
Plane
mPlane

an Intelligent Measurement Plane for Future Network and Applica on Management

ICT FP7-318627

mPlane Architecture Specifica on

Author(s): POLITO M. Mellia, A. Finamore
SSB S. Pentassuglia, G. De Rosa
TI F. Invernizzi
EURECOM M. Milanesio
ENST D. Rossi
NEC S. Niccolini
TID I. Leon adis
NETVISOR T. Szemethy, B. Szabó
FHA R. Winter, M. Faath
ULG B. Donnet
ETH B. Trammell (ed.), M. Kühlewind
A-LBELL D. Papadimitriou

Document Number: D1.4
Revision: 1.1
Revision Date: 15 Apr 2015
Deliverable Type: RTD
Due Date of Delivery: 31 Oct 2014
Actual Date of Delivery: 15 Apr 2015
Nature of the Deliverable: (R)eport
Dissemina on Level: Public

318627-mPlane D1.4
mPlane Architecture Specifica on

Abstract and Execu ve Summary:

This document specifies the mPlane architecture and protocol: in this execu ve summary, we
a empt at providing a concise yet complete view, as a useful star ng point for a walk-through
of the mPlane architecture, addi onally providing hyper-links to the specific sec ons of this
document trea ng a selec on of the most relevant items in the mPlane architecture.

This deliverable first provides a top-down introduc on (Ch. 1.1) to all core mPlane concepts,
providing insights about themain decisions to achieve flexibility and extensibility. This includes
the defini on of a schema-centric protocol, capable of itera ve measurement and pledging for
weak impera veness to avoid deadlock situa ons. The chapter also introduces the different
en es such as components, clients, probes, repositories supervisors, and reasoners. It finally
describes rela onships among en es, illustra ng e.g., the interfaces to these en es, as well
as the message types and typical exchange sequences.

The deliverable then delves into the details, building the mPlane protcol from bo om-up
across three layers. The first layer consists of an informa on model for mPlane messages
(Ch. 2). The informa on model includes an element registry (defining, e.g., name structure
as well as several primi ve types) that are expressed in several message of different types,
such as capability specifica on result and event no fica on (including receipt, redemp on,
indirec on and excep on). Details of the messages are thoroughly illustrated -- including
both low-level details e.g., temporal scope, parameters and metadata, as well as high-level
principles such as message uniqueness and idempotence

The next layer is then represented by the representa on and session protocols (Ch. 3), where
details of the serializa on of the mPlane informa on model using a JSON representa on are
illustrated, and examples of textual representa ons of element values are given. Session
protocol descrip on include secure access control schemes over HTTPS, over WebSockets and
TLS or over SSH; only the first of these is presently implemented.

The deliverable then illustrates several example workflows (Ch. 4), including client-ini ated
processes, capability discovery phases, component-ini ated worflow, callback control and
indirect export, also covering how errors are handles in mPlane.

The remaining chapters (Ch. 5--8) are dedicated to regaining a complete vision of the archi-
tecture, so to fit detailed knowledge acquired so far (Ch. 2--4). Chapters covering for instance
the role of the supervisor, the status of interoperable implementa ons, and data protec on
aspects, providing finally the core registry for completeness.

Keywords: architecture, use case, scenario, measurement, pla orm

Plane 2 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Disclaimer

The information, documentation and igures available in this deliverable are written by the mPlane
Consortium partners under EC co- inancing (project FP7-ICT-318627) and does not necessarily re lect
the view of the European Commission.

The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is it for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Contents

Disclaimer. 3

1 mPlane Architecture. 7
1.1 Key architectural principles and features . 8

1.1.1 Flexibility and extensibility . 8
1.1.2 Schema-centric measurement de inition . 8
1.1.3 Iterative measurement support . 9
1.1.4 Weak imperativeness. 9

1.2 Entities and Relationships . 10
1.2.1 Components and Clients. 10
1.2.2 Probes and Repositories. 11
1.2.3 Supervisors and Federation . 11
1.2.4 Reasoner . 12
1.2.5 External interfaces to mPlane entities . 13

1.3 Message types and message exchange sequences . 13
1.4 A Cooperative measurement in an example mPlane domain . 14
1.5 Integrating measurement tools into mPlane . 16
1.6 From architecture to protocol speci ication . 17

2 Protocol Information Model. 18
2.1 Element Registry . 18

2.1.1 Structured Element Names . 19
2.1.2 Primitive Types . 20
2.1.3 Augmented Registry Information . 20

2.2 Message Types . 20
2.2.1 Capability and Withdrawal . 21
2.2.2 Speci ication and Interrupt . 21
2.2.3 Result . 21
2.2.4 Receipt and Redemption . 21
2.2.5 Indirection . 22
2.2.6 Exception . 22
2.2.7 Envelope . 22

2.3 Message Sections . 22
2.3.1 Message Type and Verb . 23

Plane 4 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2.3.2 Version . 24
2.3.3 Registry . 24
2.3.4 Label . 24
2.3.5 Temporal Scope (When) . 24
2.3.6 Parameters . 27
2.3.7 Metadata . 28
2.3.8 Result Columns and Values . 28
2.3.9 Export . 29
2.3.10 Link . 29
2.3.11 Token . 30
2.3.12 Contents . 30

2.4 Message uniqueness and idempotence . 30
2.4.1 Message schema . 30
2.4.2 Message identity. 31

2.5 Designing measurement and repository schemas . 31

3 Representations and Session Protocols. 33
3.1 JSON representation . 33

3.1.1 Textual representations of element values . 33
3.1.2 Example mPlane capabilities and speci ications . 34

3.2 mPlane over HTTPS. 38
3.2.1 mPlane PKI for HTTPS . 39
3.2.2 Access control in HTTPS. 39
3.2.3 Paths in mPlane link and export URLs . 40

3.3 mPlane over WebSockets over TLS . 40
3.4 mPlane over SSH. 41

4 Work lows in HTTPS. 42
4.1 Client-Initiated . 42

4.1.1 Capability Discovery . 44
4.2 Component-Initiated . 44

4.2.1 Callback Control . 45
4.3 Indirect Export . 47
4.4 Error Handling in mPlane Work lows. 48

Plane 5 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

5 The Role of the Supervisor. 49
5.1 Component Registration. 50
5.2 Client Authentication . 50
5.3 Capability Composition and Speci ication Decomposition . 50

6 Data Protection and Inter-Domain cooperation. 51
6.1 Privacy and data protection . 51
6.2 Access Control Model. 51

6.2.1 Authentication and Authorization . 51
6.2.2 PKI management . 52
6.2.3 Inter-domain communications . 52

7 Implementations. 53
7.1 Reference Implementation and Software Development Kit . 53
7.2 NodeJS Implementation . 53

8 Initial Core Registry. 55

Plane 6 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

1 mPlane Architecture

mPlane is built around an architecture in which components provide network measurement ser-
vices and access to stored measurement data which they advertise via capabilities completely de-
scribing these services and data. A clientmakes use of these capabilities by sending speci ications
that respond to them back to the components. Componentsmay then either return results directly
to the clients or sent to some third party via indirect export using an external protocol. The ca-
pabilities, speci ications, and results are carried over the mPlane protocol, de ined in detail in this
document. An mPlane measurement infrastructure is built up from these basic blocks.
Components can be roughly classi ied into probes which generate measurement data and repos-
itories which store and analyze measurement data, though the difference betweem a probe and a
repository in the architecture is merely a matter of the capabilities it provides. Components can
be pulled together into an infrastructure by a supervisor, which presents a client interface to sub-
ordinate components and a component interface to superordinate clients, aggregating capabilities
into higher-level measurements and distributing speci ications to perform them.
A clientwhich provides automation support formeasurement iteration in troubleshooting and root
cause analysis is called a reasoner.
This arrangement is shown in schematic form in igure 1.1.

probe repository

supervisor

client /
reasoner

capability -
specification -

result

capability -
specification -

result

indirect export

capability -
specification -

result

Figure 1.1: General arrangement of entities in the mPlane architecture

The mPlane protocol is, in essence, a self-describing, error- and delay-tolerant remote procedure
call (RPC) protocol: each capability exposes an entry point in the API provided by the component;
each speci ication embodies an API call; and each result returns the results of an API call.

Plane 7 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

1.1 Key architectural principles and features

mPlane differs from a simple RPC facility in several important ways, detailed in the subsections be-
low. Each of these properties of the mPlane architecture and protocol follows from requirements
which themselves were derived from an analysis of a set of speci ic use cases de ined inmPlane De-
liverable 1.1 [1], though the aimwas to de ine an architecture applicable to awider set of situations
than these speci ic use cases.

1.1.1 Flexibility and extensibility

First, given the heterogeneity of the measurement tools and techniques applied, it is necessary for
the protocol to be as lexible and extensible as possible. Therefore, the architecture in its simplest
form consists of only two entities and one relationship, as shown in the igure 1.2: n clients connect
to m components via the mPlane protocol. Anything which can speak the mPlane protocol and
exposes capabilites thereby is a component; anything which can understand these capabilities and
send speci ications to invoke them is a client. Everything a component cando, from thepoint of view
of mPlane, is entirely described by its capabilities. Capabilities are even used to expose optional
internal features of the protocol itself, and provide a method for built-in protocol extensibility.

client

component

n

m

mPlane Protocol

ca
pa

bi
lit

ie
s
specifications

Figure 1.2: The simplest form of the mPlane architecture

1.1.2 Schema-centric measurement defini on

Second, given the lexibility required above, the key to measurement interoperability is the com-
parison of data types. Each capability, speci ication, and result contains a schema, comprising the
set of parameters required to execute a measurement or query and the columns in the data set
that results. From the point of view of mPlane, the schema completely describes the measurement.
This implies that when exposing ameasurement usingmPlane, the developer of a componentmust
build each capability it advertises such that the semantics of the measurement are captured by the
set of columns in its schema. The elements fromwhich schemas can be built are captured in a type
registry. The mPlane platform provides a core registry for commonmeasurement use cases within
the project, and the registry facility is itself fully extensible as well, for supporting new applications

Plane 8 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

without requiring central coordination beyond the domain or set of domains running the applica-
tion.

1.1.3 Itera ve measurement support

Third, the exchange of messages in the protocol was chosen to support iterative measurement in
which the aggregated, high-level results of a measurement are used as input to a decision process
to select the nextmeasurement. Speci ically, the protocol blends controlmessages (capabilities and
speci ications) and data messages (results) into a single work low; this is shown in igure 1.3.

repositoriesprobes
probes

client/
reasoner

supervisor

repositories

(1) send
high-level

specification

(2) decompose
specification

(3) send
low-level

specifications

(4) measure (5) indirect export of
high-volume data

(6) analyze

(7) return
results

(8) aggregate
results

(9) return
high-level

result

(10) decide
and iterate

Figure 1.3: Iterative measurement in mPlane

1.1.4 Weak impera veness

Fourth, themPlane protocol isweakly imperative. A capability represents a willingness and an abil-
ity to perform a given measurement or execute a query, but not a guarantee or a reservation to do
so. Likewise, a speci ication contains a set of parameters and a temporal scope for a measurement

Plane 9 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

a client wishes a component to perform on its behalf, but execution of speci ications is best-effort.
A speci ication is not an instruction which must result either in data or in an error. This property
arises from our requirement to support large-scale measurement infrastructures with thousands
of similar components, including resource- and connectivity-limited probes such as smartphones
and customer-premises equipment (CPE) like home routers. These may be connected to a super-
visor only intermittently. In this environment, the operability and conditions in which the probes
ind themselves may change more rapidly than can be practicably synchronized with a central su-
pervisor; requiring reliable operation would compromise scalability of the architecture.
To support weak imperativeness, each message in the mPlane protocol is self-contained, and con-
tains all the information required to understand themessage. For instance, a speci ication contains
the complete information from the capability which it responds to, and a result contains its spec-
i ication. In essence, this distributes the state of the measurements running in an infrastructure
across all components, and any state resynchronization that is necessary after a disconnect hap-
pens implicitly as part of message exchange. The failure of a component during a large-scale mea-
surement can be detected and corrected after the fact, by examining the totality of the generated
data.
This distribution of state throughout the measurement infrastructure carries with it a distribution
of responsibility: a component holding a speci ication is responsible for ensuring that themeasure-
ment or query that speci ication describes is carried out, because the client or supervisorwhich has
sent the speci ication does not necessarily keep any state for it.
Error handling in a weakly imperative environment is different to that in traditional RPC protocols.
The exception facility provided by mPlane is designed only to report on failures of the handling
of the protocol itself. Each component and client makes its best effort to interpret and process
any authorized, well-formed mPlane protocol message it receives, ignoring those messages which
are spurious or no longer relevant. This is in contrast with traditional RPC protocols, where even
commonexceptional conditions are signaled, and information aboutmissing or otherwise defective
data must be corrleated from logs about measurement control. This traditional design pattern is
not applicable in infrastructures where the supervisor has no control over the functionality and
availablility of its associated probes.

1.2 En es and Rela onships

The entities in the mPlane protocol and the relationships among them are described in more detail
in the subsections below.

1.2.1 Components and Clients

Speci ically, a component is any entity which implements the mPlane protocol speci ied within
this document, advertises its capabilities and accepts speci ications which request the use of those
capabilities. The measurements, analyses, storage facilities and other services provided by a com-
ponent are completely de ined by its capabilities.
Conversely, a client is any entity which implements themPlane protocol, receives capabilities pub-
lished by one or more components, and sends speci ications to those component(s) to perform

Plane 10 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

measurements and analysis.

Every interaction in themPlane protocol takes place between a component and a client. Indeed, the
simplest instantiation of themPlane architecture consists of one ormore clients taking capabilities
from one or more components, and sending speci ications to invoke those capabilities, as shown in
igure 1.2. An mPlane domain may consist of as little as a single client and a single component. In
this arrangement, mPlane provides a measurement-oriented RPC mechanism.

1.2.2 Probes and Repositories

Measurement components can be roughly divided into two categories: probes and repositories.
Probes perform measurements, and repositories provide access to stored measurements, analysis
of stored measurements, or other access to related external data sources. External databases and
data sources (e.g., routing looking glasses, WHOIS services, DNS, etc.) can be made available to
mPlane clients through repositories acting as gateways to these external sources, as well.

Note that this categorization is very rough: what a component can do is completely described by
its capabilities, and some components may combine properties of both probes and repositories.

1.2.3 Supervisors and Federa on

An entity which implements both the client and component interfaces can be used to build and fed-
erate domains of mPlane components. This supervisor is responsible for collecting capabilities
from a set of components, and providing capabilities based on these to its clients. Application-
speci ic algorithms at the supervisor aggregate the lower-level capabilities provided by these com-
ponents into higher-level capabilities exposed to its clients. This arrangement is shown in igure
1.4.

The set of components which respond to speci ications from a single supervisor is referred to as an
mPlane domain. Domain membership is also determined by the issuer of the certi icates identi-
fying the clients, components, and supervisor, as detailed in section 3.2.2. Within a given domain,
each client and component connects to only one supervisor. Underlyingmeasurement components
and clients may indeed participate in multiple domains, but these are separate entities from the
point of view of the architecture. Interdomain measurement is supported by federation among
supervisors: a local supervisor delegates measurements in a remote domain to that domain's su-
pervisor, as shown in igure 1.5.

In addition to capability composition and speci ication decomposition, supervisors are responsible
for client and component registration andauthentication, aswell as access control basedon identity
information provided by the session protocol (HTTPS, WebSockets, or SSH) in the general case.

Since the logic for aggregating control and data for a given application is very speci ic to that appli-
cation, note that there is no generic supervisor implementation provided with the mPlane SDK.

Plane 11 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

supervisor

client

component

n

1

mPlane Protocol

ca
pa

bi
lit

ie
s

specifications

client

component

1

m

mPlane Protocol

ca
pa

bi
lit

ie
s

specifications

Figure 1.4: Simple mPlane architecture with a supervisor

supervisor

component

client

supervisor

component

client

m
Pl
an
e

Pr
ot
oc
ol

Figure 1.5: Federation between supervisors

1.2.4 Reasoner

Within an mPlane domain, a special client known as a reasoner may control automated or semi-
automated iteration of measurements, e.g. working with a supervisor to iteratively run measure-
ments using a set of components to perform root cause analysis. While the reasoner is key to the
mPlane project, it is architecturally merely another client, though it will often be colocated with a
supervisor for implementation convenience.

Plane 12 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

1.2.5 External interfaces to mPlane en es

The mPlane protocol speci ied in this document is designed for the exchange of control messages
in an iterative measurement process, and the retrieval of low volumes of highly aggregated data,
primarily that leads to decisions about subsequent measurements and/or a inal determination.
For measurements generating large amounts of data (e.g. passive observations of high-rate links,
or high-frequency active measurements), mPlane supports indirect export. For indirect export, a
client or supervisor directs one component (generally a probe) to send results to another compo-
nent (generally a repository). This indirect export protocol is completely external to the mPlane
protocol; the client must only know that the two components support the same protocol and that
the schema of the data produced by the probe matches that accepted by the repository. The typical
example consists of passivemPlane-controlled probes exporting volumes of data (e.g., anonymized
traces, logs, statistics), to an mPlane-accessible repository out-of-band. The use of out-of-band in-
direct export is justi ied to avoid serialization overhead, and to ensure idelity and reliability of the
transfer.
For exploratory analysis of large amounts of data at a repository, it is presumed that clientswill have
additional backchanneldirect access beyond those interactionsmediated bymPlane. For instance,
a repository backed by a relational database could have a web-based graphical user interface that
interacts directly with the database.

1.3 Message types and message exchange sequences

The basic messages in the mPlane protocol are capabilities, speci ications, and results, as already
described. The full protocol contains othermessage types aswell. Withdrawals cancel capabilities
(i.e., indicate that the component is no longer capable or willing to perform a given measurement)
and interrupts cancel speci ications (i.e., indicate that the component should stop performing the
measurement). Receipts can be given in lieu of results for not-yet completed measurements or
queries, and redemptions are used to retrieve results referred to by a receipt. If a component
wants to delegate the handling of a speci ication to a different component, it sends an indirection
to the client directing it to the target component. Exceptions (not shown in igure 1.6) can be sent
by clients or components at any time to signal protocol-level errors to their peers.
In the nominal sequence, a capability leads to a speci ication leads to a result, where results may
be transmitted by some other protocol. All the paths through the sequence of messages are shown
in igure 1.6; message types are described in detail in section 2.2. In the diagram, solid lines mean a
message is sent in reply to the previous message in sequence (i.e. a component sends a capability,
and a client replies or follows with a speci ication), and dashed lines mean a message is sent as a
followup (i.e., a component sends a capability, then sends a withdrawal to cancel that capability).
Messages at the top of the diagram are sent by components, at the bottom by clients.
Separate from the sequence of messages, the mPlane protocol supports two connection establish-
ment patterns:

• Client-initiated in which clients connect directly to components at known, stable, routable
URLs. Client-initiated work lows are intended for use between clients and supervisors, for
access to repositories, and for access to probes embedded within a network infrastructure.

Plane 13 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

messages sent by components

messages sent by clients

Capability

Specification

Result

Receipt

RedemptionInterrupt

Withdrawal Indirection

Figure 1.6: Potential sequences of messages in the mPlane protocol

• Component-initiated inwhich components initiate connections to clients. Component-initiated
work lows are intended for use between components without stable routable addresses and
supervisors, e.g. for small probes on embedded devices, mobile devices, or software probes
embedded in browsers on personal computers behind network-address translators (NATs)
or irewalls which prevent a client from establishing a connection to them.

Within a given mPlane domain, these patterns can be combined (along with indirect export and
direct access) to facilitate complex interactions among clients and components according to the
requirements imposed by the application and the deployment of components in the network.

1.4 A Coopera ve measurement in an example mPlane domain

To illustrate how mPlane works within an example domain, consider igure 1.7. Here we see a
client/reasoner, a supervisor, two probes, and a repository. The probes can perform simple la-
tency and bandwidth measurements to a selected target, and send their results to the repository
and storage for analysis. The repository can compare present with past measurements, determine
whether a given target has higher latency or lower bandwidth than baseline.
To bootstrap the system, the probes and repository irst publish their capabilities to the supervisor
as shown in igure 1.7; here, each component knows the supervisor's address and establishes a
connection to initiate capability advertisement.
Each probe sends a capability (`Ce') advertising the ability to measure bandwidth and latency to a
target given that target, and to export than information to a repository via an external protocol. The
repository sends a capability (`Cc') that it can collect data matching what the probes can export, as
well as a capability (`C') advertising comparison to baseline. The supervisor registers these, then
composes higher-level capabilities based upon them.
When a client or reasoner initiates a connection to the supervisor, these composed capabilities
are advertised to it, as shown in igure 1.8. Here, the two higher-level capabilities offered by the
supervisor are ``determine if a given target is nominal compared to baseline'' and ``show the recent
measurements that deviate the most from the baseline''.

Plane 14 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

supervisor
client
interfaceCCcCeCe

repositoryprobeprobe

client/
reasoner

registration

component
interface

Figure 1.7: Capability advertisement and registration with a supervisor

supervisor
client
interface

component
interface

CCcCeCe

repositoryprobeprobe

client/
reasoner

composition

C C

Figure 1.8: Capability composition at a supervisor

Suppose a user at the client decides to determine whether latency and bandwidth from the probes
to a given target are within expected values. It sends a speci ication corresponding to the irst ca-
pability made available by the supervisor to the supervisor, which then decomposes it into speci i-
cations to the probes and repository. First, it instructs the probes to take measurements and send
them to the repository via indirect export, as shown in igure 1.9. Data export is shown as `Ex' in
this diagram, noting that it uses some external protocol other than the mPlane protocol.
After enough measurements are completed, the supervisor then queries the repository to check
that the measurements performed are within expected ranges given the history of measurements
for that target, as shown in igure 1.10. Of course, the data from the probes becomes part of the
repository's history for future queries about the target.
Note that not all interaction among components in an mPlane infrastructure must be mediated by
the supervisor. This is particularly true of large-scale repositories, where (e.g.) visualization of
large amounts of data may be done by accessing the repository's data directly using an external

Plane 15 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

supervisor
client

interfaceCCcCeCe Se Se

repositoryprobeprobe

client/
reasoner

Ex

indirect export

component
interface

C SC

splitting

Figure 1.9: Speci ication delegation to probes by a supervisor

supervisor
client

interfaceCCcCeCe S

repositoryprobeprobe

client/
reasoner

Ex

indirect export

R

result
relay

component
interface

C SC

Figure 1.10: Querying for analysis of stored results at a repository

protocol, or by having the repository produce visualizations directly and providing these via HTTP.

1.5 Integra ng measurement tools into mPlane

mPlane's lexibility and the self-descriptionofmeasurementsprovidedby the capability-speci ication-
result cycle was designed to allow a wide variety of existing measurement tools, both probes and
repositories, to be integrated into an mPlane domain. In both cases, the key to integration is to de-
ine a capability for each of the measurements the tool can perform or the queries the repository
needs to make available within an mPlane domain. Each capability has a set of parameters -- infor-
mation required to run the measurement or the query -- and a set of result columns -- information
which the measurement or query returns. The parameters and result columns make up the mea-

Plane 16 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

surement's schema, and are chosen from an extensible registry of elements. Practical details are
given in section 2.5.

1.6 From architecture to protocol specifica on

The remainder of this document builds the protocol speci ication based on this architecture from
the bottomup. First, we de ine the protocol's informationmodel from the element registry through
the types of mPlane messages and the sections they are composed of. We then de ine a concrete
representation of this information model using Javascript Object Notation (JSON, RFC 7159[2]),
and de ine bindings to HTTP over TLS as a session protocol. Finally, we show how to construct
work lows using the protocol to build up complex measurement infrastructures, and detail the re-
sponsibilities of an mPlane supervisor.

Plane 17 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2 Protocol Informa on Model

ThemPlaneprotocol ismessage-oriented, built on the representation- and session-protocol-independent
exchange of messages between clients and components. This section describes the information
model, starting from the element registry which de ines the elements from which capabilities can
be built, then detailing each type of message, and the sections that make thesemessages up. It then
provides advice on using the information model to model measurements and queries.

2.1 Element Registry

An element registrymakes up the vocabulary bywhichmPlane components and clients can express
the meaning of parameters, metadata, and result columns for mPlane statements. A registry is
represented as a JSON [2] object with the following keys:

• registry-format: currently mplane-0, determines the supported features of the registry for-
mat.

• registry-uri: the URI identifying the registry. The URI must be dereferenceable to retrieve
the canonical version of this registry.

• registry-revision: a serial number startingwith 0 and incrementedwith each revision to the
content of the registry.

• includes: a list of URLs to retrieve additional registries from. Included registries will be eval-
uated in depth- irst order, and elements with identical names will be replaced by registries
parsed later.

• elements: a list of objects, each of which has the following three keys:
– name: The name of the element.
– prim: Thenameof theprimitive typeof the element, from the list of primitives in section

2.1.2.
– desc: An English-language description of the meaning of the element.

Since the element names will be used as keys in mPlanemessages, mPlane binds to JSON, and JSON
mandates lowercase key names, element names must use only lowercase letters.
An example registry with two elements and no includes follows:

{ "registry-format": "mplane-0",
"registry-uri", "http://ict-mplane.eu/registry/core",
"registry-revision": 0,
"includes": [],
"elements": [

{ "name": "full.structured.name",
"prim": "string",
"desc": "A representation of foo..."

},
{ "name": "another.structured.name",

"prim": "string",

Plane 18 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

"desc": "A representation of bar..."
},

]
}

Fully quali ied element names consist of the element's name as an anchor after theURI fromwhich
the element came, e.g. http://ict-mplane.eu/registry/core#full.structured.name. Ele-
ments within the type registry are considered globally equal based on their fully quali ied names.
However, within a given mPlane message, elements are considered equal based on unquali ied
names.

2.1.1 Structured Element Names

To ease understanding of mPlane type registries, element names are structured by convention; that
is, an element name is made up of the following structural parts in order, separated by the dot (`.')
character:

• basename: exactly one, the name of the property the element speci ies or measures. All ele-
ments with the same basename describe the same basic property. For example, all elements
with basename `source' relate to the source of a packet, low, active measurement, etc.; and
elements with basename `delay'' relate to the measured delay of an operation.

• modi ier: zero or more, additional information differentiating elements with the same base-
name from each other. Modi iers may associate the element with a protocol layer, or a par-
ticular variety of the property named in the basename. All elements with the same basename
and modi iers refer to exactly the same property. Examples for the delay basename include
oneway and twoway, differentiating whether a delay refers to the path from the source to the
destination or from the source to the source via the destination; and icmp and tcp, describing
the protocol used to measure the delay.

• units: zero or one, present if the quantity can be measured in different units.
• aggregation: zero or one, if the property is a metric derived from multiple singleton mea-
surements. Supported aggregations are:

• min: minimum value
• max: maximum value
• mean: mean value
• sum: sum of values
• NNpct (where NN is a two-digit number 01-99): percentile
• median: shorthand for and equivalent to 50pct.
• count: count of values aggregated

WhenmappingmPlane structurednames into contexts inwhichdots have specialmeaning (e.g. SQL
column names or variable names in many programming languages), the dots may be replaced by
underscores ('_'). Whenusing external type registries (e.g. the IPFIX InformationElementRegistry),
element names are not necessarily structured.

Plane 19 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2.1.2 Primi ve Types

The mPlane protocol supports the following primitive types for elements in the type registry:

• string: a sequence of Unicode characters
• natural: an unsigned integer
• real: a real (loating-point) number
• bool: a true or false (boolean) value
• time: a timestamp, expressed in terms of UTC. The precision of the timestamp is taken to be
unambiguous based on its representation.

• address: an identi ier of a network-level entity, including an address family. The address
family is presumed to be implicit in the format of themessage, or explicitly stored. Addresses
may represent speci ic endpoints or entire networks.

• url: a uniform resource locator

2.1.3 Augmented Registry Informa on

Additional keys beyond prim, desc, and namemay appear in anmPlane registry to augment infor-
mation about each element; these are not presently used by the SDK's information model but may
be used by software built around the SDK.
Elements in the core registry at http://ict-mplane.eu/registry/coremay contain the follow-
ing augmented registry keys:

• units: If applicable, units inwhich the element is expressed; equal to the units part of a struc-
tured name if present.

• ip ix-eid: The element ID of the equivalent IPFIX (RFC 7011 [3]) Information Element.
• ip ix-pen: The SMI Private Enterprise Number of the equivalent IPFIX Information Element,
if any.

2.2 Message Types

Work lows in mPlane are built around the capability - speci ication - result cycle. Capabilities, spec-
i ications, and results are kinds of statements: a capability is a statement that a component can
perform some action (generally a measurement); a speci ication is a statement that a client would
like a component to perform the action advertised in a capability; and a result is a statement that a
component measured a given set of values at a given point in time according to a speci ication.
Other types of messages outside this nominal cycle are referred to as noti ications. Types of no-
ti ications include Withdrawals, Interrupts, Receipts, Redemptions, Indirections, and Exceptions.
These notify clients or components of conditions within the measurement infrastructure itself, as
opposed to directly containing information about measurements or observations.
Messages may also be grouped together into a single envelopemessage. Envelopes allowmultiple
messages to be representedwithin a singlemessage, for examplemultiple Results pertaining to the

Plane 20 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

same Receipt; and multiple Capabilities or Speci ications to be transferred in a single transaction
in the underlying session protocol.
The following types of messages are supported by the mPlane protocol:

2.2.1 Capability and Withdrawal

A capability is a statement of a component's ability andwillingness to performa speci ic operation,
conveyed froma component to a client. It does not represent a guarantee that the speci ic operation
can or will be performed at a speci ic point in time.
A withdrawal is a noti ication of a component's inability or unwillingness to perform a speci ic
operation. It cancels a previously advertised capability. A withdrawal can also be sent in reply to a
speci ication which attempts to invoke a capability no longer offered.

2.2.2 Specifica on and Interrupt

A speci ication is a statement that a component should perform a speci ic operation, conveyed
from a client to a component. It can be conceptually viewed as a capability whose parameters have
been illed in with values.
An interrupt is a noti ication that a component should stop performing a speci ic operation, con-
veyed from client to component. It terminates a previously sent speci ication. If the speci ication
uses indirect export, the indirect export will simply stop running. If the speci ication has pending
results, those results are returned in response to the interrupt.

2.2.3 Result

A result is a statement produced by a component that a particularmeasurementwas taken and the
givenvalueswereobserved, or that aparticular operationor analysiswasperformedanda the given
values were produced. It can be conceptually viewed as a speci ication whose result columns have
been illed in with values. Note that, in keeping with the stateless nature of the mPlane protocol, a
result contains the full set of parameters from which it was derived.
Note that not every speci icationwill lead to a result being returned; for example, in case of indirect
export, only a receipt which can be used for future interruption will be returned, as the results will
be conveyed to a third component using an external protocol.

2.2.4 Receipt and Redemp on

A receipt is returned instead of a result by a component in response to a speci icationwhich either:

• will never return results, as it initiated an indirect export, or
• will not return results immediately, as the operation producing the results will have a long
run time.

Plane 21 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Receipts have the same content speci ication they are returned for. A component may optionally
add a token section, which can be used in future redemptions or interruptions by the client. The
content of the token is an opaque string generated by the component.
A redemption is sent from a client to a component for a previously received receipt to attempt
to retrieve delayed results. It may contain only the token section, or all sections of the received
receipt.

2.2.5 Indirec on

An indirection is returned instead of a result by a component to indicate that the client should
contact another component for the desired result.

2.2.6 Excep on

Anexception is sent froma client to a component or froma component to a client to signal an excep-
tional conditionwithin the infrastructure itself. They are notmeant to signal exceptional conditions
within ameasurement performed by a component; see section 4.4 for more. An exception contains
only two sections: an optional token referring back to the message to which the exception is re-
lated (if any), and amessage section containing free-form, preferably human readable information
about the exception.

2.2.7 Envelope

An envelope is used to contain other messages. Message containment is necessary in contexts
in which multiple mPlane messages must be grouped into a single transaction in the underlying
session protocol. It is legal to group any kind of message, and to mix messages of different types, in
an envelope. However, in the current revision of the protocol, envelopes are primarily intended to
be used for three distinct purposes:

• To return multiple results for a single receipt or speci ication if appropriate (e.g., if a speci i-
cation has run repeated instances of a measurement on a schedule).

• To group multiple capabilities together within a single message (e.g., all the capabilities a
given component has).

• To group multiple speci ications into a single message (e.g., to simultaneously send a mea-
surement speci ication along with a callback control speci ication).

2.3 Message Sec ons

Each message is made up of sections, as described in the subsection below. The following table
shows the presence of each of these sections in each of the message types supported by mPlane:
``req.'' means the section is required, ``opt.'' means it is optional; see the subsection on each mes-
sage section for details.

Plane 22 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Section Capability Speci ication Result Receipt Envelope
Verb req. req. req. req.
Content Type req.
version req. req. req. req. req.
registry req. req. req. opt.
label opt. opt. opt. opt. opt.
when req. req. req. req.
parameters req./token req. req. opt./token
metadata opt./token opt. opt. opt./token
results req./token req. req. opt./token
resultvalues req.
export opt. opt. opt. opt.
link opt. opt.
token opt. opt. opt. opt. opt.
contents req.

Withdrawals and indirections take the same sections as capabilities; and redemptions and inter-
rupts take the same sections as receipts. Exceptions are not shown in this table.

2.3.1 Message Type and Verb

The verb is the action to be performed by the component. The following verbs are supported by
the base mPlane protocol, but arbitrary verbs may be speci ied by applications:

• measure: Perform a measurement
• query: Query a database about a past measurement
• collect: Receive results via indirect export
• callback: Used for callback control in component-initiated work lows

In the JSON representation of mPlane messages, the verb is the value of the key corresponding to
the message's type, represented as a lowercase string (e.g. capability, specification, result
and so on).
Roughly speaking, probes implement measure capabilities, and repositories implement query and
collect capabilities. Of course, any single component can implement capabilitieswith anynumber
of different verbs.
Within the SDK, the primary difference between measure and query is that the temporal scope of
a measure speci ication is taken to refer to when the measurement should be scheduled, while the
temporal scope of a query speci ication is taken to refer to the timewindow (in the past) of a query.
Envelopes have no verb; instead, the value of the envelope key is the kind ofmessages the envelope
contains, or message if the envelope contains a mixture of different unspeci ied kinds of messages.

Plane 23 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2.3.2 Version

The version section contains the version of the mPlane protocol to which the message conforms,
as an integer serially incremented with each new protocol revision. This section is required in all
messages. This document describes version 1 of the protocol.

2.3.3 Registry

The registry section contains the URL identifying the element registry used by this message, and
from which the registry can be retrieved. This section is required in all messages containing ele-
ment names (statements, and receipts/redemptions/interrupts not using tokens for identi ication;
see the token section). The default core registry for mPlane is identi ied by:
http://ict-mplane.eu/registry/core.

2.3.4 Label

The label section of a statement contains a human-readable label identifying it, intended solely for
usewhen displaying information aboutmessages in user interfaces. Results, receipts, redemptions,
and interrupts inherit their label from the speci ication from which they follow; otherwise, client
and component software can arbitrarily assign labels . The use of labels is optional in all messages,
but as labels do greatly ease human-readability of arbitrary messages within user interfaces, their
use is recommended.
mPlane clients and components should never use the label as a unique identi ier for a message, or
assume any semantic meaning in the label -- the test of message equality and relatedness is always
based upon the schema and values as in section 2.4.

2.3.5 Temporal Scope (When)

The when section of a statement contains its temporal scope.
A temporal scope refers to when a measurement can be run (in a capability), when it should be
run (in a speci ication), or when it was run (in a result). Temporal scopes can be either absolute or
relative, and may have an optional period, referring to how often single measurements should be
taken.
The general form of a temporal scope (in BNF-like syntax) is as follows:

simple-when = <singleton> | # A single point in time
<range> | # A range between two points in time
<range> ' / ' <duration> # A range with a period

singleton = <iso8601> | # absolute singleton
'now' # relative singleton

Plane 24 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

range = <iso8601> ' ... ' <iso8601> | # absolute range
<iso8601> ' + ' <duration> | # relative range
'now' ' ... ' <iso8061> | # definite future
'now' ' + ' <duration> | # relative future
<iso8601> ' ... ' 'now' | # definite past
'past ... now' | # indefinite past
'now ... future' | # indefinite future
<iso8601> ' ... ' 'future' | # absolute indefinite future
'past ... future' | # forever

duration = [<n> 'd'] # days
[<n> 'h'] # hours
[<n> 'm'] # minute
[<n> 's'] # seconds

iso8601 = <n> '-' <n> '-' <n> [' ' <n> ':' <n> ':' <n> ['.' <n>]

All absolute times are always given in UTC and expressed in ISO8601 format with variable preci-
sion.
In capabilities, if a period is given it represents theminimumperiod supportedby themeasurement;
this is done to allow rate limiting. If noperiod is given, themeasurement is not periodic. A capability
with a period can only be ful illed by a speci ication with period greater than or equal to the period
in the capability. Conversely, a capability without a period can only be ful illed by a speci ication
without a period.
Within a result, only absolute ranges are allowed within the temporal scope, and refers to the time
range of the measurements contributing to the result. Note that the use of absolute times here
implies that the components and clients within a domain should have relatively well-synchronized
clocks, e.g., to be synchronizedusing theNetworkTimeProtocol (RFC5905 [10]) in order for results
to be temporally meaningful.
So, for example, an absolute range in time might be expressed as:
when: 2009-02-20 13:02:15 ... 2014-04-04 04:27:19

A relative range covering three and a half days might be:
when: 2009-04-04 04:00:00 + 3d12h

In a speci ication for running an immediate measurement for three hours every seven and a half
minutes:
when: now + 3h / 7m30s

In a capability noting that a repository can answer questions about the past:
when: past ... now.
In a speci ication requesting that a measurement run from a speci ied point in time until inter-
rupted:
when: 2017-11-23 18:30:00 ... future

Plane 25 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2.3.5.1 Repea ng Measurements

Within speci ications, the temporal scope can be extended to support repeated measurement. A
repeated speci ication is conceptually equivalent to a speci ication that is sent from the client to the
component once, then retained at the component and initiated multiple times.
The general form of a temporal scope in a repeated speci ication is as follows (BNF-like syntax):

repeated-when = # implicit inner scope of now
'repeat' <outer-when> |
simple range/period
'repeat' <outer-when> '{' <inner-when> '}' |
with crontab
'repeat' <range> 'cron' <crontab> '{' <inner-when> '}'

outer-when = <range> ' / ' <duration>

inner-when = 'now' |
'now' ' + ' <duration> |
'now' ' + ' <duration> / <duration>

crontab = <seconds> <minutes> <hours> <days-of-month> <days-of-week> <months>

seconds = '*' | <seconds-or-minutes-list>
minutes = '*' | <seconds-or-minutes-list>
seconds-or-minutes-list = <n> [',' <seconds-or-minutes-list>] # 0<=n<60

hours = '*' | <hours-list>
hours-list = <n> [',' <hour-list>] # 0<=n<24

days-of-month = '*' | <days-of-month-list>
days-of-month-list = <n> [',' <days-of-month-list>] # 0<n<=31

days-of-week = '*' | <days-of-week-list>
days-of-week-list = <n> [',' <days-of-week-list>] # 0<=n<=7

0 = Sunday, 1 = Monday, ..., 7 = Sunday

months = '*' | <months-list>
months-list = <n> [',' <months-list>] # 0<n<=12

when = <simple-when> | <repeated-when>

A repeated speci ication consists of an outer temporal speci ication that governs how often and for
how long the speci ication will repeat, and an inner temporal speci ication which applies to each
individual repetition. The inner temporal speci ication must always be relative to the current time,
i.e. the time of initiated of the repeated speci ication. If the inner temporal speci ication is omitted,
the speci ication is presumed to have the relative singleton temporal scope of now.

Plane 26 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

A repeated speci ication can have a cron-like schedule. In this case the outer temporal speci ication
only consists of a range scope to determine the time frame in which the cron-like schedule is valid.
The crontab states the seconds, minutes, hours, days of the week, days of the month, and months
at which the speci ication will repeat. An asterisk means to repeat at all legal values for that ield.
The speci ication is only repeated if all ields match.
Submitting a repeated speci ication will still result in a single receipt, or in multiple results. These
multiple results, resulting either directly froma single repeated speci ication, or from the a redemp-
tion of a receipt resulting from a repeated speci ication, are grouped in an envelope message.
For example, a repeated speci ication to take measurements every second for ive minutes, repeat-
ing once an hour inde initely would be:
when: repeat now ... future / 1h { now + 5m / 1s }

This repeated speci ication is equivalent to the repeated submission of the same speci ication with
a temporal scope of when: { now + 5m / 1s } once an hour until the speci ication is cancelled
with an interrupt noti ication.
As a second example, a repeated speci ication to takemeasurements every second for ive minutes,
repeating every half hour within a speci ic timeframe would be:
when: repeat 2014-01-01 13:00:00 ... 2014-06-01 14:00:00 / 30m { now + 5m / 1s }

Likewise, this repeated speci ication is equivalent to the submission of the same speci ication with
a temporal scope of when: { now + 5m / 1s } at 2014-01-01 13:00:00, 2014-01-01 13:30:00,
2014-01-01 14:00:00, 2014-01-01 14:30:00, and so on =, until (and including) 2014-06-01
13:30:00 and 2014-06-01 14:00:00.
A repeated speci ication taking singleton measurements every hour inde initely with an implicit
inner temporal speci ication:
when: repeat now ... future / 1h

equivalent to submitting a speci ication with the temporal scope now hourly forever until inter-
rupted.
A crontab speci ication which is repeated on the irst Monday of eachmonthmeasuring every hour
on that day for 5minuteswould be: when: repeat now ... future cron 0 0 * 1,2,3,4,5,6,7
1 * { now + 5m }

A repeated speci ication to take measurements each day of the year at midnight would be: when:
repeat now ... future cron 0 0 0 * * *

2.3.6 Parameters

The parameters section of a message contains an ordered list of the parameters for a given mea-
surement: values which must be provided by a client to a component in a speci ication to convey
the speci ics of themeasurement to perform. Each parameter in anmPlanemessage is a key-value
pair, where the key is the name of an element from the element registry. In speci ications and
results, the value is the value of the parameter. In capabilities, the value is a constraint on the
possible values the component will accept for the parameter in a subsequent speci ication.
Four kinds of constraints are currently supported for mPlane parameters:

Plane 27 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

• No constraint: all values are allowed. This is signi ied by the special constraint string `*'.
• Single value constraint: only a single value is allowed. This is intended for use for capabilities
which are conceivably con igurable, but for which a given component only supports a sin-
gle value for a given parameter due to its own out-of-band con iguration or the permissions
of the client for which the capability is valid. For example, the source address of an active
measurement of a single-homed probe might be given as `source.ip4: 192.0.2.19'.

• Set constraint: multiple values are allowed, and are explicitly listed, separated by the `,' char-
acter. For example, a multi-homed probe allowing two potential source addresses on two
different networks might be given as `source.ip4: 192.0.2.19, 192.0.3.21'.

• Range constraint: multiple values are allowed, between two ordered values, separated by the
special string `...'. Range constraints are inclusive. A measurement allowing a restricted
range of source ports might be expressed as `source.port: 32768 ... 65535'

• Pre ix constraint: multiple values are allowed within a single network, as speci ied by a net-
work address and a pre ix. A pre ix constraint may be satis ied by any network of host ad-
dress completely containedwithin the pre ix. An example allowing probing of any hostwithin
a given /24 might be `destination.ip4: 192.0.2.0/24'.

Parameter and constraint values must be a representation of an instance of the primitive type of
the associated element.

2.3.7 Metadata

The metadata section containsmeasurementmetadata: key-value pairs associatedwith a capabil-
ity inherited by its speci ication and results. Metadata can also be thought of as immutable parame-
ters. This is intended to represent information which can be used tomake decisions at the client as
to the applicability of a given capability (e.g. details of algorithms used or implementation-speci ic
information) as well as to make adjustments at post-measurement analysis time when contained
within results.
An example metadata element might be `measurement.identifier: qof', which identi ies the
underlying tool taking measurements, such that later analysis can correct for known peculiarities
in the implementation of the tool. Another example might be `location.longitude = 8.55272',
which while not particularly useful for analysis purposes, can be used to draw maps of measure-
ments.

2.3.8 Result Columns and Values

Results are represented using two sections: results which identify the elements to be returned
by the measurement, and resultvalues which contains the actual values. results appear in all
statements, while resultvalues appear only in result messages.
The results section contains an ordered list of result columns for a given measurement: names
of elements which will be returned by the measurement. The result columns are identi ied by the
names of the elements from the element registry.
The resultvalues section contains an ordered list of ordered lists (or, rather, a two dimensional
array) of values of results for a given measurement, in row-major order. The columns in the result

Plane 28 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

values appear in the same order as the columns in the results section.
Values for each column must be a representation of an instance of the primitive type of the associ-
ated result column element.

2.3.9 Export

The export section contains a URL or partial URL for indirect export. Its meaning depends on the
kind and verb of the message:

• For capabilities with the collect verb, the export section contains the URL of the collector
which can accept indirect export for the schema de ined by the parameters and results
sections of the capability, using the protocol identi ied by the URL's schema.

• For capabilities with any verb other than collect, the export section contains either the
URL of a collector to which the component can indirectly export results, or a URL schema
identifying a protocol over which the component can export to arbitrary collectors.

• For speci icationswith any verb other than collect, the export section contains theURL of a
collector to which the component should indirectly export results. A receipt will be returned
for such speci ications.

If a component can indirectly export or indirectly collect using multiple protocols, each of those
protocols must be identi ied by its own capability; capabilities with an export section can only be
used by speci ications with a matching export section.
The special export schema mplane-https implies that the exporter will POST mPlane result mes-
sages to the collector at the speci ied URL. All other export schemas are application-speci ic, and
the mPlane protocol implementation is only responsible for ensuring the schemas and protocol
identi iers match between collector and exporter.

2.3.10 Link

The link section contains the URL to which messages in the next step in the work low (i.e. a spec-
i ication for a capability, a result or receipt for a speci ication) can be sent, providing indirection.
The link URLmust currently have the schema mplane-https, and refers to posting of messages via
HTTP POST.
If present in a capability, the client must POST speci ications for the given capability to the com-
ponent at the URL given in order to use the capability, as opposed to simply posting them to the
known or assumed URL for a component. If present in a speci ication, the component must POST
results for the given speci ication back to the client at the URL given. See the section on work lows
below for details.
If present in an indirection message returned for a speci ication by a component, the client must
send the speci ication to the component at the URL given in the link in order to retrieve results or
initiate measurement.

Plane 29 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

2.3.11 Token

The token section contains an arbitrary string bywhich amessagemay be identi ied in subsequent
communications in an abbreviated fashion. Unlike labels, tokens are not necessarily intended to
be human-readable; instead, they provide a way to reduce redundancy on the wire by replacing
the parameters, metadata, and results sections in messages within a work low, at the expense of
requiring more state at clients and components. Their use is optional.
Tokens are scoped to the association between the component and client in which they are irst
created; i.e., at a component, the token will be associated with the client's identity, and vice-versa
at a client. Tokens should be created with suf icient entropy to avoid collision from independent
processes at the same client or token reuse in the case of client or component state loss at restart.
If a capability contains a token, it may be subsequently withdrawn by the same component using a
withdrawal containing the token instead of the parameters, metadata, and results sections.
If a speci ication contains a token, it may be answered by the component with a receipt containing
the token instead of the parameters, metadata, and results sections. A speci ication containing a to-
kenmay likewise be interrupted by the client with an interrupt containing the token. A component
must not answer a speci ication with a token with a receipt or result containing a different token,
but the token may be omitted in subsequent receipts and results.
If a receipt contains a token, it may be redeemed by the same client using a redemption containing
the token instead of the parameters, metadata, and results sections.
When grouping multiple results from a repeating speci ication into an envelope, the envelope may
contain the token of the repeating speci ication.

2.3.12 Contents

The contents section appears only in envelopes, and is an ordered list of messages. If the enve-
lope's kind identi ies amessage kind, the contentsmay contain onlymessages of the speci ied kind,
otherwise if the kind is message, the contents may contain a mix of any kind of message.

2.4 Message uniqueness and idempotence

Messages in the mPlane protocol are intended to support state distribution: capabilities, speci-
ications, and results are meant to be complete declarations of the state of a given measurement.
In order for this to hold, it must be possible for messages to be uniquely identi iable, such that
duplicate messages can be recognized. With one important exception (i.e., speci ications with rel-
ative temporal scopes), messages are idempotent: the receipt of a duplicate message at a client or
component is a null operation.

2.4.1 Message schema

The combination of elements in the parameters and results sections, together with the registry
fromwhich these elements are drawn, is referred to as a message's schema. The schema of a mea-

Plane 30 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

surement can be loosely thought of as the de inition of the table, rows of which the message repre-
sents.
The schema contributes not only to the identity of amessage, but also to the semantic interpretation
of the parameter and result values. The meanings of element values in mPlane are dependent on
the other elements present in the message; in other words, the key to interpreting an mPlane mes-
sage is that the unit of semantic identity is a message. For example, the element `destination.ip4'
as a parameter means ``the target of a given active measurement'' when together with elements
describing an active metric (e.g. `delay.twoway.icmp.us'), but ``the destination of the packets in
a low'' when together with other elements in result columns describing a passively-observed low.
The interpretation of the semantics of an entire message is application-speci ic. The protocol does
not forbid the transmissionofmessages representing semanticallymeaningless or ambiguous schemas.

2.4.2 Message iden ty

A message's identity is composed of its schema, together with its temporal scope, metadata, pa-
rameter values, and indirect export properties. Concretely, the full content of the registry, when,
parameters, metadata, results, andexport sections taken together comprise themessage's iden-
tity.
One convenience feature complicates this somewhat: when the temporal scope is not absolute,mul-
tiple speci ications may have the same literal temporal scope but refer to different measurements.
In this case, the current time at the client or component when a message is invoked must be taken
as part of the message's identity as well. Implementations may use hashes over the values of the
message's identity sections to uniquely identify messages; e.g. to generate message tokens.

2.5 Designing measurement and repository schemas

As noted, the key to integrating ameasurement tool into anmPlane infrastructure is properly de in-
ing the schemas for the measurements and queries it performs, then de ining those schemas in
terms of mPlane capabilities. Speci ications and results follow naturally from capabilities, and
the mPlane SDK allows Python methods to be bound to capabilities in order to execute them. A
schema should be de ined such that the set of parameters, the set of result columns, and the verb
together naturally and uniquely de ine the measurement or the query being performed. For sim-
ple metrics, this is achieved by encoding the entire meaning of the metric in its name. For exam-
ple, delay.twoway.icmp.us as a result column together with source.ip4 and destination.ip4
as parameters uniquely de ines a single ping measurement, measured via ICMP, expressed in mi-
croseconds.
Aggregatemeasurements arede inedby returningmetricswith aggregations, e.g. delay.twoway.icmp.min.us,
delay.twoway.icmp.max.us, delay.twoway.icmp.mean.us, anddelay.twoway.icmp.count.us
as result columns represent aggregate ping measurements with multiple samples.
Note thatmPlane resultsmay containmultiple rows. In this case, the parameter values in the result,
taken from the speci ication, apply to all rows. In this case, the rows are generally differentiated by
the values in one or more result columns; for example, the time element can be used to represent
time series, or the hops.ip different elements along a path between source and destination, as in

Plane 31 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

a traceroute measurement.
Formeasurements taken instantaneously, the verb measure should be used; for direct queries from
repositories, the verb query should be used. Other actions that cannot be differentiated by schema
alone should be differentiated by a custom verb.
When integrating a repository into anmPlane infrastructure, only a subset of the queries the repos-
itory can performwill generally be exposed via themPlane interface. Consider a generic repository
which provides an SQL interface for querying data; wrapping the entire set of possible queries in
speci ic capabilities would be impossible, while providing direct access to the underlying SQL (for
instance, by creating a custom registry with a query.sql string element to be used as a parameter)
would make it impossible to differentiate capabilities by schema (thereby making the interoper-
ability bene its of mPlane integration pointless). Instead, speci ic queries to be used by clients in
concert with capabilities provided by other components are each wrapped within a separate capa-
bility, analogous to stored procedure programming in many database engines. Of course, clients
which do speak the precise dialect of SQL necessary can integrate directly with the repository sep-
arate from the capabilities provided over mPlane.

Plane 32 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

3 Representa ons and Session Protocols

The mPlane protocol is built atop an abstract data model in order to support multiple representa-
tions and session protocols. The canonical representation supported by the present SDK involves
JSON [2] objects transported via HTTP (RFC 7230 [6]) over TLS (RFC 5246 [4]) (commonly known
as HTTPS).

3.1 JSON representa on

In the JSON representation, anmPlanemessage is a JSON object, mapping sections by name to their
contents. The name of the message type is a special section key, which maps to the message's verb,
or to the message's content type in the case of an envelope.
Each section name key in the object has a value represented in JSON as follows:

• version : an integer identifying the mPlane protocol version used by the message.
• registry : a URL identifying the registry from which element names are taken.
• label : an arbitrary string.
• when : a string containing a temporal scope, as described in section 2.3.5.
• parameters : a JSON object mapping (non-quali ied) element names, either to constraints or
to parameter values, as appropriate, and as described in section 2.3.6.

• metadata : a JSON object mapping (non-quali ied) element names to metadata values.
• results : an array of element names.
• resultvalues : an array of arrays of element values in row major order, where each row
array contains values in the same order as the element names in the results section.

• export : a URL for indirect export.
• link : a URL for message indirection.
• token : an arbitrary string.
• contents : an array of objects containing messages.

3.1.1 Textual representa ons of element values

Each primitive type is represented as a value in JSON as follows, following the Textual Representa-
tion of IPFIX Abstract Data Types de ined in RFC7373 [11].
Natural and real values are represented in JSON using native JSON representation for numbers.
Booleans are represented by the reserved words true and false.
Strings and URLs are represented as JSON strings subject to JSON escaping rules.
Addresses are represented as dotted quads for IPv4 addresses as theywould be inURLs, and canon-
ical IPv6 textual addresses as in section 2.2 of RFC 4291 [7] as updated by section 4 of RFC 5952 [8].
When representing networks, addresses may be suf ixed as in CIDR notation, with a `/' character
followed by the mask length in bits n, provided that the least signi icant 32−n or 128−n bits of the
address are zero, for IPv4 and IPv6 respectively.

Plane 33 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Timestamps are represented in RFC 3339 [9] and ISO 8601, with two important differences. First,
all mPlane timestamps are expressed in terms of UTC, so time zone offsets are neither required nor
supported, and are always taken to be 0. Second, fractional seconds are representedwith a variable
number of digits after an optional decimal point after the fraction.

3.1.2 Example mPlane capabili es and specifica ons

To illustrate howmPlanemessages are encoded, we consider irst two capabilities for a very simple
application -- ping -- as mPlane JSON capabilities. The following capability states that the compo-
nent can measure ICMP two-way delay from 192.0.2.19 to anywhere on the IPv4 Internet, with a
minimum delay between individual pings of 1 second, returning aggregate statistics:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate",
"when": "now ... future / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

In contrast, the following capabilitywould return timestamped singletondelaymeasurements given
the same parameters:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-singletons",
"when": "now ... future / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*"},
"results": ["time",

"delay.twoway.icmp.us"]
}

A speci ication is merely a capability with illed-in parameters, e.g.:

{

Plane 34 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

"specification": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate-three-thirtythree",
"token": "0f31c9033f8fce0c9be41d4942c276e4",
"when": "now + 30s / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.3.33"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

Results are merely speci ications with result values illed in and an absolute temporal scope:

{
"result": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate-three-thirtythree",
"token": "0f31c9033f8fce0c9be41d4942c276e4",
"when": "2014-08-25 14:51:02.623 ... 2014-08-25 14:51:32.701 / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.3.33"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"],

"resultvalues": [[23901,
29833,
27619,
66002,
30]]

}

More complex measurements can be modeled by mapping them back to tables with multiple rows.
For example, a traceroute capability would be de ined as follows:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "traceroute",

Plane 35 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

"when": "now ... future / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*",
"hops.ip.max": "0..32"},

"results": ["time",
"intermediate.ip4",
"hops.ip",
"delay.twoway.icmp.us"]

}

with a corresponding speci ication:

{
"specification": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "traceroute-three-thirtythree",
"token": "2f4123588b276470b3641297ae85376a",
"when": "now",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.3.33",
"hops.ip.max": 32},

"results": ["time",
"intermediate.ip4",
"hops.ip",
"delay.twoway.icmp.us"]

}

and an example result:

{
"result": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "traceroute-three-thirtythree",
"token": "2f4123588b276470b3641297ae85376a,
"when": "2014-08-25 14:53:11.019 ... 2014-08-25 14:53:12.765",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.3.33",
"hops.ip.max": 32},

"results": ["time",
"intermediate.ip4",
"hops.ip",
"delay.twoway.icmp.us"],

"resultvalues": [["2014-08-25 14:53:11.019", "192.0.2.1", 1, 162],
["2014-08-25 14:53:11.220", "217.147.223.101", 2, 15074],

Plane 36 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

["2014-08-25 14:53:11.570", "77.109.135.193", 3, 30093],
["2014-08-25 14:53:12.091", "77.109.135.34", 4, 34979],
["2014-08-25 14:53:12.310", "192.0.3.1", 5, 36120],
["2014-08-25 14:53:12.765", "192.0.3.33", 6, 36202]

]

}

Indirect export to a repository with subsequent query requires three capabilities: one in which
the repository advertises its ability to accept data over a given external protocol, one in which the
probe advertises its ability to export data of the same type using that protocol, and one inwhich the
repository advertises its ability to answer queries about the stored data. Returning to the aggregate
pingmeasurement, irst let's consider a repositorywhich can accept thesemeasurements via direct
POST of mPlane result messages:

{
"capability": "collect",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate-collect",
"when": "past ... future",
"export": "mplane-https://repository.example.com:4343/result",
"parameters": {"source.ip4": "*",

"destination.ip4": "*"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

This capability states that the repository athttps://repository.example.com:4343/resultwill
accept mPlane result messages matching the speci ied schema, without any limitations on time.
Note that this schema matches that of the export capability provided by the probe:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate-export",
"when": "now ... future / 1s",
"export": "mplane-https",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",

Plane 37 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

which differs only from the previous probe capability in that it states that results can be exported
via the mplane-https protocol. Subsequent queries can be sent to the repository in response to
the query capability:

{
"capability": "query",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate-query",
"when": "past ... future",
"link": "mplane-https://repository.example.com:4343/specification",
"parameters": {"source.ip4": "*",

"destination.ip4": "*"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

3.2 mPlane over HTTPS

The default session protocol for mPlane messages is HTTP over TLS with mandatory mutual au-
thentication. This grants con identiality and integrity to the exchange of mPlanemessages through
a link security approach, and is transparent to the client. HTTPover TLSwas chosen in part because
of its ubiquitous implementation on many platforms.
An mPlane component may act either as a TLS server or a TLS client, depending on the work low.
When an mPlane client initiates a connection to a component, it acts as a TLS client, and must
present a client certi icate, which the component will verify against its allowable clients andmap to
an internal identity for making access control decisions before proceeding. The component, on the
other hand, acts as a TLS server, and must present a server certi icate, which the client will verify
against its accepted certi icates for the component before proceeding. When an mPlane compo-
nent initiates a connection to a client (or, more commonly, the client interface of a supervisor), this
arrangement is reversed: the component acts as a TLS client, the client as a TLS server, and mu-
tual authentication is still mandatory. The mPlane client or component has an identity which is
algorithmically derived from it's certi icate's Distinguished Name (DN).
mPlane envisions a bidirectional message channel; however, unlikeWebSockets and SSH described
in the next subsections, HTTPS is not a bidirectional protocol. This makes it necessary to specify
mappings between this bidirectional message channel and the sequence of HTTPS requests and

Plane 38 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

responses for each deployment scenario. These mappings are given in section 4. Note that in a
given mPlane domain, any or all of these mappings may be used simultaneously.
When sending mPlane messages over HTTPS, the Content-Type of the message indicates the mes-
sage representation. TheMIME Content-Type formPlanemessages using JSON representation over
HTTPS is application/x-mplane+json. When sending exceptions in HTTP response bodies, the
response should contain an appropriate 400 (Client Error) or 500 (Server Error) response code.
Whensending indirections, the response should contain anappropriate300 (Redirection) response
code. Otherwise, the response should contain response code 200 OK.

3.2.1 mPlane PKI for HTTPS

The clients and components within an mPlane domain generally share a single certi icate issuer,
speci ic to a single mPlane domain. Issuing a certi icate to a client or component then grants it
membershipwithin the domain. Any client or componentwithin the domain can then communicate
with components and clients within that domain. In a domain containing a supervisor, all clients
and componentswithin the domain can connect to the supervisor. This is necessary to scalemPlane
domains to large numbers of clients and componentswithout needing to speci ically con igure each
client and component identity at the supervisor.
In the case of interdomain federation, where supervisors connect to each other, each supervisorwill
have its own issuer. In this case, each supervisor must be con igured to trust each remote domain's
issuer, but only to identify that domain's supervisor. This compartmentalization is necessary to
keep one domain from authorizing components and clients within another domain.

3.2.2 Access control in HTTPS

For components with simple authorization policies (e.g., many probes), the ability to establish a
connection implies veri ication of a client certi icate valid within the domain, and further implies
authorization to continuewith any capability offered by the component. Conversely, in component-
initiatedwork lows (see section4.2), the ability of a component to connect to the supervisor implies
that the supervisor will trust capabilities from that component.
For components with more complex policies (e.g., many repositories), an identity based on the DN
of the peer's certi icate is mapped to an internal identity on which access control decisions can be
made. For access control purposes, the identity of an mPlane client or component is based on the
DistinguishedNameextracted from the certi icate, which uniquely and securely identi ies the entity
carrying it.
In an mPlane domain containing a supervisor, each component trusts its supervisor completely,
and accepts every message that can be identi ied as coming from the supervisor. Access control
enforcement takes place on the supervisor, using a RBAC approach: an identity based on the DN
extracted from their certi icate of the clients is mapped to a role. Each role has access only to a
subset of the whole set of capabilities provided by that to a supervisor, as composed from the capa-
bilities offered by the associated components, according to its privileges. Therefore, any client will
only have access to capabilities at the supervisor that it is authorized to execute. The same controls
are enforced on speci ications.

Plane 39 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

3.2.3 Paths in mPlane link and export URLs

In general, when connecting to a component for the irst time, a client or supervisor will have been
con igured with a URL from which to retrieve capabilities. Conversely, when connecting to a client
or supervisor for the irst time, a component will have discovered or been con igured with a URL
to which to post capabilities. From there, every capability retrieved by a client should have a link
section to which to POST speci ications, and every speci ication retrieved by a component should
have a link section to which to POST results.

However, in cases inwhich only an address (and not a full URL) is discoverable, given the ease of dif-
ferentiating message handing in many web application frameworks by URL, mPlane HTTP clients
and components can use the following convention: If a client can only discover a component's ad-
dress, it should GET /capabilities to get that component's capabilities. If a client posts a speci-
ication for a capability that does not contain a link to a component, and only has that component's
address, it should POST the speci ication to /specification. If a component wants to return re-
sults to a client and only has the client's address, and the corresponding speci ication does not have
a link, it should POST the result to /result.

Additional path information can also be used in link and export section URLs to convey an implicit
authorization from one component to another via a supervisor. Consider a repository which only
wants to accept data from probes which a trusted supervisor has told to export to it. While the
probes and repository share a domain by certi icate issuer, the repository can further restrict ac-
cess by placing a cryptographically random token in the export URL in the capability it gives to the
supervisor e.g.:

mplane-https://repository.example.com:4343/4e749ecb64d8dd6be986de03bebe/result.

In this case, only components explicitly delegated by the supervisor can export to the repository.
The same pattern can be used to delegate posting of speci ications and results securely.

3.3 mPlane over WebSockets over TLS

Though not presently implemented by the SDK, the mPlane protocol speci ication is designed such
that it can also use the WebSockets protocol as speci ied in RFC 6455 [5] as a session layer. Once
an WebSockets connection is established, mPlane messages can be exchanged bidirectionally over
the channel. A client may establish a connection to a component, or a component to a client, as
required for a given application.

Access control in WebSockets is performed as in the HTTPS case: both clients and components are
identi ied by certi icates, identities derived from certi icate DN, and domainmembership is de ined
by certi icate issuer.

Implementation and further speci ication of WebSockets as a session layer is a matter for future
work. Though WebSockets is a better it for the bidirectional nature of the mPlane protocol than
HTTPS, the latter was chosen as mandatory to implement given the ubiquity of interoperable im-
plementations of it for a diverse set of platforms. We suspect the situation with WebSockets will
improve as implementations mature.

Plane 40 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

3.4 mPlane over SSH

Though not presently implemented by the SDK, the mPlane protocol speci ication is designed such
that it can also use the Secure Shell (SSH) protocol as a session layer. In the SSH binding, a connec-
tion initiator (SSH client) identi ies itself with an RSA, DSA, or ECDSA public key, which is bound
to a speci ic identity, and the connection responder (SSH server) identi ies itself with a host pub-
lic key. Once an SSH connection is established, mPlane messages can be exchanged bidirectionally
over the channel.
When using SSH as a session layer, clients and components are identi ied by SSH keys. SSH keys are
not very human-readable identi iers, and as suchmust bemapped to identi iers at each component,
client, and supervisor, onwhich roles can be assigned and access control decisionsmade. Addition-
ally, SSH keys are not signed by an issuer, so there is no PKI-based de inition of membership within
a domain as with HTTPS. The need to speci ically manage keys for every client and component, and
the mappings to identities used in RBAC, will tend to limit the use of SSH to small domains.
Implementation and further speci ication of SSH as a session layer is a matter for future work. SSH
was originally chosen as a possible session protocol for small domains, in order to save the over-
head of building a PKI; however, implementation experience has shown that managing SSH keys
manually has little administrative overhead advantage over using a small PKI with an algorithmic
mapping from subject distinguished names to access control identities.

Plane 41 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

4 Workflows in HTTPS

Asnotedabove,mPlaneprotocol supports threepatternsofwork low: client-initiated, component-
initiated, and indirect export. These work low patterns can be combined into complex interac-
tions among clients and components in an mPlane infrastructure. In the subsections below, we
illustrate these work lows as they operate over HTTPS. Operation overWebSockets or SSH is much
simpler: since the session protocol in these cases provides a bidirectional channel for message
exchange, so the message sender and message exchange initiator are independent from the con-
nection initiator, and callback control and capability discovery as described here are unnecessary.
In this igures in this section, the following symbols have the following meanings:

Symbol Description
C Capability
Ccb Callback Capability
Ce Export Capability
Cc Collect Capability
S Speci ication
Scb Callback Speci ication
Se Export Speci ication
R Result
Rc Receipt
Rd Redemption
Ex External protocol for indirect export
I Interrupt

Colors are as elsewhere in the document: blue for capabilities and capability-relatedmessages, red
for speci ications, and black for results.

4.1 Client-Ini ated

Client-initiatedwork lowsare appropriate for stationary components, i.e., thosewith stable, routable
addresses, which can therefore act as HTTPS servers. This is generally the case for supervisors,
large repositories, repositories acting as gateways to external data sources, and certain large-scale
or public probes. The client-initiated pattern is illustrated in igure 4.1.
Here, the client opens an HTTPS connection the the component, and GETs a capability message, or
an envelope containing capability messages, at a knownURL. It then subsequently uses these capa-
bilities by POSTing a speci ication, either to a known URL or to the URL given in the link section of
the capability. The HTTP response to the POSTed speci ication contains either a result directly, or
contains a receipt which can be redeemed later by POSTing a redemption to the component. This
latter case is illustrated in igure 4.2.
In a client-initiated work lowwith a delayed result, the client is responsible for polling the compo-
nentwith a redemption at the appropriate time. Formeasurements (i.e. speci icationswith the verb
`measure'), this time is known as it is de ined by the end of the temporal scope for the speci ication.

Plane 42 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

ComponentClient

C

S POST
S

R
R

C
GET

Figure 4.1: Client-initiated work low

ComponentClient

C

S POST
S

Rc

Rc

Rd
Rd

R
R

POST

C
GET

Figure 4.2: Client-initiated work low with delayed result

Note that in client-initiatedwork lows, clientsmay store capabilities fromcomponents for later use:
theremay be a signi icant delay between retrieval of capabilities and transmission of speci ications
following from those capabilities. It is not necessary for a client to check to see whether a given
capability it has previously retrieved is still valid before sending a speci ication.

Plane 43 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

4.1.1 Capability Discovery

For direct client-initiated work lows, the URL(s) from which to GET capabilities is a client con ig-
uration parameter. The client-initiated work low also allows indirection in capability discovery.
Instead of GETting capabilities direct from a component, they can also be retrieved from a capa-
bility discovery server containing capabilities for multiple components providing capabilities via
client-initiated work lows. These components are then identi ied by the link section of each ca-
pability. The capabilities may be grouped in an envelope retrieved from the capability discovery
server, or linked to in an HTML object retrieved therefrom.
In this way, a client needs only be con igured with a single URL for capability discovery, instead
of URLs for each component with which it wants to communicate. This arrangement is shown in
igure 4.3.

capability
discovery server

C

C
ca
pa
bi
li
ti
es
.h
tm
l

Component

Client

C

S

POST

S

R
R

GET

GET

Figure 4.3: Capability discovery in client-initiated work lows

4.2 Component-Ini ated

Component-initiatedwork lows are appropriate for componentswhich do not have stable routable
addresses (i.e., are behindNATs and/or aremobile), andwhich are used by clients that do. Common
examples of such components are lightweight probes on mobile devices and customer equipment
on access networks, interacting directly with a supervisor.
In this case, the usual client-server relationship is reversed, as shown in igure 4.4.
Here, when the component becomes available, it opens an HTTPS connection to the client and

Plane 44 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Client Component

C

S

S

R

R

CPOST

POST

GET

Figure 4.4: Component-initiated work low

POSTs its capabilities to a known, con igured URL at the supervisor. The supervisor remembers
which capabilities it wishes to use on which components, and prepares speci ications for later re-
trieval by the client.
The component then polls the supervisor, opening HTTPS connections and attempting to GET a
speci ication from a known URL. The client will either respond 404 Not Found if the client has
no current speci ication for the component, or with a speci ication to run matching a previously
POSTed capability. After completing the measurement speci ied, the component then calls back
and POSTs the results to the supervisor at a known URL.
In this case, the component must be con igured with the client's URL(s).

4.2.1 Callback Control

Callback control allows the supervisor to specify to the componentwhen it should call back, in order
to allow centralized scheduling of component-initiatedwork lows, aswell as to allow anmPlane in-
frastructure using component-initiated work lows to scale. Continuous polling of a client by thou-
sands of components would put a network under signi icant load, and the polling delay introduces
a dif icult tradeoff between timeliness of speci ication and polling load. mPlane uses the callback
verbwith component-initiatedwork lows in order to allow the supervisor ine-grained control over
when components will call back.
To use callback control, the component advertises the following capability along with the others it
provides:

{
'capability': 'callback',
'version': 0,
'registry': 'http://ict-mplane.eu/registry/core',

Plane 45 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

'when': 'now ... future',
'parameters': {},
'results': []

}

Then, when the component polls the client the irst time, it responds with an envelope containing
two speci ications: the measurement it wants the client to perform, and a callback speci ication,
containing the time at which the client should poll again in the temporal scope; e.g. as follows:

{
'specification': 'callback',
'version': 0,
'registry': 'http://ict-mplane.eu/registry/core',
'when': '2014-09-08 12:40:00.000',
'parameters': {},
'results': []

}

Callback control is illustrated in igure 4.5.

Supervisor Component

S0

R

R

POST

POST

GET

CCcb CCcb

S0Scb

Scb

wait

ScbGET
Scb

Figure 4.5: Callback control in component-initiated work low

Note that if the supervisor has no work for the component, it returns a single callback speci ication
as opposed to returning 404. Note that subsequent callback control speci ication to a component
can have different time intervals, allowing a supervisor ine-grained control on a per-component
basis of the tradeoff between polling load and response time.
Components implementing component-initiated work lows should support callback control in or-
der to ensure the scalability of large mPlane infrastructures.

Plane 46 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

4.3 Indirect Export

Many commonmeasurement infrastructures involve a large number of probes exporting large vol-
umes of data to a (much) smaller number of repositories, where data is reduced and analyzed.
Since (1) the mPlane protocol is not particularly well-suited to the bulk transfer of data and (2)
idelity is better ensured when minimizing translations between representations, the channel be-
tween the probes and the repositories is in this case external to mPlane. This indirect export
channel runs either a standard export protocol such as IPFIX, or a proprietary protocol unique to
the probe/repository pair. It coordinates an exporter which will produce and export data with a
collector which will receive it. All that is necessary is that (1) the client, exporter, and collector
agree on a schema to de ine the data to be transferred and (2) the exporter and collector share a
common protocol for export.
An example arrangement is shown in igure 4.6.

ProbeSupervisor

Ce

POST
Se

Re

Ce Repository

CcCc

Se

R RPOST

Re

I

I

POST

Ex external
protocol Ex

or

Figure 4.6: Indirect export work low

Here, we consider a client speaking to an exporter and a collector. The client irst receives an ex-
port capability from the exporter (with verb measure and with a protocol identi ied in the export
section) and a collection capability from the collector (with the verb collect andwith a URL in the
export section describing where the exporter should export), either via a client-initiated work-
low or a capability discovery server. The client then sends a speci ication to the exporter, which
matches the schema and parameter constraints of both the export and collection capabilities, with
the collector's URL in the export section.
The exporter initiates export to the collector using the speci ied protocol, and replies with a re-
ceipt that can be used to interrupt the export, should it have an inde inite temporal scope. In the
meantime, it sends data matching the capability's schema directly to the collector.
This data, or data derived from the analysis thereof, can then be subsequently retrieved by a client
using a client-initiated work low to the collector.

Plane 47 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

4.4 Error Handling in mPlane Workflows

Any component may signal an error to its client or supervisor at any time by sending an exception
message. While the taxonomyof errormessages is at this time left up to each individual component,
given the weakly imperative nature of the mPlane protocol, exceptions should be used sparingly,
and only to notify components and clients of errors with the mPlane infrastructure itself.
It is generally presumed that diagnostic information about errors which may require external hu-
man intervention to correct will be logged at each component; the mPlane exception facility is not
intended as a replacement for logging facilities (such as syslog).
Speci ically, components in component-initiated work lows should not use the exception mecha-
nism for common error conditions (e.g., device losing connectivity for small network-edge probes)
-- speci ications sent to such components are expected to be best-effort. Exceptions should also
not be returned for speci ications which would normally not be delayed but are due to high load
-- receipts should be used in this case, instead. Likewise, speci ications which cannot be ful illed
because they request the use of capabilities that were once available but are no longer should be
answered with withdrawals.
Exceptions should always be sent in reply to messages sent to components or clients which cannot
be handled due to a syntactic or semantic error in the message itself.

Plane 48 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

5 The Role of the Supervisor

From the point of view of the mPlane protocol, a supervisor is merely a combined component and
client. The logic binding client and component interfaces within the supervisor is application-
speci ic, as it involves the following operations according to the semantics of each application:

• translating lower-level capabilities fromsubordinate components intohigher-level (composed)
capabilities, according to the application's semantics

• translating higher-level speci ications from subordinate components into lower-level (de-
composed) speci ications

• relaying or aggregating results from subordinate components to supervisor clients

The work lows on each side of the supervisor are independent; indeed, the supervisor itself will
generally respond to client-initiated exchanges, and use both component-initiated and supervisor-
initiated exchanges with subordinate components.
An example combination of work lows at a supervisor is shown in igure 5.1.

SupervisorClient

C

S
POST

R

C

GET

Component

C

S

S

R

R

CPOST

GET

POST

S

Rc

Rc

Rd

R

RdPOST

Figure 5.1: Example work lows at a supervisor

Here we see a a very simple arrangement with a single client using a single supervisor to perform
measurements using a single component. The component uses a component-initiated work low to
associate with a supervisor, and the client uses a client-initiated work low.
First, the component registers with the supervisor, POSTing its capabilities. The supervisor creates
composed capabilities derived from these component capabilities, and makes them available to its
client, which GETs them when it connects.
The client then initiates ameasurement by POSTing a speci ication to the supervisor, which decom-
poses it into a more-speci ic speci ication to pass to the component, and hands the client a receipt
for a the measurement. When the component polls the supervisor -- controlled, perhaps, by call-
back control as described above -- the supervisor passes this derived speci ication to the compo-
nent, which executes it and POSTs its results back to the supervisor. When the client redeems its
receipt, the supervisor returns results composed from those received from the component.

Plane 49 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

This simple example illustrates the three main responsibilities of the supervisor, which are de-
scribed in more detail below.

5.1 Component Registra on

In order to be able to use components to performmeasurements, the supervisor must register the
components associated with it. For client-initiated work lows -- large repositories and the address
of the components is often a con iguration parameter of the supervisor. Capabilities describing the
available measurements and queries at large-scale components can even be part of the supervi-
sor's externally managed static con iguration, or can be dynamically retrieved and updated from
the components or from a capability discovery server.
For component-initiated work lows, components connect to the supervisor and POST capabilities
and withdrawals, which requires the supervisor to maintain a set of capabilities associated with a
set of components currently part of the mPlane infrastructure it supervises.

5.2 Client Authen ca on

For many components -- probes and simple repositories -- very simple authentication often suf-
ices, such that any client with a certi icate with an issuer recognized as valid is acceptable, and
all capabilities are available to. Larger repositories often need iner grained control, mapping spe-
ci ic peer certi icates to identities internal to the repository's access control system (e.g. database
users).
In an mPlane infrastructure, it is therefore the supervisor's responsability to map client identities
to the set of capabilities each client is authorized to access. This mapping is part of the supervisor's
con iguration.

5.3 Capability Composi on and Specifica on Decomposi on

The most dominant responsibility of the supervisor is composing capabilities from its subordi-
nate components into aggregate capabilities, and decomposing speci ications from clients to more-
speci ic speci ications to pass to each component. This operation is always application-speci ic, as
the semantics of the composition and decomposition operations depend on the capabilities avail-
able from the components, the granularity of the capabilities to be provided to the clients. It is for
this reason that the mPlane SDK does not provide a generic supervisor.

Plane 50 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

6 Data Protec on and Inter-Domain coopera on

6.1 Privacy and data protec on

Within mPlane domains, the privacy of user data is protected by three techniques. First, all com-
munication among components and clients is protected by transport level encryption (see section
3.2) ensuring con identiality and integrity of the data transmitted over the mPlane protocol, with
trust relationships managed by a closed public key infrastructure (PKI) (see section 3.2.1). Sec-
ond, role-based access control at components ensures that data access is restricted to authorized
entities(see section 3.2.2). Third, the principle of least access ensures that stored and measured
data contain real identifying information (e.g., IP addresses) only when necessary for operations;
otherwise, all identi iers handled within an mPlane domain are pseudonymized.

6.2 Access Control Model

The access control model has been implemented as described in section 3.2.2, and as elaborated
below.

6.2.1 Authen ca on and Authoriza on

A mPlane component is authenticated using the certi icate used in the TLS handshake and veri-
ied by each correspondent with the chain of trust of a certi icate chain, that has been previously
installed on each component. The distribution and the installation of all the root CA certi icates
needed for the communications must be performed out-of-band, because of the intrinsic lack of
trust in the initial communication; i.e., a Time of First Use (TOFU) model has been deemed not
secure enough.
The authorization security model has been implemented using a role-based (RBAC) model, where
each permitted capability is mapped to one or more roles and each role is mapped to all those
users that are authorized to use that capability. The RBAC authorization model has been chosen
for the current reference implementation, because it permits a logical independence in specifying
user authorizations, by decoupling the assignment of roles to users and the assignment of autho-
rizations to access objects to roles. This greatly simpli ies the overall authorization management.
The authorization policy implemented is a closed policy, that allows an access to a capability only
if exists an explicit authorization for it, and denies it otherwise. So when a client asks the supervi-
sor for all exposed capabilities, only the authorized ones will be returned; in the same way when a
speci ication is sent to the supervisor then a role-based authorization check is always performed to
verify if that action is granted. The communication between probe and supervisor, as for the others
components, is always performed using a TLS-based (HTTPS orWebSocket over TLS) channel. The
identity of the supervisor is trusted if its certi icate is successfully veri ied.
Small, simple probes often don't need ine-grained authorization (see section 5.2). That is, any of
its capabilities are available to any successfully authenticated trusted entity within the domain, so
often only the authentication of the supervisor is needed to establish a trusted channel.

Plane 51 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

In order to have a ine-grained authorization on the exposed capabilities, the client identi ication
on the supervisor is performed extracting the Subject DN (DistinguishedName) from the X.509 cer-
ti icate that the client has con igured for establishing the HTTPS channel. This means that, while
every component built using the SDKmay perform access control based on the subject DN, in prac-
tice the RBAC authorization mechanism is con igured only on the supervisor component, making
the supervisor the center of trust of the domain.
The current implementation of the authorization management consists on a simple user-to-role
and capability-to-roles mapping using plain-text con iguration iles. In the future, depending on
requests of new features coming from the community that will grow around the mPlane project,
different modules (e.g. LDAP and Active Directory support) should be developed and integrated
for a much more scalable authorization management solution. For the same reason, at the current
stage of development of the project, context-based constraints on access control (e.g. time-based
access limits, maximum number of permitted operations, etc.) are not implemented in the SDK,
even if the spatial one can be easily achieved with a classic irewall-based perimeter security ap-
proach.

6.2.2 PKI management

The overall mPlane PKI model and trust model is described in section 3.2.1. Usually the manage-
ment of a root Certi icate Authority or of different CAs (e.g. one for each mPlane partner) is a or-
ganizational issue that resides much more on a real-world production environment and it is de i-
nitely independent from themPlane architecture. For testing and demonstration, some easy-to-use
scripts based on the OpenSSL library are included with the mPlane SDK for the issue of client and
server digital certi icates. Using this ``PKI starter kit'', each partner can generate its own issuer CA
(that belongs to the same mPlane root CA), that can be used to release all the certi icates needed
within the organization's domain and thatwill permit to all components to be automatically trusted
within all the mPlane network.

6.2.3 Inter-domain communica ons

In mPlane the inter-domain communications are handled in the same way of other communica-
tions: since in this case there are two supervisors interacting with each other, each supervisor will
map the DN of the external supervisor to an identity, and this identity to a role associated with
certain privileges. Those privileges are established on the basis of agreements stipulated between
the owners (or administrators) of the two domains. The only additional requirement of this kind
of scenario could represented by the need of having a less granular trust relationship, for example
using the certi icate's issuer DN instead of the subject one (as explained in 6.3.2.2 of D1.2). The
implementation of this feature, even if not currently available, should be easily achieved in the next
releases of the Reference Implementation.

Plane 52 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

7 Implementa ons

There are two implementations of the mPlane protocol that are under development so far within
the project. The use of two implementation, in two different languages, are especially valuable as
they show interoperability of the mPlane protocol.

7.1 Reference Implementa on and So ware Development Kit

The reference implementation of the mPlane protocol is available on GitHub at http://github.
com/fp7-mplane/protocol-ri. It is implemented in Python 3.3, additionally requiring the Tor-
nado framework and urllib3module. Documentation for the reference implementation API is auto-
matically generatedusing Sphinx, and is available athttp://fp7mplane.github.io/protocol-ri/.
As of the date of this deliverable, development is underway to build a Software Development Kit
(SDK) based on the reference implementation, for use for demonstration software development
within the project as well as to allow external developers to build mPlane-compatible software.
This development can be found on the sdk branch of the repository, and will migrate to the master
branch on release in the irst half of 2015.
The SDK is composed of several modules:

• mplane.model: Information model and JSON representation of mPlane messages.

• mplane.scheduler: Component runtime scheduler. Maps capabilities to Python code that
implements them (in Service) and keeps track of running speci ications and associated re-
sults (Job and MultiJob).

• mplane.tls: Handles transport layer security forHTTPS, andmaps local andpeer certi icates
to identities for access control.

• mplane.azn: Handles access control, mapping identities to roles and authorizing roles to use
speci ic Services.

• mplane.client: mPlane client framework. Handles client-initiated (HttpClient) and component-
initiated (ListenerHttpClient) work lows.

• mplane.clientshell: Simple command-line shell for debugging of components and super-
visors.

• mplane.component: mPlane component framework. Handles client-initiated (ListenerHttpComponent)
and component-initiated (InitiatorHttpComponent) work lows.

7.2 NodeJS Implementa on

In addition to the SDK, the project built a protocol implementation inNodeJS.More details about the
libraries and the code can be found at https://github.com/finvernizzi/mplane. This second
implementation was built irst for ease of integration with Telecom Italia's DATI tool, as well as to

Plane 53 of 62 Revision 1.1 of 15 Apr 2015

http://github.com/fp7-mplane/protocol-ri
http://github.com/fp7-mplane/protocol-ri
http://fp7mplane.github.io/protocol-ri/
https://github.com/finvernizzi/mplane

318627-mPlane D1.4
mPlane Architecture Specifica on

provide a second implementation to provide a basis for interoperability testing within the project,
and the evaluation of the implementability of the protocol speci ication.

Plane 54 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

8 Ini al Core Registry

The mPlane protocol is designed to have a lexible de inition of its element registry, as described
in section 2.1. The initial core registry for use during the project, identi ied by the url http://
www.ict-mplane.eu/registry/core, was populated following an analysis of the use cases to be
elaborated during the project in Deliverable 1.1. The elements in this registry are listed in the table
below.

Name Primitive Desciption

start time Start time of an event/ low thatmay have a non-zero
duration

end time End time of an event/ low that may have a non-zero
duration

time time Time at which an single event occurred
duration.s natural Duration of an event/ low in seconds
duration.ms natural Duration of an event/ low in milliseconds
duration.us natural Duration of an event/ low in microseconds
duration.ns natural Duration of an event/ low in nanoseconds
source.ip4 address Source IPv4 address of an event/ low, or the IPv4 ad-

dress from which an active measurement was taken
source.ip6 address Source IPv6 address of an event/ low, or the IPv6 ad-

dress from which an active measurement was taken
source.port natural Source layer 4 port of an event/ low, or the port from

which packets were sent when an active measure-
ment was taken

source.interface string A locally-scoped identi ier of an interface to which
the source of an event/ low is attached, or from
which an active measurement was taken

source.device string A locally-scoped identi ier of a source device of an
event/ low, or from which an active measurement
was taken

source.as natural BGP AS number of the source of an event/ low, or AS
originating an active measurement

destination.ip4 address Thedestination IPv4 address of an event/ low, or the
IPv4 address of the target of an active measurement

destination.ip6 address Thedestination IPv6 address of an event/ low, or the
IPv6 address of the target of an active measurement

destination.port natural The destination layer 4 port of an event/ low, or the
port towhich packetswere sentwhen an activemea-
surement was taken

Plane 55 of 62 Revision 1.1 of 15 Apr 2015

http://www.ict-mplane.eu/registry/core
http://www.ict-mplane.eu/registry/core

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

destination.interface string A locally-scoped identi ier of an interface to which
the destination of an event/ low is attached, or the
target interface of an active measurement

destination.device string A locally-scoped identi ier of a destination device of
an event/ low, or the target of an active measure-
ment

destination.as natural BGP AS number of the destination of an event/ low,
or AS target of an active measurement

destination.url url A URL identifying a target of an active measurement
observer.ip4 address The IPv4 address of the observation point of a pas-

sive measurement
observer.ip6 address The IPv6 address of the observation point of a pas-

sive measurement
observer.link string A locally-scoped identi ier of the link onwhich a pas-

sive measurement was observed
observer.interface string A locally-scoped identi ier of the interface on which

a passive measurement was observed
observer.device string A locally-scoped identi ier of the device on which a

passive measurement was observed
observer.as natural BGPASnumberof theobserver of apassivemeasure-

ment or looking glass
intermediate.ip4 address IPv4 address of a given entity along the path of a

measurement; often scoped by hops.ip
intermediate.ip6 address IPv6 address of a given entity along the path of a

measurement; often scoped by hops.ip
intermediate.port natural Layer 4 port onwhich a low/event was observed on

a given entity along the path; used for NAPT applica-
tions

intermedate.as natural BGP AS number of a given entity along the path of a
measurement; often scoped by hops.as

octets.ip natural Count of octets at layer 3 (including IP headers) as-
sociated with a low, event, or measurement

octets.tcp natural Count of octets at layer 4 (including TCP headers) as-
sociated with a low, event, or measurement

octets.udp natural Count of octets at layer 4 (including UDP headers)
associated with a low, event, or measurement

Plane 56 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

octets.transport natural Count of octets at layer 4 (including all sub-network-
layer headers) associated with a low, event, or mea-
surement

octets.layer5 natural Count of octets at layer 5 (i.e., excluding network
and transport layer headers) associated with a low,
event, or measurement

octets.layer7 natural Count of octets at layer 7 (i.e., passed up to the appli-
cation, excluding network and transport layer head-
ers and octets in retransmitted packets) associated
with a low, event, or measurement

packets.ip natural Count of IP packets associated with low, event, or
measurement

packets.tcp natural Count of TCP segments associated with low, event,
or measurement

packets.udp natural Count of UDP segments associated with low, event,
or measurement

packets.transport natural Count of packets with a transport-layer header asso-
ciated with a low, event, or measurement

packets.layer5 natural Count of packets with non-empty transport-layer
payload associated with a low, event, or measure-
ment

packets.layer7 natural Count of packets carrying unique data at layer 7
(i.e., packets.layer5 minus retransmissions) associ-
ated with a low, event, or measurement

packets.duplicate natural Count of duplicated packets observed in a low,
event, or measurement

packets.outoforder natural Count of out-of-order packets observed in a low,
event, or measurement

packets.lost natural Count of packets observed or inferred as lost in a
low, event, or measurement

packets.unobserved natural Count of packets observed or inferred as delivered
but unobserved in a low, event, or measurement

lows natural Count of unidirectional lows (see RFC 7011) associ-
ated with an event or measurement

lows.bidirectional natural Count of bidirectional lows (see RFC 7011 and
5103) associated with an event or measurement

delay.twoway.icmp.us natural Singleton two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

Plane 57 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

delay.twoway.icmp.us.min natural Minimum two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.mean natural Mean two-way delay as in microseconds measured
by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.50pct natural Median two-way delay inmicroseconds asmeasured
by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.max natural Maximum two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.count natural Count of valid ICMP Echo Replies received when
measuring two-way delay using ICMP Echo Re-
quest/Reply (see RFC 792)

delay.oneway.owamp.us natural Singleton one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.min natural Minimum one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.mean natural Mean one-way delay along a path as measured by
OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.50pct natural Median one-way delay along a path as measured by
OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.max natural Maximum one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.count natural Count of samples for one-way delay measurements
using OWAMP (see RFC 3763)

delay.queue.us natural Singleton measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.min natural Minimummeasured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.mean natural Mean measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.50pct natural Median measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.max natural Maximummeasuredor inferreddelay attributable to
queueing along a path in microseconds

delay.buffer.us natural Delay attributable to buffering at an endpoint in mi-
croseconds

delay.resolution.ms natural Delay from transaction start to completion of resolu-
tion of a name or URL to an address, in milliseconds

Plane 58 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

delay. irstbyte.ms natural Delay from transaction start to receipt of irst byte of
content at the initiator, in milliseconds

rtt.ms natural Round-trip time as measured or estimated at the
sender in milliseconds

rtt.us natural Round-trip time as measured or estimated at the
sender in microseconds

iat.ms natural Packet interarrival or event interoccurance time in
milliseconds

iat.us natural Packet interarrival or event interoccurance time in
microseconds

connectivity.ip boolean Assertion (or negation) that layer 3 connectivity be-
tween the identi ied source and destination is avail-
able

connectivity.as boolean Assertion (or negation) that control plane connec-
tivity (i.e. BGP routability) between the identi ied
source and destination is available

hops.ip natural Count of layer 3 hops or subhops along the identi ied
path

hops.as natural Count of control-plane hops or subhops along the
identi ied path

bandwidth.nominal.bps natural Nominal (advertised) bandwidth at a point or along
a path in bits per second

bandwidth.nominal.kbps natural Nominal (advertised) bandwidth at a point or along
a path in kilobits per second

bandwidth.nominal.Mbps natural Nominal (advertised) bandwidth at a point or along
a path in megabits per second

bandwidth.partial.bps natural Partial bandwidth attributable to a given low in bits
per second

bandwidth.partial.kbps natural Partial bandwidth attributable to a given low in kilo-
bits per second

bandwidth.partial.Mbps natural Partial bandwidth attributable to a given low in
megabits per second

bandwidth.imputed.bps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in bits per
second

bandwidth.imputed.kbps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in kilobits
per second

Plane 59 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

bandwidth.imputed.Mbps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in megabits
per second

content.url url A URL identifying some content, access to which is
passively or actively measured

fps.nominal loat Nominal frame rate in frames per second of the iden-
ti ied audio/video content

fps.achieved loat Achieved frame rate in framesper secondof the iden-
ti ied audio/video content

fps.achieved.min loat Minumum achieved frame rate in frames per second
of the identi ied audio/video content

fps.achieved.mean loat Mean achieved frame rate in frames per second of
the identi ied audio/video content

fps.achieved.max loat Maximum achieved frame rate in frames per second
of the identi ied audio/video content

sessions.transport natural Count of transport-layer sessions associated with an
event

sessions.layer7 natural Count of application-layer sessions associated with
an event

cpuload real Normalized CPU load on the identi ied device
memload real Normalized memory load on the identi ied device
linkload real Normalized link load on the identi ied interface or

link
bufferload real Normalized buffer load on the identi ied device
bufferstalls natural Count of buffer stalls (imputed playback quality

degradation) associated with a low/event
snr real Signal to noise ratio in decibels, either in a radio ac-

cess network or in an audio transmission context
measurement.identi ier string Free-form string identifying the implementation of

themeasurement on the component; often the name
of the external program

measurement.revision natural Release or deployment serial number of the imple-
mentation of the measurement on the component

measurement.algorithm string Free-form string identifying the algorithm used for
the measurement on the component

location.latitude loat The latitude of the component expressed as a loat-
ing point number of degrees north of the equator

Plane 60 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

Name Primitive Desciption

location.longitude loat The longitude of the component expressed as a loat-
ing point number of degrees east of the standard
meridian (on Earth, the Prime Meridian at Green-
wich)

location.altitude loat The altitude of the component expressed as a loat-
ing point number of meters above the standard zero
altitude (on Earth, mean sea level)

location.civil string A free-form identi ier of the civil location (postal ad-
dress, city name, building name, etc) of the compo-
nent

Plane 61 of 62 Revision 1.1 of 15 Apr 2015

318627-mPlane D1.4
mPlane Architecture Specifica on

References

[1] B. Trammell, ed. Use Case Elaboration and Requirements Speci ication. mPlane Public Deliverable 1.1.
[2] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 7159, Mar. 2014. (Pro-

posed Standard).
[3] B. Claise, B. Trammell, and P. Aitken. Speci ication of the IP Flow Information Export (IPFIX) Protocol

for the Exchange of IP Flow Information. RFC 7011 (Internet Standard), Sept. 2013.
[4] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, Aug.

2008. (Proposed Standard) Updated by RFCs 5746, 5878, 6176.
[5] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455, Dec. 2011. (Proposed Standard).
[6] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. RFC

7230, June 2014. (Proposed Standard).
[7] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291, Feb. 2006. (Proposed

Standard) Updated by RFCs 5952, 6052, 7136, 7346, 7371.
[8] S. Kawamura andM. Kawashima. A Recommendation for IPv6 Address Text Representation. RFC 5952,

Aug. 2010. (Proposed Standard).
[9] G. Klyne and C. Newman. Date and Time on the Internet: Timestamps. RFC 3339, July 2002. (Proposed

Standard).
[10] D. Mills, J. Martin, J. Burbank, andW. Kasch. Network Time Protocol Version 4: Protocol and Algorithms

Speci ication. RFC 5905 (Proposed Standard), June 2010.
[11] B. Trammell. Textual Representation of IP Flow Information Export (IPFIX) Abstract Data Types. RFC

7373, Sept. 2014. (Proposed Standard).

Plane 62 of 62 Revision 1.1 of 15 Apr 2015

	Disclaimer
	mPlane Architecture
	Key architectural principles and features
	Flexibility and extensibility
	Schema-centric measurement definition
	Iterative measurement support
	Weak imperativeness

	Entities and Relationships
	Components and Clients
	Probes and Repositories
	Supervisors and Federation
	Reasoner
	External interfaces to mPlane entities

	Message types and message exchange sequences
	A Cooperative measurement in an example mPlane domain
	Integrating measurement tools into mPlane
	From architecture to protocol specification

	Protocol Information Model
	Element Registry
	Structured Element Names
	Primitive Types
	Augmented Registry Information

	Message Types
	Capability and Withdrawal
	Specification and Interrupt
	Result
	Receipt and Redemption
	Indirection
	Exception
	Envelope

	Message Sections
	Message Type and Verb
	Version
	Registry
	Label
	Temporal Scope (When)
	Parameters
	Metadata
	Result Columns and Values
	Export
	Link
	Token
	Contents

	Message uniqueness and idempotence
	Message schema
	Message identity

	Designing measurement and repository schemas

	Representations and Session Protocols
	JSON representation
	Textual representations of element values
	Example mPlane capabilities and specifications

	mPlane over HTTPS
	mPlane PKI for HTTPS
	Access control in HTTPS
	Paths in mPlane link and export URLs

	mPlane over WebSockets over TLS
	mPlane over SSH

	Workflows in HTTPS
	Client-Initiated
	Capability Discovery

	Component-Initiated
	Callback Control

	Indirect Export
	Error Handling in mPlane Workflows

	The Role of the Supervisor
	Component Registration
	Client Authentication
	Capability Composition and Specification Decomposition

	Data Protection and Inter-Domain cooperation
	Privacy and data protection
	Access Control Model
	Authentication and Authorization
	PKI management
	Inter-domain communications

	Implementations
	Reference Implementation and Software Development Kit
	NodeJS Implementation

	Initial Core Registry

