,000 Alexa web sites. Each VP used a shuf led version
of the target list. DNS resolution was not done before running tracebox. This means that, if each
VPuses the same list of destination names, each VPpotentially contacted a different IP address for a
givenweb site due to the presence of load balancing or Content Distribution Networks. Our dataset
was collected during one week starting on April 17, 2013.
With this deployment, we validated and demonstrated the usefulness of tracebox based on three
use cases. First, we looked at the proportion of RFC1812-compliant routers and their locations and
showed that, in 80%of the cases, a path contains at least oneRFC1812-compliant routers, as shown
on Fig. 3.32(a). Second, we used tracebox to demonstrate that middleboxes, along a path, may
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-- NAT FTP detection
-- To run with: tracebox -s <script> <ftp_server>
-- Build the initial SYN (dest is passed to tracebox)
syn = IP / tcp{dst=21}
-- Avoid the host's stack to reply with a reset
fp = filter(syn)
synack = tracebox(syn)
if not synack then

print("Server did not reply...")
fp:close()
return

end
-- Check if SYN+ACK flags are present
if synack:tcp():getflags() ~= 18 then

print("Server does not seems to be a FTP server")
fp:close()
return

end
-- Build the PORT probe
ip_port = syn:source():gsub("%.", ",")
data = IP / tcp{src=syn:tcp():getsource(), dst=21,

seq=syn:tcp():getseq()+1,
ack=synack:tcp():getseq()+1, flags=16} /
raw('PORT '.. ip_port .. ',189,68\r\n')

-- Send probe and allow cb to be called for each reply
function cb(ttl, rip, pkt, reply, mods)

if mods and mods:__tostring():find("Raw") then
print("There is a NAT before " .. rip)
return 1

end
end
tracebox(data, {callback = "cb"})
fp:close()

Figure 31: Sample script to detect a NAT FTP that can be sent to tracebox

modify the TCP sequence number. Finally, the third use case for tracebox concerns middleboxes
that modify the TCP MSS option. This TCP option is used in the SYN and SYN+ACK segments to
specify the largest TCP segment that a host sending the option can process. In an Internet that
respects the end-to-end principle, this option should never be modi ied. Fig. 3.32(b) provides, for
each vantage point (the horizontal axis), the proportion of paths (the vertical axis, in log-scale)
where the MSS option has been changed. We see that a few VPs encountered at least one MSS
modi ication on nearly all paths while, for the vast majority of VPs, the modi ication is observed in
only a couple of paths.
We further performed some testswith tracebox to verifywhether the recently proposedMultipath
TCP [33] option could be safely used over the Internet. This is similar to the unknown option test
performed by Honda et al. [40]. However, on the contrary to Honda et al., tracebox allows one to
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Figure 32: traceroute results

probe a large number of destinations. To our surprise, when running the tests, tracebox identi ied
about ten Multipath TCP servers based on the TCP option they returned. One of those server, www.
baidu.com, belongs to the top 5Alexa. All these serverswhere located inside China. A closer look at
these options revealed that these servers (or their load balancers) simply echo a received unknown
TCP option in the SYN+ACK. This is clearly an incorrect TCP implementation.

3.3 One way delay varia on (∆OWD) measurement

In order to infer users' Quality of Experience (QoE), two main approaches can be devised. One is
to consider a speci ic application and de ine relevant subjective metrics (e.g., stuttering for VoD
streaming, completion time for BitTorrent ile sharing, etc.). Another one is to describe general,
more objective, metrics that can bemeasured at the network or transport layer, that usually under-
goes the name of Quality of Service (QoS), and use models for mapping these objective metrics to
subjective quality.
Delay is among themost relevant objective metrics, as it correlates with the performance of almost
any application. Indeed, even the performance of bulk data transfers, that are usually considered
to be delay-insensitive and only driven by bandwidth, are affected by dealy as we will show in this
section. As communications are bidirectional, it is generally possible (and easy) tomeasure bidirec-
tional delay, usually known as Round Trip Time (RTT) or mono-directional delay, usually referred
to as OneWay Delay (OWD). Being able to reliable measure OWD delay is important (as congestion
may happen only on a single direction), and the OWDmetric decorrelates thus performance of both
paths.
Yet, OWD is notoriously dif icult to precisely measure, which is easy to see in the Internet where
hosts are generally non-collaborative and non-synchronized. However, we point out that Internet
delay is made up by several contributions, notably to serialize and propagate the signal, as well as
delay due to queuing. While serialization and propagation delays are constant, the queuing delay
component is variable, and as home gateways can buffer seconds worth of traf ic in the current
ADSL and cable settings, the queueing component of OWD it of extreme interest.
It follows that, while absolute OWD is hard to measure (as it contains an error due to clock off-
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Figure 33: QoS to QoEmapping: model for gathering QoEMOS scores for varying traf ic conditions
(courtesy of [39])

set), variations of OWD are easier to measure (as the difference between two OWD samples on the
same path cancels the error) and are telling at the same time, as they can be correlated to user
QoE (Sec. 3.3.1). This is especially interesting for use cases targeted to troubleshooting of speci ic
appllications (e.g., multimedia of Sec. 2.4 and Web of Sec. 2.5).
In what follows, we denote by∆OWD the one way queuing delay measurement: we focus on mea-
suring it with passive (Sec. 3.3.2) vs active (Sec. 3.3.3) methodologies, especially highlighting the
implication of ∆OWD (as the methodologies themselves are the object of mPlane work package
WP2 and are described therein). Ultimately, the comparison of passive and activemethodologies to
measure queuing delay, should assist the de inition ofmPlane reasoners to exploit the bestmethod-
ology in any particular situation.
We inally show that ∆OWD has an impact also on bulk transfers, considering BitTorrent as an
example (Sec. 3.3.4), which assist in re ining and completing the mapping between QoS and QoE
(of Sec. 3.3.1) to a larger set of applications.

3.3.1 QoS to QoE mapping via∆OWD measurement

As mPlane aims at avoiding reinventing the wheel, it would be a shame to ignore exisiting valuable
knowledge and reproduce experiments to performQoS toQoEmapping. Correlation between delay
and QoE is pointed out for speci ic applications such as Web [15, 74], multimedia [18] or P2P [77,
78], and by [39] that oversees all applications at once. In this subsection, inspired by a ``standing
on the giant shoulder'' philosophy, we describe the mapping proposed in [39], extensively using
material reported there ( igures taken from [39] are properly highlighted to differentiate them from
own igures). However, our purpose here is on providing brief coverage of the mapping and simple
``rules of thumbs'' to the mPlane Reasoner, so that we refer the reader to [39] for more details.
Authors in [39] adopt an experimental approach,where theyperturb a systemwith controlled cross
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Figure 34: QoS to QoE mapping: Mean Opinion Score (MOS) scales to measure QoE (courtesy of
[39])

Figure 35: QoS to QoE mapping: mean queuing delay ∆OWD (in ms) for the access networks
testbed with different buffer size (x-axis) and workload (y-axis) con igurations, with highlighted
MOS scale (courtesy of [39])

traf ic in a testbed, and observe impact on QoS and QoE. The general model they refer to is reported
in Fig. 33, where at the input they consider a large number of cross traf ic scenarios (to mimick
heterogenity of Internet traf ic), and numerous settings as far as the buffer size is concerned (to
mimick the heterogenity of home router devices). As output, the systemyield aMeanOpinion Score
(MOS) evaluation for different services (namely, voice, video and Web), whose scales are reported
in Fig. 34.
Then, for each combination of cross-traf ic and buffer size, authors performs tests for voice, video
andWebservices, andmeasureuserMOS. Themost important bindingbetweenourwork inmPlane
and the exisiting knowledge of QoE to QoE mapping of [39] is reported in Fig. 35. More precisely,
as for each cross-traf ic vs buffer-size pair, the igure reports the mean queuing delay ∆OWD (in
ms) for the access networks testbed with different buffer size (x-axis) and workload (y-axis) con-
igurations. The igures also highlights the MOS scale, where delays that signi icantly degrade the
QoE of interactive applications (ITU-T Recommendation G.114) are colored in red.
Finally, detailed MOS ``heatmaps'' are provided in [39] for each of the voip, video andWeb services
(part of which we report in Fig. 36) that correlate ∆OWD queueing delay due to cross-traf ic and
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Figure 36: QoS to QoE mapping: Mean Opinion Score (MOS) scales to measure QoE (courtesy of
[39])

buffer-size to the speci ic QoE of that service. As our work focuses on measuring ∆OWD in the
Internet with active or passive methodologies, the above heatmaps consitute the binding from QoS
to QoE.

3.3.2 QoS. Passive∆OWD measurement (Tstat)

We have developed several passive methodologies that let us measure∆OWDmeasurement of far-
away or local hosts. In case of faraway hosts, this give us an opportunity to ``spy'' on the queuing
delay of Internet hosts, gathering a relevant sample of the ∆OWD users suffer in their typical ac-
tivities. In the case of local hosts, further knowledge of the rest of user traf ic allow us to correlate
∆OWD sufferered by an application to the others application that may have caused it.

3.3.2.1 Faraway hosts

To study faraway hosts, we focus on BitTorrent, that is very popular and thus allows us to reach
users across all countries and Internet AS, and futher allows us to compare the impact of transport
level protocols as well. This section summarizes indings of [22] and [20], where we apply the
methodology developed in [21].
Our internal BitTorrent peers exchanged with 24,678 external peers, about half of which trans-
ferred data using LEDBAT (the new low-delay BitTorrent transport protocol). Clearly, an host may
participate into multiple swarms. Furthermore, as our experiments are repeated with different
clients, we can thus encounter the same external peer multiple time over our experimental cam-
paign. This is indeed the case, as we ind 8914 unique IP addresses. Among these peers, in order to
gather statisticallymeanignful results, we require aminimum amount of queuing delay samples qBi
per peer: we only consider peers yielding at least 25 queuing delay samples (or 50 packets). Notice
that, in case we encounter a peer multiple times in our experiments, we count it (at most) once per
each experiments in which it appears (for each experiment, the peer is considered provided that
it sends 50 packets). In the reminder of the analysis, we focus on this peer subset, consisting of
6,896 peers (1,931 unique IPs). First, we start by considering the distribution of the queuing delay
percentiles over all peers. Intuitively, the 90, 95 and 99-th percentiles statistics are related to the
queuing delay experienced by a peer during the most highly loaded 10%, 5% and 1% observation
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windows respectively.
Fig. 37 considers each peer once per each experiments. Let us consider the 90-th percentile statistics
for the sake of the example. During a single experiment, for each remote peerP we gathermultiple
observations of windowed queuing delay statistics (over 1 second window), based on which we
compute the 90-th queuing delay percentile for peer P : Fig. 37 reports the CDF distribution of 90-
th queuing delay percentile over all peers, over all experiments.
First, notice that part of the samples report a very low queuing delay (i.e., below 1ms): these cor-
responds to cases where external leechers receive data from our probes, and we are receiving in
turn only an acknowledgement stream. In this case, since queuing is in our upstream, the low-
bandwidth acknowledgement stream is not incurring any access bottleneck and thus traverse an
empty queue. Notice that, additionally, the remote peer is also not sending data to other peers
either, as otherwise we would observe a rise in queuing delay.
Otherwise, we gather that 99% of the windows of the median peer have a queuing delay below
60ms. Moreover, only10%of thepeers experience a90-th (99-th)percentile above100ms (200ms).
In other words, for the 10% of peers that are most affected by bufferbloat, only 10% (1%) of their
1-secondwindows incurrmore than 100ms (200ms) queuing delay. Finally, only 1%of peers have
a 90-th (99-th) queuing delay percentile above 1 s (2 s).
Summarizing, from Fig. 37 we gather that (i) the bulk of peers experience queuing delays that are
generally non-harming for interactive traf ic: i.e., for 90%of peers, 90%ofwindows have a queuing
delay smaller than 100ms. At the same time (ii) some usersmay perceive the rest of their activities
annoyed by the ongoing BitTorrent transfers, since about 1% of the peers have at least 10% of
windows have a queuing delay exceeding 1 s.
Fromother experiments (reported in [20] but unreported here for the sake of simplicity)we under-
stand that these high-delay windows mostly concern a small population of very active BitTorrent
users, whose Internet activities can suffer from signi icant bufferbloat. Since a single TCP connec-
tion is able to ill the buffer, LEDBAT transfers to our probe are however not the cause of their
bufferbloat, which is rather tied to TCP uploads to some other peers in the swarm.
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Hence, we gather that mPlane reasoners can gather passive measurement of ∆OWD delay from
LEDBAT BitTorrent traf ic. At the same time, delay information is not only associated to LEDBAT
BitTorrent traf ic, as delay is possibly caused by (or suffered from) other traf ic sources (e.g., mul-
timedia, Web, etc.) sharing the link with BitTorrent. The delay information leveraged by these
methods can then be correlated to application performance (e.g., multimedia, Web, etc.) or use for
troubleshooting.

3.3.2.2 Local hosts

To study local hosts, we are no longer restricted to BitTorrent. This section summarizes indings
gathered in [7] (technical report under submission), where we apply the methodology developed
in [8] to analyze of line traces gathered in a single ISP network participating in the mPlane project
(8 hr-long daily trace, gathered during 2009 when P2P was still popular).
We argue that in order to give statistics that are useful from the user perspective, we need to batch
consecutive samples (e.g., belonging to the same TCP burst) into windows whose duration relates
with the timescale typical of user dynamics (as done in the previous section, as motivated in [20],
we use windows of 1 second). For the network under observation, we consider each internal IP as
a single1 host. For each host, we collect delay samples for each active low, corresponding to the
averagequeuingdelay over short timewindowsof 1 secondduration, as estimatedbyvalid data-ack
pairs of each low. Overall, our processing gathers about 107 individual per- low samples.
Eachdelay sample carries an application label, obtained throughTstatDeepPacket Inspection (DPI)
and behavioral classi ication capabilities. Though Tstat is capable of ine-grained classi ication of
different applications [32], we cluster similar applications into fewclasses dependingon the service
they offer (namely, Mail, Web, Multimedia, P2P, SSH, VoIP, Chat and other uncategorized applica-
tions). To the best of our knowledge, mPlane is the irst to report a detailed per-application view of
the Internet queuing delay -- that depends on the traf ic mix and user behavior of each household.
We present our results in Fig. 38 where we depict a jittered density map of queuing delay samples
(y-axis) for different application classes (x-axis), along with boxplots reporting the quartiles (and
5th, 95th percentiles). Applications are ordered, left to right, in increasing order of delay sensi-
tivity. It can be seen that, for most applications the 75% of windows experience less than 100ms
worth of queuing. The only exceptions are consituted by, rather unsurprisingly, P2P applications
and, somehowmore surprisingly, Chat applications, withmedian delays exceeding 100ms.
Let us dig further the implication of the above observations. Due to studies assessing the impact of
delay on the QoE of several applications such as Web [15, 74], multimedia [39, 18] or P2P [77, 78]
applications, we can easily map a QoS metric such the queuing delay, into an coarse indication of
QoE for the end-user as reported in Sec. 3.3.1. Based on the above work, we set two thresholds at
100ms and 1 second, such that:

• performance of interactive multimedia (e.g., VoIP, video-conference and live-streaming) or
data-oriented applications (e.g., remote terminal or cloud editing of text documents) signi i-
cantly degrades when the irst threshold is crossed [39, 18];

• performance of mildly-interactive application (e.g., Web, chat, etc.) signi icantly degrades
when the second threshold is crossed [15, 74];

1This is known to be simplistic as, due to the penetration of NAT devices, the same IP is shared bymultiple hosts (50%
of the cases [53]), that are possibly active at the same time (10% of the cases). Yet it has no impact for our methodology,
since these potentially multiple hosts share the same access bottleneck link

Plane
64



318627-mPlane
Design of Analysis Modules

(a) (b)

Figure 38: QoS. Passive ∆OWD measurement (Tstat) with TCP: Breakdown of queuing delay per
application.

• additionally, while bulk transfers (e.g., P2P, long TCP connections) are elastic in nature, it has
been shown that also TCP performance degrades [34] in presence of excessive buffering (i.e.,
control becomes unstable due to absence/delay of feedback information) and furthermore
queuing delay affect control plane of P2P applications [77, 78] -- so that even these applica-
tions performance start to degrade when the second threshold is crossed.

Additionally, Fig. 38 tabulates the percentage of 1 sec windows for each application that fall into ei-
ther of the three delay regions, wherewe use boldface values to highlight possible QoE degradation.
It follows that, in practice, bufferbloat impact on QoE appears to be modest. A limited 0.1% ofWeb
and Chat sessionsmay be impacted by signi icant delay, and 2.2% (1.4%) of VoIP (remote terminal)
sessionsmay be impacted bymoderate delay. P2P clearly stand out, raising the odds to induce high
delays (2.9%) followed by SMTP (0.6%), though with likely minor impact for the end-users.
Hence, we gather that mPlane reasoners can gather passive measurement of ∆OWD delay from
virtually any application, exp, that they can thus correlate to application performance (e.g., multi-
media, Web, etc.) or use for troubleshooting.

3.3.3 QoS. Ac ve∆OWD measurement (TopHat)

Yet another option is to engage with faraway users with an active methodology. In this case, we are
no longer restricted to a speci ic application (e.g., BitTorrent). As we are currently undergoing a
throroughmeasurement campaign, in this sectionweonly report preliminary results of amoderate-
scale campaign (where we already gather nearly a billion samples). More details are available in a
technical report (currently under submission [17]).
We focus on moderate number of hosts O(104) on the same ISPs, that we continuously probe at
0.5Hz frequency from 2 separate PlanetLab nodes for a period of about 8 continuous hours. Our
fast ping tool developed for TopHat during mPlane is able to handle about 25K ICMP probes per
second, and we conservatively set a target set size of 75% this bound (i.e., 18,750 hosts, about
one order of magnitude more than [74]). Overall, we receive replies to 47% of our sent packets,
for a total of O(108) valid samples -- using only two PlanetLab servers, we already achieve a quite
signi icant scale in terms of spatial reach and temporal frequency.
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Figure 39: QoS. Active ∆OWD measurement (TopHat). Validation of the Internet measurement
campaign: CDF of maximum (left), 90-th percentile (center) and median (right) delay, for hosts
with reliable reverse DNS and OS ingerprint information.

We need to ensure that the methodology can yield to some signi icant inights in terms of the gath-
ered statistics in the wild Internet. For validation purposes, we therfore infer (i) the access type
(AT) of our target hosts by issuing reverse DNS queries, as well as (ii) the remote operating system
(OS) through nmap ingerprinting. As for the access type, the ISP we are targeting offers DSL, FTTH
and cable access: similarly to [20], we expect the breakdown of queuing delay along AT to yield an
intuitive validation of the observed statistics. As for the OS, we do not argue queuing delay perfor-
mance to be (strongly) tied to the OS (despitewe still expect difference to arise due to, e.g., different
default TCP congestion control lavors across OSs).
Speci ically, we argue that in case the remote OS is reliably found to be a Windows OS, then we can
very likely rule out the case of NATted access: more likely, we hit a private end-host or a server of a
small-size business professional2 Overall, wemanage to infer both AT and OS information for 2546
hosts: as for the OS breakdown, the majority of hosts are reported to be some Linux variants (most
of which are likely NAT devices), followed by known home gateway boxes (denoted with net), and
12 are Windows servers; as for the AT, the majority of hosts has iber access (denoted with ftt),
followed by cable and 6 DSL lines. Hence, this highly unbalanced validation subset does not allow
to report any statistically meaningful per-AT or per-OS conclusions -- but nevertheless allows to
validate our methodology.
We collect per-host percentiles during 5 minutes windows: Fig. 39 reports the Cumulative Distri-
bution Function (CDF) of a few per-host queuing delay statistics, gathered over all hosts and mea-
surement rounds (in other words, each host yields a sample for each CDF during a different 5min
round). In more details, top plot reports the maximum queuing delay CDF: as expected, from the
picture clearly emerges that (a) iber access suffers the lowest delays irrespectively from the OSs,
(b) cable delays are only slightly higher, whereas (c) DSL end-hosts may seldom suffer from de-
lays close to 1 sec. We further report the 50th (bottom) and 90th (middle) percentiles CDF. Notice
further that (d) from practical purposes, the 90th percentile is lower than 100ms under any com-
bination of OS and AT -- including end-hosts behind DSL. Moreover, since thewin:cable andwin:dsl
lines now clearly separate from the others, we infer that the methodology needs to be re ined as

2In case the Windows OS runs an HTTP server, we empirically verify our intuition by manually browsing to the Web-
page for a handful of cases. Residential users could instead be classi ied via Spamhaus/PBL.
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Figure 40: QoS. Active ∆OWD measurement (TopHat). Validation of the measurement campaign:
queuingdelay statistics andperformance indicators for twodifferent servers (same target set, same
time).

it likely underestimates bufferbloat delay for NATted hosts -- although observation (d) suggests
bufferbloat not to be relevant.
As a further validation, we contrast the queuing delay statistics relative to the the overall set of
18,750hosts, probedduring the same timeframeby two independentPlanetLabnodes. Inprinciple,
we expect bufferbloat measurement to be the same irrespectively of the measurement server. Yet,
we need to rule out the fact that the mixture of applications running on other slices of the same
PlanetLab nodes negatively affect the measurement.
To conduct rigorous analysis, we not only compare scalar queuing delay statistics (i.e., mean and
variance, over all hosts and rounds, of the queuing delay percentiles, tabulated in Fig. 40) but also
report CDF of the actual probe rate (in million packets per round) and effective inter-probe time
(in seconds). Results con irm that, despite individual agents may run on PlanetLab nodes running
a mix of different applications, (i) queuing delay statistics agree on a 2ms accuracy and (ii) TopHat
agents running on PlanetLab are able to send 1.5-2millions ICMP probes per 5minutes round, with
an inter-probe gap for the same host of 2-2.5 seconds.
Hence, we gather that mPlane reasoners can gather active measurement of∆OWD delay, achieve-
ing signi icant spatial scale and high frequency: with minimal intrusiveness, the technique yields
accurate and coherent results, that reasoners can thus relate to application performance (e.g., mul-
timedia, Web, etc.) or use for troubleshooting.

3.3.4 QoE. Impact of∆OWD on BitTorrent comple on me

Finally, as far as applications for which a QoS to QoE mapping is not reported in Sec. 3.3, an ex-
perimental technique similar to the one performed in Sec. 3.3 can be envisioned. We consider for
instance the BitTorrent ile-sharing applications, with about 300,000,000 users worldwide, whose
main Quality of Experience indicator is the torrent completion time.
In the BitTorrent case, completion time can be affected by several factors, including for instance the
congestion control algorithmadopted for data exchange. It is indeedwell known that theTCP family
possibly generate large queueing delay [34], though the actual queuing delay is further correlated
to the speci ic TCP lavor within the large TCP family. For instance, IETF endorses NewReno [6],
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a high-priority loss-based congestion control algorithm for TCP. TCP Vegas [16] was proposed as
a high-priority delay-based congestion control algorithm as an alternative to the traditional loss-
based NewReno algorithm. Recent evolution of loss-based algorithms include TCP Cubic [69] and
TCP Compound [75]. Cubic has become the default algorithm for TCP in Linux since kernel ver-
sion 2.6.18 and Compound the default one in Windows. TCP LP [47] is a low-priority loss-based
congestion control algorithm available in Linux, and TCP Nice [82] and uTP/LEDBAT [62] are two
low-priority delay-based congestion control algorithms that react on Round Trip Time (RTT) and
One Way Delay (OWD) variations respectively. Unlike Nice, uTP is implemented at the application
layer over UDP framing explicitly limits the additional delay it adds to the bottleneck buffer (this
limit is currently set to 100 ms to avoid harming interactive, delay-sensitive traf ic [58]).
It follows that, depending on the speci ic TCP protocol in use, or alternative to TCP as in the case
of uTP/LEDBAT, the (i) performance of BitTorrent may differ, as well as (ii) the queuing delay that
BitTorrent traf ic induces on competing applications at the bottleneck link. In this section, we show
both aspects with an experimental approach on a private cluster where considering a lash crowd
scenario3 in which 75 leechers join a swarm initially populated by a single seed (that distributes a
100MBytes ile). We conduct several experiments in [78], under several scenarios, to both get the
BitTorrentQoE (Sec. 3.3.4.1) aswell as the implication of BitTorrent on theQoSof other applications
(Sec. 3.3.4.1) for different TCP lavors. Here we limidtedly report the most important indings from
the perspective of an mPlane reasoner.

3.3.4.1 Impact of TCP flavor on BitTorrent comple on me

We irst focus on the download completion time. We study the impact of the congestion control
algorithms on the data plane ef iciency and control plane timeliness by using the uTorrent 3.0 (UT
for short) client and an instrumented version of the mainline BitTorrent 4.0.2 (BT for short) client
[1]. For completeness, we consider different applications (BT, UT), congestion control algorithms
(Cubic, uTP, NewReno, Vegas, Nice, LP), and scenarios (homogeneous, heterogeneous) in the mix.
All outgoing connections of a BT peer will use the same congestion control algorithm, because the
operating system imposes a single algorithm at the transport-layer (CC-L4). However, uTP is imple-
mented at the application-layer (CC-L7) and is only available for uTorrent. UT implements a dual-
stack connection management, so that: (i) a uTP and a TCP connections are opened in parallel; (ii)

3Each machine of the cluster runs a single peer, seed or leecher.

Plane
68



318627-mPlane
Design of Analysis Modules

in case a uTP connection is successfully established, the TCP one is dropped; (iii) connections are
bidirectional, so that a uTP incoming connection canbeused in the reverse direction. Wenotice that
it is possible to disable uTP in UT with an application level setting (bt.transp_disp in the GUI).
In the following, we consider the UT:Cubic variant as well, in order to gauge whether performance
differences are rooted in the scenario, in congestion control choice, or in the application-layer im-
plementation and settings (e.g., dual-stack connection management policies, ine tuning of timers,
maximum number of simultaneous connections, etc.)
Fig. 41 reports the cumulative distribution function (CDF) of the completion time, only considering
the heterogeneous case for the sake of illustration. We denote a set of peers in an experiment with
the notation X:Y , with X ∈ {BT, UT} and Y ∈ {uTP, NewReno, Vegas, Nice, LP}. Additionally,
we employ the notationX:⋆ to indicate any congestion control algorithm used with applicationX .
In the scenario of 41, half of the peers are using Cubic and half of them are using a single other
congestion control algorithm among uTP, NewReno, Vegas, Nice and LP. For the sake of clarity, we
show a CDF curve for each half of the peers using the same congestion control algorithm. In order
to reduce the set of CDF curves and because the performance of the BT:Cubic peers is different from
the other sets of peers, we show an envelope (with light gray shaded color) instead of independent
curves. For instance, BT:Vegas is for half of peers using Vegas only for an heterogeneous scenario,
and the other half using Cubic falls into the envelope BT:Cubic.
We observe in Fig. 41 that the completion time for BT:Cubic is greater thanwith any other combina-
tion of application and congestion control algorithms, and that the completion time for UT:uTP and
UT:Cubic peers are indistinguishable4, so we represent it with a single curve UT:⋆. We also observe
that the shortest completion time is for BT:Nice (unlike in the homogeneous scenario, not shown
in this Deliverable).
In summary, results con irm that application implementation may have an important impact (i.e.,
UT connection management allowing uTP and Cubic traf ic to mix), but also show that the con-
gestion control algorithm has a signi icant impact. Contrasting our indings with related work, the
difference of performance between BT:Nice and BT:Cubic is similar to the one noticed in [77], but
our results on UT are different because the simplistic simulations settings of [77] do not take into
account the complex connection management policy of UT.

3.3.4.2 Impact of BitTorrent TCP flavor on queuing delay of compe ng applica ons

We now turn our attention to the side effect that TCP lavors used by BitTorrent can have on com-
peting applications: in this case, we report the queuing delay due to BitTorrent TCP (and BitTor-
rent UDP) traf ic as relevant QoS metric that can be mapped to QoE of other applications following
Sec. 3.3. Notice, that, additionally, BitTorrent-speci ic heatmaps can be extrapolated by correlating
the observed queuing delay to the torrent completion time, aswewill report later in this paragraph.
We use for the buffer occupancy (left plots) an x-axis in KBytes and the corresponding buffering
time in seconds for new packets entering the queue. Again, for the sake of brevity Fig. 42 only
reports the heterogeneous case, showing the CDF of the buffer occupancy.
Weobserve that thedelay-based algorithms (UT:uTP, BT:Nice, BT:Vegas) leads to the shortest buffer
occupancy, followed by the loss-based algorithms (BT:LP and BT:NewReno), and by BT:Cubic as

4This results from UT connection management, that allows on the one hand UT:Cubic peers to employ reverse uTP
traf ic, but also forces UT:uTP peers to send TCP Cubic traf ic to UT:Cubic peers with whom they have not successfully
established a uTP connection yet.

Plane
69



318627-mPlane
Design of Analysis Modules

 0

 0.2

 0.4

 0.6

 0.8

 1

0
0

31
1/4

62.5
1/2

94
3/4

125KB
1sec

C
D

F

Buffer occupancy

UT:uTP

BT:
N

ic
e

UT:Cubic

BT:Vegas

BT:C
ub

ic

BT:L
P

BT:N
ew

Ren
o

Figure 42: QoS. Impact of BitTorrent TCP lavor on queuing delay of competing applications

Cubic is more aggressive than NewReno. Interestingly, the behavior of UT with Cubic (UT:Cubic)
is very different from the one of BT with Cubic (BT:Cubic), con irming the complex interactions
between the application and the congestion control algorithm. Interestingly also, theBT:Nice buffer
occupancy is very close to that of UT:uTP, and a fewpercent of peers have a higher buffer occupancy
with UT:uTP than with BT:Nice (because the CDF crosses).
We also notice that, in 20% of the cases, queuing delay exceeds 250ms even under the UT:uTP
best case (that has the shortest queuing delay). It follows that, due to the presence of legacy peers
employing TCP-only connections, interactive applications can still be negatively affected by Bit-
Torrent traf ic, even if the peer support LEDBAT. This happens because, as previosuly observed
in Sec. 3.3.2.1, a single TCP connection can still generate bufferbloat, which means that congestion
control is only a partial solution in an heterogeneous scenario, andwould bene it of amoremassive
penetration of delay-based congestion control for any kind of bulk data transfer beyond BitTorrent
(e.g., to the Cloud, Dropbox, etc.).
We inally extrapolate an heatmap equivalent to correlate BitTorrent QoESwith the QoS delaymea-
surement. This would allow, given delay measurement, to forecast the QoE performance of Bit-
Torrent, as was done for other applications in Sec. 3.3, further completing the mapping between
QoS and QoE. We therefore assess if (and howmuch) QoS and QoE are correlated in the BitTorrent
case. Clearly, in case Actice QueueManagement (AQM) techniques are in place, the picture becomes
more complex, since as we show in [36, 35], a reprioritization phenomenon happens that change
the congestion control performance. As such, in what follows we merely report the FIFO buffer
management policy case.
We present in Tab. 6 a correlation based analysis, in order to compactly summarize our indings
and assess whether differences in the buffer statistics explain the completion time difference. We
compute themedian and 90-th percentile of the Ti andBi metrics, andwe evaluate the Spearman's
correlation coef icient as ρ(X(Ti), Y (Bi)). As an example, to compute the Spearman's correlation
between the 90-th percentile of the queuing delay and the completion time for BT, we de ine a set
of (50th(Ti), 90 − th(Bi)) pairs, where statistics are computed for any given swarm i ∈BT:⋆. The
correlation among the pairs is then computed over the set of swarms.
Intuitively, the Spearman's correlation quanti ies whether an order exists between two different
metrics. In our case, it will show whether the order observed for the completion time is the same
as for the buffer occupancy. Inmore details, while Pearson's correlation coef icient is directly evalu-
ated over twometrics, and expresses the existence of a linear relationship between them, the Spear-
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Table 6: QoS vs QoE: Assessing the relevance of a BitTorrent QoS to QoE heatmap via Spearman's
Rank Correlation
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50-th 90-th 50-th 90-th
50-th 0.54 0.32 0.10 0.10

H
et
er
o 90-th 0.36 0.14 -0.30 -0.30

50-th 0.77 0.56 0.62 0.67
90-th 0.76 0.58 0.60 0.69

Multi applications Mono application
{ UT:⋆ ∪ BT:⋆ } { BT:⋆ }

man's correlation coef icient is instead evaluated over their rank and expres ses the existence of a
monotonous (but not necessarily linear) relationship between the metrics. In a sense, this analysis
allows to support (or confute) the relevance of a BitTorrent QoS to QoE heatmap similar to those
shown in Sec. 3.3.
For the homogeneous scenario, we see that in the BT:⋆ case, the buffer occupancy and completion
time are not correlated. This is coherent with indings in [66], whereby an additional delay equal
for all peers have only minimal impact on system performance. Rather, completion time of slowest
peers (90-th) is negatively correlated with delay. We only observe correlation when we consider
both BT:⋆ and UT:⋆, hinting for an important impact of application settings: hence, not only con-
gestion control, but application-speci ic tuning can have an important impact. This suggest that
BitTorrent QoS to QoE heatmaps could thus be gathered implementation-wise, so to be able to cap-
ture instrisic differences at client level. The speci ic BitTorrent client is easy to get via passivemeth-
ods as it is encoded in BitTorrent handshake messages (matter of fact, we have implemented this
feature in Tstat), so that this information could be available at the reasoner.
At the same time, Internet is an intrinsecally heterogeneous sceario, so that heterogeneous perfor-
mance shown earlier are a better it for mPlane purposes. In this case, we see that In the hetero-
geneous scenario instead, buffer occupancy and completion time are highly correlated, for both BT
and UT (and even considering BT:⋆ alone). This extends the validity of previous simulation ind-
ings [77] to the real world, additionally showing that congestion control algorithms, neglected by
previous studies, play an important role as well. In terms of BitTorrent QoS to QoE heatmaps, this
implies that QoS metric should have a more important impact with respect to low-level implemen-
tation details, so that a single BitTorrent heatmap should be able to provide reasonable estimates
of BitTorrent QoE from QoS measurements.

3.4 Hypergraph Mining

Graph-based modeling provides a foundation for phenomena and/or problems involving one-to-
one relationships/interactions among entities allowing data analysis andmining to understand re-
lations between these entities. However, graph modeling fails to capture group-level interactions
between entities that are of different nature. Indeed, many of the relationships exhibited in vari-
ous domains including information networks are not restricted to be one-to-one. Building a model
that inherently handles many-to-many relationships/ group interactions would better rely on hy-
pergraphs. In a graph an edge can be incident on exactly two vertices whereas each hyperedge in a
hypergraph is an arbitrary subset of the vertex set and represents relations between its elements.
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Thus, many hyperedges may be subsets of other hyperedges. Hypergraphs can model many-to-
many relationships among entities attributes enabling in turn to handling problems such as simi-
larity, clustering and construction of classi iers. Moreover, a probabilistic hypergraph presents not
only grouping information, but also the probability that a vertex belongs to a hyperedge. In this
way, the correlation information among vertices can be more accurately described. This section
details the foundational principles and techniques underlying hypergraph data mining. The tech-
nique is applied the analysis of the relationships between (attributes of) traf ic directed to certain
Autonomous Systems (AS)/address pre ixes (vertex) and content caches/servers (hyperedge). The
technique is then extended to probabilistic hypergraphs, which represent the probability that ver-
tices belong to hyperedges and hierarchical directed acyclic graphs which represent relationships
between hyperedges.

3.4.1 Introduc on

Graph-basedmodeling provides a foundation for explaining phenomena and/or investigating prob-
lems involving one-to-one relationships/interactions (represented by edges) among entities (rep-
resented by vertices) allowing data analysis and mining to understand relations between these
entities.
Suchmodeling relies also on the distinctionmade between undirected and directed graphs but also
between unweighted and weighted graphs.

• Unweighted graph: an unweighted graph G is de ined by the tuple (V,E) where V set of
vertices (|V | = n) and E is the set of edges (or arcs), (|E| = m). The elements e (or indexed
ej , j = 1, cdots,m) of the setE are pairs (u, v)where u, v ∈ V . An edge (v, v) is a self-loop.

• Weighted graph: a weighted graphG is de ined by the tuple (V,E,w)where V set of vertices
(|V | = n) andE is the set of edges (or arcs), (|E| = m) andw is a functionwhich associated to
each edge e = (u, v) a weight. Weight can represent cost associated to the edge, the strength
of the edge or a probability of interconnection (at the condition that the functionw : V ×V →
[0, 1] ∈ Re : ej → wj ∈ [0, 1].

• Undirectedgraph: the edgepairs areunordered; the setE de ines symmetric relation: (u, v) ∈
E implies (v, u) ∈ E, in other terms the edge (u, v) and the edge (v, u) correspond to the same
edge.

• Directed graph (or digraph): the edge pairs are ordered (the edges have an associated direc-
tion). A directed graph having no multiple edges or loops is called a simple directed graph. A
directed graph having no symmetric pair of directed edges (i.e., no bidirected edges) is called
an oriented graph. An acyclic digraph is a directed graph containing no directed cycles it is
also referred to as a directed acyclic graph (DAG).

In the space of communication networks, "dyadic" deterministic graphs have been widely used to
represent (or model) many "structures" from physical to routing topologies. Examples includes:

• Undirected unweighted graphsG = (V,E) can model the inter-domain or AS-level network
topology where inite vertex set V represents abstract nodes, e.g., the autonomous systems
(AS), and the inite edge setE represents the interconnection between AS pairs (u, v), u, v ∈
V .
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• UndirectedweightedgraphG = (V,E,w) canmodel the router-level network topologywhere
inite vertex setV represents routers or inter-connectionpoints, and the inite edge setE rep-
resents nodes interconnection. This is particularly the case when the (intra-domain) routing
topology is derived from link-state routing protocol exchanges

Using these models, more elaborated networking entities can be represented. Examples include:

• Topological path p(u, v) from vertex u to v is de ined as the inite vertex sequence [x0(=
u), x1, . . . , xi−1, xi, . . . , xp(= v)] such that the vertex xi−1 is adjacent to xi, ∀(xi−1, xi)(i =
1, . . . , p) ∈ E. The length ℓ(u, v) of the path p(u, v) is de ined as the inite number of edges
that the path p(u, v) traverses from vertex u to v. Given a distance metric d, the distance
d(u, v) between two vertices u, v ∈ V denotes the length of a shortest path p(u, v) from ver-
tex u to v.

• Routing path r(u, v) from vertex u to v is de ined by the loop-free topological path[x0(=
u), x1, . . . , xi−1, xi, . . . , xp(= v)] such that the vertex xi−1 is adjacent to xi, ∀(xi−1, xi)(i =
1, . . . , p) ∈ E as computed by the routing algorithm. In other terms, depending on the rout-
ing algorithm, topological and routing path may be different.

• Multicast distribution treesmodeled as directed acyclic graphs or point-to-multipoint routing
paths.

Distinction between topological path and routing path (output of the routing algorithm) leads to a
routing topology which is a sub-graphG′ of the graphG representing the network topology. These
de initions lead also to the characterization of fundamental network topology properties such as
the diameter ∆(G) of the graph G de ined as the maximum distance between any two vertices
u, v ∈ V , i.e.,∆(G) = maxu,v{d(u, v)|u, v ∈ V }, the average path length de ined as the average of
the shortest paths length over all pairs of vertices, and the characteristic path length.
Despite theirwide applicability fornetworkmodeling, dyadic graphmodeling fails to capture group-
level interactions / relationships betweenentities that are oftenof different nature. Indeed,manyof
the relationships exhibited in various domains including communication and information-centric
networks are not restricted to be one-to-one.
In particular, these networks show i) multi-layer structures (an upper layer can make use of sev-
eral lower layers and the latter can accommodate multiple upper layers or simply take the case of
nodes interconnected by a multi-access broadcast segment), ii) multi-level/hierarchical structures
(AS routing path over link-state routing paths provides an interesting example of complex relation-
ships between routing levels or the set of sub-groups composing all network communities) and
iii) (hidden) relationships between entities including similarity and af inity between vertex (and
subsets of vertices).

3.4.2 Hypergraphs

The above observation leads to the introduction of a more general modeling technique where re-
lationships would not be limited to be one-to-one but where such relationships would appear as a
particular case.
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3.4.2.1 Defini on

A hypergraph is de ined as a tupleH = (V,E) where V = v1, v2, . . . , vn is the vertex set, |V | = n
andE = e1, e2, . . . , em is the set of non-empty subsets of V , such that ∪jej = V , called hyperedges
(or hyperarcs). Each hyper-edge ej is an arbitrary sub-set of the vertex set V . Thus, many hy-
peredges may be subsets of other hyperedges which represent the relations between two or more
vertices. The degree of the vertex v is the sum of the corresponding row of the incidence matrix of
H . This is equal to the number of hyper-edges that the vertex belongs to.
In the present section, and similarly to weighted dyadic graphs, we also consider weighted hyper-
graphsH = (V,E,w)where each hyperedge ej is assigned a positive weight w(ej).

3.4.2.2 Representa ons

Two nodes are adjacent inH = (V,E) if there is a hyper-edge ei that contains both of these nodes.
A hypergraphH = (V,E) can be represented by an incidence n ×m inite matrix I(H) = V × E
such that i(vi, ej) ∈ [0, 1] in which each of the N rows is associated with a vertex and each of the m
columns is associated with a hyper-edge, where i(vi, ej) = 1 if vi ∈ ej and i(vi, ej) = 0 if vi /∈ ej .
This representation is useful for numerical processing but lacks graphical model representation
(visualization). For this purpose, Ensemble representation (which directly follows from the hyper-
graph de inition provided here above), Hierarchical Directed Acyclic Graph (HDAG) and Bipartite
Graphs are often used to represent hypergraphs. A bipartite graph, also called a bigraph, is de-
ined by the tuple G = (U, V,E) where set of graph vertices is decomposed into two disjoint sets
U and V (U and V are each independent sets) such that no two graph vertices within the same set
are adjacent and every edge e ∈ E connects a vertex in U to one in V . In the bipartite represen-
tation, the vertex on one (left) side of the bipartition represent vertices in the hypergraph, while
vertices on the other (right) side represent hyperedges. The edges in the bipartite graph represent
the membership of vertices in hyperedges.
The followingexampleprovides thehypergraph representedby its incidencematrix I(H) = |V |x|E|,
together with its representation by Ensemble, HDAG and Bipartite graph.

3.4.2.3 Applicability

Building a model that inherently handles many-to-many relationships/group interactions,leads to
consider hypergraphs. Indeed, in a dyadic graph an edge can be incident on exactly two vertices
whereas each hyperedge in a hypergraph is an arbitrary subset of the vertex set and represents
relations between its elements. As many hyperedges may be subsets of other hyperedges, hyper-
graphs can model many-to-many inter-twinned relationships among entities enabling in turn to
handling problems such as vertex similarity, clustering but also construction of classi iers (classi-
ication rules). More precisely, clustering proceeds by identifying groups of attributes with simi-
lar characteristics, which may be relationships among attributes based on observation patterns or
identi ied using association rules. Determining classi ication rules involve learning the value of one
attribute from the values of other attributes.
Hypergraphs has been proposed as a method of choice in the context of shared risks detection and
identi ication. Let denote byC the set of components of the system,C = c1, · · · , cp such that |C| =
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Figure 43: Hypergraph Representation

p and S the set of shared risk groups, S = s1, · · · , sq such that |S| = q. We say that a component
cj ∈ C belongs to the shared risk group si if this component cj includes resources/supplies covered
by si. The shared risk model is characterized by the following properties. Any component ci ∈ C
belongs at least to one SRG, i.e., |S| = q ≥ p. By extension, the component ci ∈ C belongs to the SRG
set S′ = s1, . . . , sq′ with q′ ≤ q if the component ci crosses at least one of the resources of each of
its members s1, . . . , sq′ . Any pair of components ci, cj ∈ C belonging to the SRG sk (ci, cj ∈ sk) can
individually belong to a set of other SRGs, i.e., ci ∈ sp , cj ∈ sq such that sk∩sp = ci and sk∩sq = cj .
More generally, any component from a given subset of components taken individually may belong
to a set of other SRGs
The nodal version of this model, where components are de ined as modules of network programs,
has a direct applicability in the context of programmable networks where software modules share
common risks. The tasks consists in determining which nodes executing some module(s) share
common risk of joint failures; for instance, when certain properties of the execution environment
(node programs) may cause joint failure of these modules.
Observe that this situation differs from current networks operation (where operators con igure
pre-loaded software components) when distinction is made between node and network program-
ming. In network function programming (the so-called "network as compiler" paradigm), the op-
erator designs programs that are automatically veri ied, compiled and deployed at running time.
This step leads to a signi icant change compared to current networks operations (since enabling the
introduction and the replacement of new software-de ined functions without requiring hardware
change) but also to their control processes. Consequently, an error at the network program level
may translate into multiple node program errors. In turn, ensuring network-level fault-tolerance
requires extending the vertex-disjoint path problem (unformally, twonodes remain connected even
if one node along one of the paths connecting these two nodes fails) with a detailed knowledge
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Figure 44: Shared Risk Model - Nodal version

Figure 45: Shared Risk Model - Iterative Construction of the Hypergraph

about the software components executed along each of the path.

The iterative construction of the hypergraphsH can be performed by means of the bipartite graph
H = (U, V,E) where the vertex set U represents the set of nodes, the vertex set V represents
the set of software components and the edge set E represent the inclusion into nodes of software
modules. This allows also to consider systems where software modules can be grouped into larger
programs together with the representation of their dependencies.

Fig.3 depicts the iterative construction of the hypergraph starting from different observations of
software module failures. Starting from time t0, from each event k occurring at time t0 + tk , a (set
of) edge(s) is added relating nodes to software modules.
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3.4.3 Probabilis c Hypergraphs

Conventional hypergraph structure assigns vertex vi to hyperedge ej with a binary decision, i.e.,
i(vi, ej) = 1or0. Consequently, all vertices in a hyperedge are handled equally; relative "similarity",
"af inity", etc. between vertices is discarded by such decision (the incidence matrix is equivalent
to a Boolean matrix). This leads to loss of some information, which may be harmful to some hy-
pergraph based applications, in particular, when the relationship of assigning a given vertex to an
hyperedge is based on a detection process which implies a certain level of uncertainty depending
on the detection technique and the application itself. In certain applications the hyperedge set is
known and the remaining task consists in assigning probabilities instead of taking a binary deci-
sion; in other applications the hyperedge set itself is unknown and the tasks consists in detecting
the existence of hyperedges together with their constituency.
The incidencematrix I(H)of aprobabilistic hypergraphH = (V,E) is de inedas follows: i(vi, ej) =
P [i(vi, ej)] ∈ [0, 1], ∀vi ∈ V andejinE such that ∑i|vi∈ej i(vi, ej) = 1. This requires updating the
values i(vi, ej) as observation arrives. This model can be further extended if one assumes that the
probability corresponds to the expectation that hypergraph vertices share a common property (or
attribute). In this case, the probability corresponds to the likelihood of a shared attribute among
vertices. Thismodel beingmore elaborated it inds applicationwhen the task consists in determin-
ing relationships among data set attributes that can take value from a inite based on observation
patterns or identi ied using association rules.

3.4.4 Applica on

In content-centric networks (a.k.a. information-oriented networks), intermediate nodes are capa-
ble to (temporarily) store content objects or sub-objects (when the content can be segmented).
Depending on their network location, content servers and/or caches steer the spatio-temporal dis-
tribution of traf ic leading to key challenges for transit networks. In particular, because these net-
works do not bene it from any information related to content location from their neighboring do-
mains to ful ill traf ic-oriented but also resource-oriented performance objectives (or both).
The key characteristic of such networks is to maintains multiple content objects that are reachable
via single IP address (meaning are associated to the same locator) whereas multiple IP addresses
(network locators) can host the same content object. Finding these M:N relationships and the spa-
tial distribution between content objects are the main tasks underlying this application. Using this
set of relationships, transit networks may specify their traf ic engineering policies and tune their
traf ic engineered path computation so as to better comply to traf ic-oriented but also resource-
oriented performance objectives (or both).
On the other hand, we consider the situation where the edges of the transit networks connected
to neighboring content networks can passively monitor (by means of monitoring points or agents)
content requests and replies. The situation is depicted in Fig.4. Note that edges are assumed to
share the information extracted out of content requests and replies.
The iterative construction of the hypergraph H by means of the bipartite graph H = (U, V,E)
where the vertex set U represents the set of content objects, the vertex set V represents the set
of locators and the edge set E represent the probability to ind a given content object at a given
location. This iterative construction allows to ind the M:N relationship between content objects
and locators. The result of the execution is depicted in Fig.5. Remember that content requests are

Plane
77



318627-mPlane
Design of Analysis Modules

Figure 46: Transit networks and In-Network Caching - Baseline Topology

Figure 47: Transit networks and In-Network Caching - Iterative Construction of the Hypergraph

directed to servers but content replies have as source address the sender/transmitter of the content
object. In case this condition is not veri ied (the transmitter puts the server address as source
address) an additional procedure is required to spatially disambiguate twodifferent locations using
the same locator. Fig.5 alsoprovides the representation in termsofHDAGwhere spatial relationship
between content objects.
The setting of the probability to each edge of the bipartite graph representation of the hypergraph
is part of the learning task which may be performed by means of frequentist inference or Bayesian
inference. To brie ly outline the main difference between these approaches, Bayesian inference es-
timates the conditional probabilityP [hypothesis|data]. In contrast, frequentist inference estimates
the conditional probability P [data|hypothesis]. The critical point about Bayesian inference, is that
it provides a principledway of combining new events (a.k.a evidences)with prior knowledge (a.k.a.
beliefs), through the application of Bayesian rule (whereas the frequentist inference relies only on
the evidence as a whole, with no reference to prior beliefs). The proposed procedure to construct
hypergraphs its perfecttly to the Bayesian rule which can be applied iteratively: after observing
some events, the resulting posterior probability can be treated as a prior probability, and a new
posterior probability computed from new events.
Another approach consists in estimating the class probability between content requests/replies
where each class correspond to a certain object type (attributes). This approach requires further
investigation in so-called imbalanced scenarios in which the number of instances from each class
is (perhaps largely) unequal. In such scenarios, mis-classi ication costs tend to be asymmetric:
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incorrectly classifying rare events is usuallymore costly thanmakingmistakes in theother direction
(which may lead to imperfection when establishing traf ic engineering rules).

3.5 Sta s cal Rela onal Learning

This section aims at providing elements of answer to the following question on data analysis and
mining: which class of learning technique can be considered and/or extended when the input data
is obtained online by its individual monitoring agents. Answering this question imposes to irst
examine the fundamental relationship between the learning technique and the input data proper-
ties on which it performs. On the one hand, (most of) the commonly envisaged statistical learning
techniques assume that i) propositional data are identically and independently distributed ("i.i.d.
assumption"), implying that an element in the sequence is independent of the random variables
that came before it and ii) random samples of homogeneous data objects result from single relation.
These common assumptions have to be contrasted with the intrinsic properties of real world data
sets, in particular, those characterizing communication networks. These environments are charac-
terized by data that are not identically distributed (heterogeneous) and not independent (complex
multi-relational structures). On the other hand,most relational learning techniquesneither assume
noise nor uncertainty in data whilst real world data are often characterized by distributions that
show presence of uncertainty and noise.

3.5.1 Introduc on

Many distributed learning techniques ranging from reinforcement learning to Bayesian learning
have been investigated over last two decades. However, none of them effectively accounts for the
intrinsic properties of the data characterizing the environments to which they apply. Filling this
gap is the main purpose of Statistical Relational Learning (SRL) [49]. This technique combines re-
lational logic learning to model complex relational structures and inter-dependency properties in
datawith probabilistic graphicalmodels (such asBayesian networks orMarkovnetworks) tomodel
the uncertainty on the data. The resulting process can perform robust and accurate learning about
complex relational/ inter-dependent data. The goal of SRL is of particular interest in the context of
mPlane where the reasoner aims at learning hidden dependencies between multi-relational, het-
erogeneous and semi-structured but also noisy and uncertain data. The ultimate objective of SRL
is indeed to learn from non-independent and identically distributed data "as easily as" from inde-
pendent and identically distributed data. This learning technique is particularly adapted to infor-
mation extraction; it provides better predictive accuracy and understanding of domains. However,
this technique induces a harder learning task and higher complexity. SRL is nowadays applied to
social networks analysis, hypertext and web-graph mining, etc.; it is thus reasonable to also con-
sider its potentials in the context of the mPlane reasoner since i) the models learned from both in-
trinsic (propositional) and relational information perform better than those learned from intrinsic
information alone, ii) probabilistic relational models offer signi icant advantages over determinis-
tic relational models (including better predictive accuracy and better understanding of relational
structure in heterogeneous data set), and iii) SRL can learn accurate models of (inter-)dependent
data instances.
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3.5.2 Sta s cal Rela onal Learning

SRL combines probabilistic graphical models (probabilistic learning and inference) to model and
reason about uncertaintywith representation language to describe relational properties of the data
and complex dependencies between them (logical learning and inference).
Graphical models provide a principled approach to deal with uncertainty and relational data by
means of the probability theory. These models represent dependency structure between random
variablesby joint distributions. Two typesof graphicalmodels are commonly considered: Markov(ian)
networks and Bayesian networks. On the one hand, Markov networks are described by undirected
graphswhere edges do not carry arrows (no acyclic constraint) and have no directional signi icance
are useful for expressing symmetric relationships (soft constraints) between random variables. On
the other hand, Bayesian networks are represented by Directed Acyclic Graphs (DAG) where edges
have a particular directionality indicated by the arrows (acyclic constraint) are useful for express-
ing causal relationships between random variables.
In addition to the distinction between undirected and directed graphical models, the differenti-
ation between main representation syntaxes, i.e., irst-order logic vs. frame-based representation
provides a complete categorization of the different classes of SRLmodels. One distinguishes as part
of the directedmodels between rule-basedmodels Bayesian Logic Programs (BLP) [45] and frame-
basedmodels Probabilistic RelationalModels (PRM) [31] and as part of undirectedmodels between
frame-basedmodels RelationalMarkovNetworks (RMN) [65] and rule-basedmodelsMarkov Logic
Networks (MLN) [60]. In the present section, we extend the latter, i.e., the MLNmodel. Selection of
this learningmodel stems from the following reasons: it suits control processes whose execution is
causality-independent, it is more lexible when the data aremade available sequentially (as it is the
case in communication networks) and it enables exploiting data sparseness by grounding "lazily".

3.5.2.1 Incremental Markov Logic Networks (iMLN)

The fundamental issue stems from the following: these models have been designed independently
on the input data arrival process, i.e., the processing algorithm perform on complete data set (in
"batchmode"). However, whenperforming online learning, data arrive followingdifferent temporal
patterns (in "sequential mode") and the model is to be updated as data arrive. As stated in the
previous section, this is also one of themain reasons for selecting theMarkov Logic Networkmodel
as it supports for sequential data.
For this purpose, we extend theMarkovLogicNetwork (MLN)modelwhich represents a probability
distribution over possible worlds to cover incremental updates from arrival of input data. AMLN is
formally de ined as a set of pairs of formulasFi in irst order logic and their corresponding weights
wi denoted (Fi, wi). It is important to emphasize that a MLN becomes a Markov network only with
respect to a speci ic grounding and interpretation. Indeed, atomic formulas (vertices of theMarkov
Network) do not have a truth value unless they are grounded and given an interpretation. Thus, one
requires that each vertex represents a ground atom (i.e., atomic formula whose argument terms
are ground terms). Together with a set of constants in the domain of discourse, a MLN de ines a
(ground) Markov network with i) one binary vertex for each grounding of each predicate in the
MLN (the value associated to the vertex is 1 if the ground atom is true and 0, otherwise) and ii)
one potential function fi for each grounding of each formula Fi in the MLNwith the corresponding
weight wi. Each state of the resulting ground Markov network (with a log-linear representation of
the potential function fi) presents a possible world x (i.e., assignment of truth values to all possible
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vertices or ground atoms) whose probability P (X = x) is given by:

P (X = x) =
1

Z
exp(

∑
i

wini(x)) (3.5)

In equation (1), the denominator Z denotes the partition function used to make the summation of
all possible groundings adding up to 1, wi is the weight of the formula Fi, and ni(x) is the number
of true groundings for the formula Fi in x. We also operate under the closed world assumption (if
a ground atom is absent in the data, it is assumed to be false).
Assuming we have at our disposition a given set of formulas F1, F2, F3, ..., Fn, the learning task
consists in inding the respective weights w1, w2, ..., wn by applying the following steps:

1. Obtaining the weights wi from the pseudo-likelihood (PL) approximation of the joint proba-
bility distribution of a world x based on its Markov blanket. TheMarkov blanket of a vertex is
theminimal set of vertices thatmust be observed tomake this vertex independent of all other
vertices. In a directed model, the Markov blanket includes parents, children and co-parents.
The PL approximation ofX = x is given by:

PL(X = x) =
∏
i

P (xi|neighbors(xi)) (3.6)

The use of the pseudo-likelihood approximation does not require performing inference at
each step and avoids the use of the partition function Z . It is indeed impractical to perform
exact inferenceon largeMarkovmodels because of the computations on thepartition function
Z .

2. Inferring the most likely state of the world y given the evidence x. For this purpose, given the
evidences x, it suf ices to compute the following:

argmax
y

∑
i

wini(x, y) (3.7)

Computation of equation (3) makes use of the MC-SAT algorithm [41]. This algorithm com-
bines Gibbs sampling, which proceeds by sampling each variable in turn given its Markov
blanket, with a weighted SAT solver such as the MaxWalkSAT solver [38]. The latter de ines
a local search algorithm for the weighted satis iability problem, i.e., ind a truth assignment
that maximizes the sum of weights of satis ied clauses.

Next, in order topredict theoccurrenceof certainpatternsor events (predictive inferenceproblem),
it suf ices to compute, using the evidences x, the equation (3) by means of the MC-SAT algorithm.
Using this procedure, the correspondingMLNmodel is able to ind for instance the probability that
the formula Fi holds knowing that the formulas Fj and Fk do.

3.5.3 Applica on

SRL is particularly well suited for information extraction, as it provides better predictive accuracy
and understanding of domains; however, this technique induces a harder learning task and higher
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complexity. The gain has to be signi icant in order to justify this harder learning tasks. Several
applications are under investigation including fault diagnosis/root cause analysis and anomaly de-
tection (e.g., detect anomalies/invalidity in control traf ic, routing information patterns).
As stated earlier in this section, SRL enables tomodel the relations between topological and spatio-
temporal properties together with collective inference compared to the approaches that process
these properties independently. We aim at showing whether this learning technique would be able
to determine among the large possible set of (sometimes hidden) relationships between heteroge-
neous data which of them are susceptible to cause serious operational disruption to relieve from
the problem of "operating exclusively in the dark", more precisely, prevent that certain disruptions
last longer than they should if additional information would be made available.
Concerning anomaly detection in control traf ic the following problems can be considered as pro-
viding interesting cases to determine applicability of SRL:

• the detection of hidden relationships between policy rules that cannot be detected by local
inspection of routing policies (e.g., for the detection of valid routing information inducing
unintended unstable states in path-vector routing) or the detection of hidden relationships
between routing paths that cannot be detected by local only inspection of the local routing in-
formation base; the learning task consists in performing collective classi ication task, where
the class label of the links may be unknown. This application of SRL extends over relational
classi ication in presence of autocorrelation (note: in relational classi ication, the task con-
sists in predicting the class label of an object given its attributes).

• the detection of the security risk associated with the selection, e.g., of a given pre ix origina-
tor; the learning task combines grouping objects that have similar characteristics based on
their own attributes and the attributes of their links (link-based clustering) and determining
whether a relation exists between two objects from the attributes of the objects and their link
(a.k.a. link prediction).
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4 Conclusions

This deliverable describes algorithms to perform analyses on the data collected by measurement
probes (WP2) and/or stored and pre-processed in the repositories (WP3). Each use-case (WP1)
has been addressed from this perspective, focusing on its analysis modules. In addition, we have
proposed a series of more generic algorithms that may be useful for the use-cases currently con-
sidered and also in a larger context.
Overall the proposed analysis algorithms cover a large range of techniques that enable to

• understand whether a path has enough resources to sustain the rendering of the speci ic ap-
plication

• estimate the future popularity trends of services and contents for network optimization

• sort and present only interesting web content to end-users

• assess and diagnose performance and quality of multimedia stream delivery

• diagnose performance issues inweb and identify the segment that is responsible for the qual-
ity of experience degradation

• ind root cause of problems related to connectivity and poor quality of experience on mobile
devices

• detect and diagnose anomalies in Internet-scale services (e.g., CDN-based services)

• verify SLAs

• predict performance of unmeasured end-to-end paths

• discover network topology

• relate variations of one-way delays to performance of applications

• analyse the relationshipsbetween traf ic directed to certaindestinations andcontent caches/servers

• detect anomalies/invalidity in control traf ic, routing information patterns

These algorithms can be grouped into the following categories:

• classi ication and iltering (e.g., of lows, applications, content)

• estimation/prediction (e.g., of Quality of Experience (QoE), popularity, path metrics, topol-
ogy),

• detection (e.g., of anomalies, threshold-based changes, interfering middleboxes, hidden rela-
tionships between policy rules)

• correlations (e.g. between measurements and QoE, traf ic directions and caches/servers)

• diagnosis (e.g., of QoE or web degradation, lack of connectivity).
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