
Plane
mPlane

an Intelligent Measurement Plane for Future Network and Applica on Management

ICT FP7-318627

Design of the Reasoner

Author(s): Author names
FTW P. Casas (editor), A. D’Alconzo
NEC M. Dusi, S. Nikitaki, M. Ahmed
POLITO S. Traverso, M. Mellia, D. Apile , L. Grimaudo, E. Baralis
ENST D. Rossi, D. Joumbla
TI A. Capello, M. D’Ambrosio, F. Invernizzi, M. Ullio
FW A. Fregosi, E. Kowallik, S. Raffaglio, A. Sannino
EURECOM M. Milanesio
FUB E. Tego, F. Matera
NETvisor T. Szemethy, B. Szabó, L. Németh
ALBLF Z. Ben Houidi
TID G. Dimopoulos, I. Leon adis, Y. Grunenburger, L. Baltrunas
FHA M. Faath, R. Winter
A-LBELL D. Papadimitriou

Document Number: D4.2
Revision: 1.1
Revision Date: 21 Apr 2015
Deliverable Type: RTD
Due Date of Delivery: 21 Apr 2015
Actual Date of Delivery: 21 Apr 2015
Nature of the Deliverable: (R)eport
Dissemina on Level: Public

318627-mPlane
Design of the Reasoner

Abstract:

This deliverable describes the logic design and specifica on of the Reasoner system with a limited set of analysis/diagnosis
rules as knowledge structure, and also evaluates the possible extensions to be included into the knowledge structure regarding
learning of new rules. The deliverable addi onally details how the proposed logical design is generic enough to tackle different
classes of measurement analysis processes, and in par cular those classes covered by the mPlane use cases: troubleshoo ng-
support based analysis, and generic measurements analysis. For doing so, it presents different per use case instan a ons
of the mPlane design, showing how it is possible to map the proposed logical design to the different classes of mPlane use
cases. Finally, different learning techniques for extending and/or genera ng the knowledge structure of the Reasoner are
over-viewed.

Plane
2

318627-mPlane
Design of the Reasoner

Disclaimer

The information, documentation and igures available in this deliverable are written by the mPlane
Consortium partners under EC co- inancing (project FP7-ICT-318627) and does not necessarily re lect
the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is it for any particular purpose. The user uses the information at its sole risk and liability.

Plane
3

318627-mPlane
Design of the Reasoner

Contents

Disclaimer. 3

1 Introduction. 6

2 Design and Speci ication of the Reasoner. 9
2.1 Events and Diagnosis Graph . 11
2.2 Knowledge Structure . 14
2.3 Learning, Exploration and Automatic Rule Extraction . 15

3 Examples of Instantiation of the Reasoner. 16
3.1 Anomaly Detection and Root Cause Analysis in Large-scale Networks . 16

3.1.1 The Role of the Reasoner . 16
3.1.2 Domain-knowledge based Iterative Rules . 18
3.1.3 Diagnosis/Iterative Analysis Graph . 22

3.2 Supporting DaaS Troubleshooting . 23
3.2.1 The Role of the Reasoner . 23
3.2.2 Domain-knowledge based Iterative Rules . 24
3.2.3 Diagnosis/Iterative Analysis Graph . 25

3.3 Estimating Content and Service Popularity for Network Optimization . 26
3.3.1 The Role of the Reasoner . 26
3.3.2 Domain-knowledge based Iterative Rules . 27
3.3.3 Diagnosis/Iterative Analysis Graph . 28

3.4 Passive Content Curation . 29
3.4.1 The Role of the Reasoner . 29
3.4.2 Domain-knowledge based Iterative Rules . 30
3.4.3 Diagnosis/Iterative Analysis Graph . 31

4 Conclusions. 33

A Learning Approaches for the Reasoner. 34
A.1 Clustering for Unsupervised Learning . 34

A.1.1 Unsupervised Patterns Analysis . 35
A.1.2 Clustering Ensemble and Sub-Space Clustering . 36
A.1.3 Automatic Characterization of Detected Patterns . 37
A.1.4 Ranking Outliers using Evidence Accumulation . 38
A.1.5 An Example of Unsupervised Analysis . 39

Plane
4

318627-mPlane
Design of the Reasoner

A.2 Association Rule Mining for network data analysis . 40
A.2.1 Introduction . 40
A.2.2 Problem statement. 41
A.2.3 Architecture. 41

A.3 Approaches for Data Correlation . 46
A.4 Considerations for Building Diagnosis Graphs . 48

A.4.1 Scheduling tradeoff . 49
A.4.2 Implications of temporal properties and guidelines . 50
A.4.3 Interaction of homogeneous measurements . 50
A.4.4 Interaction of heterogeneous measurements . 52
A.4.5 Interaction of multiple diagnosis trees . 54

Plane
5

318627-mPlane
Design of the Reasoner

1 Introduc on

The main target of mPlane is to provide visibility on top of the complex system represented by
today’s Internet-like networks. The measurement layer provides a distributed and ubiquitous
network monitoring framework to gather heterogeneous measurements from an assorted num-
ber of different vantage points. As such, the measurement layer provides the “eyes” of the mPlane.
The repository and large-scale data analysis layer provides the capabilities for storing and pro-
cessing the large amount of measurements coming from the measurement layer, i.e., it represents
the “muscles” of the mPlane. The analysis modules provided by the supervision layer allow the
mPlane to extract more elaborated and useful information from the gathered and pre-processed
measurements. The multiple analysis modules provide as such different analysis capabilities to
the mPlane, therefore representing the “arms” of the mPlane.

probe repository

supervisor

client

capability -
specification -

result

capability -
specification -

result

indirect export

capability -
specification -

result

reasoner

Figure 1: The mPlane architecture. The Reasoner coordinates the measurements and the analysis
performed by probes and repositories, actuating through the Supervisor.

In this deliverablewepresent theReasoner, which represents the “intelligence” of themPlane. The
Reasoner allows structured, iterative, and partially automated analysis of the measurements and
intermediate analysis results. The term “partially” refers to the fact that even if desirable, the com-
plete mPlane is not intended to fully automate the monitoring applications it supports, but rather
to better guide and support the measurement and analysis process. The Reasoner orchestrates the
measurements and the analysis performed by the probes, the large-scale analysis repositories and
the analysis algorithms, actuating through the Supervisor to interconnect with the othermPlane
components. The communication between the Reasoner and themPlane components is performed
through the interfaces provided by the mPlane Reference Implementation and the corresponding
components. This decoupling between coordination andmeasurement iteration allows to fully split
the roles of the mPlane Reasoner and the mPlane Supervisor. Indeed, while the Supervisor offers
access to each mPlane component capabilities via a common interface (using WP3 and WP2 com-
ponents’ interfaces), the Reasoner becomes a client of the Supervisor, like any other client that
interacts with the Supervisor. As such, it allows the user to implement automatic processes, e.g., to

Plane
6

318627-mPlane
Design of the Reasoner

comeupwith a custom instantiation of the Reasoner that suits her needs. The Reasoner is therefore
in essence a replacement for a human user for certain tasks, thus this separation of responsibilities
makes a good deal of intuitive sense. Fig. 1 recalls the architecture of the mPlane, where the roles
and interactions among mPlane components is depicted, specially regarding the Reasoner and the
Supervisor.

Regarding the design of the mPlane Reasoner, the original design we had in mind at the time of
writing the proposal was to have a “single” Reasoner that would orchestrate the iterative analysis
performed by the system, for all the potential use cases. This would entail a holistic approach, to
be generic enough to adapt to any scenario. However, when then working on the project, and after
the precise de inition of the selected use cases, we realized that this holistic approach would be
impracticable. This is due to the heterogeneity of measurement scenarios, the general lack of com-
mon measuremnets’ de initions, and to the general complexity of the task. Indeed, even if many
different expert systems for automating network traf ic analysis have been proposed in the past,
both in the research community as well as in commercial solutions, their practical success is very
marginal. As an example of this, neither the mPlane ISPs and SMEs nor other ISPs collaborating
with the mPlane project members rely on such systems to handle their daily operations.

The solutionwe took and thatwepresent in this deliverable is then tohave apossible generic frame-
work that could allow the design of speci ic Reasoners, e.g., a different Reasoner instantiation for
each use case, based on the same generic principles. This would allow us to customize each instan-
tiation of the Reasoner to the speci ic use case, and in general would bring lexible design principles
to adapt to different scenarios andmeasurement applications. For the aforementioned reasons, this
deliverable does not focus on detailing interfaces or highly abstract representations, but rather on
the logical entities which compose the Reasoner, which allow to instantiate a Reasoner tailored to
the speci ic needs of a use case.

Starting by the design and speci ication of the different logical components of the Reasoner
in section 2, this deliverable presents in section 3 a per use-case class description on how a
Reasoner can be instantiated in the practice from such a logical design. These use-case classes
are de ined on the basis of the speci ic role of the Reasoner in the measurement analysis process.
In particular, mPlane use cases can be split in troubleshooting-support based analysis and generic
measurements analysis. Finally, different learning approaches for extending and/or gener-
ating new analysis rules within the Knowledge Structure are presented in appendix A, and
some considerations for building diagnosis graphs are discussed.

A inal note on the level of abstraction considered in the description of the different logical com-
ponents of the Reasoner, as presented in this document. As we said before, we decided to go for
a more practical approach rather than a more generic and holistic one, trading lexibility by speci-
icity. While this is a general trade-off applicable to all domains, it becomes highly relevant when
thinking about a system such as the Reasoner, highly related to the concepts of intelligence. Gen-
erally speaking, when designing intelligent systems, one can follow a more procedural approach in
which knowledge (in the more general term) is directly integrated into the speci ic task, or a more
declarative approach, in which knowledge is represented completely independently of the speci ic
tasks to address [9]. The procedural approach provides more concrete and speci ic de initions,
considering in advance all the components and analysis procedures. However, the obtained results
lack versatility and adaptability, and are more dif icult to modify. The declarative approach is more

Plane
7

318627-mPlane
Design of the Reasoner

lexible but requires a very hard logical base to operate properly, and even if it results in a great
level of abstraction, its main blocking point is on the dif iculty to properly de ine and constantly
maintain a good and updated logic describing the operational context.
Based on the previously discussed observations and to favor amore practical (and thusmore appli-
cable and easier-to-reuse approach), we have decided to follow amore procedural approach for the
design of the Reasoner. Still, as we see next, the proposed logical components are generic enough to
allow the instantiation of a Reasoner tackling the speci ic needs of any measurement and analysis
process.

Plane
8

318627-mPlane
Design of the Reasoner

2 Design and Specifica on of the Reasoner

In this section we present the design and speci ication of the logical components conforming the
Reasoner, which represents the intelligence of themPlane. The Reasoner coordinates themeasure-
ments and the analysis performed by probes and repositories, actuating through the Supervisor. It
is responsible for the orchestration of the iterative analysis and the correlation of the results ex-
posed by the analysismodules. Such a reasoning-based system is capable of generating conclusions
and triggering further measurements to provide more accurate and detailed insights regarding the
supported traf ic monitoring and analysis applications. As such, the Reasoner offers the necessary
adaptability and smartness of themPlane to ind the proper high-level yet accurate explanations to
the problems under analysis in the different use cases.
The Reasoner has different speci ic roles, depending on the use case to tackle. When considering
the use cases selected within the mPlane project, we can identify two main groups or classes: (i)
those use cases based on troubleshooting support, and (ii) those use cases based on generic mea-
surements analysis. In the case of troubleshooting support-based use cases, the main role of the
Reasoner is to drill down themeasurements and interpret the analysis results provided by the anal-
ysismodules to ind themost probable root causes of the associatedproblems. In the case of generic
measurements analysis, the main role of the Reasoner is to automate the iterative measurements
analysis process. In both cases, the main requirement of the Reasoner is to be able to iteratively
perform different analysis tasks, taking additional analysis steps based on the results of the previ-
ous observed results. As such, the Reasoner’s core structure is highly similar to that of an automatic
Root Cause Analysis (RCA) system [35]. RCA is typically used as a reactive approach for identify-
ing failure event(s) causes. Through RCA we can investigate new problems, uncover unexpected
impacts, and quantify the scale and trend of different factors/events contributing to performance
issues.
Fig. 2 depicts anoverviewon the completeReasoner system. TheReasoner is divided in threemajor
logical components or blocks: (1) the iterative analysis engine and diagnosis graph, which guides
the automatic analysis of problems to ind their root causes; (2) a knowledge structure, composed
of set of domain-knowledge based analysis rules that helps to structure the diagnosis process; and
(3) the learning, exploration and automatic extraction rules engine, which allows to discover new
analysis rules and to explore those events for which no root causes were automatically identi ied.
Next we provide a general description of these logical components, which are further detailed in
the following sections.
The size, granularity, and geo-distributed span of the measurements performed and analyzed by
the mPlane at each of its layers de ines a pyramidal design, in which the larger the visibility on
the overall problem obtained from themeasurements, the more aggregated and summarized these
measurements should be so as to make the analysis feasible. For example, whereas packet level
measurements are potentially performed locally at the probe side, repositories generally analyze
more aggregated measurements (e.g., pre- iltered lows) from geo-distributed vantage points. Fol-
lowing this philosophy, the Reasoner does not work directly on top of raw data, but on the
results obtained by the different analysis modules, which we shall de ine from now on as
events.
An event captures a particular type of network condition (e.g., link congestion, YouTube through-
put drop, overloaded cell, Google CDN load-balancing, anomaly detected, inter-AS routingmodi ica-
tions, etc.). Events are extracted from themeasurements performed and analyzed at the probes and
repositories through the different analysismodules, either in a continuous fashion (e.g., continuous

Plane
9

318627-mPlane
Design of the Reasoner

List of Associated Events
 in-network throughput drop (90%)

 dominant server IP/subnet (85%)

 dominant web service: YouTube (72%)

 CDN load balancing occurred (47%)

 novel sever cache (35%)

 ...

 ...

A node in the tree
might be recursive/adaptive

WP2

WP3

WP4.1 - Analysis Modules
(Analysis Algorithms)

Rule-based Reasoning

Root Causes
Use Case Results

Expert

Client

Expert

Nodes correspond
to occurrence (or not)

of events

Only events with
unknown root causes

associated
Extraction of dependency

rules, correlations

Verified dependency rules Extracted dependency rules

Knowledge Structure

 Use Case Analysis Rules,
 Spatial and Temporal Models

 Signatures of Events

 Definition of Events

Anomaly Detection
QoE-based Web Browsing Assessment
Content Popularity Estimation
Path Change Detection
...

Diagnosis Graph

1

2

3

Figure 2: Automatic anomaly diagnosis and events exploration through the Reasoner.

analysis, such as anomaly detection) or in an on-demand fashion (e.g., speci ic reactive query, such
as server reachability measurements). In general terms, events can be classi ied as either symptom
events or diagnosis events.
Symptom events are the type of service problems to be analyzed (e.g., YouTube QoE degradation),
and are directly related to the speci ic analysis goal (e.g., Anomaly Detection). Symptom events
are normally employed as triggers for some speci ic action. A very simple and intuitive example is
provided by the Anomaly Detection scenarios. For example, if the goal of the analysis is to detect
QoE-relevant degradation in YouTube, a symptom event could be de ined by the occurrence of a
drop in the average downlink low throughput of YouTube lows below a certain threshold (let us
assume for the moment that such a prede ined threshold exists).
Diagnosis events refer to the evidence of a potential root cause taking place (e.g., Google CDN load-
balancing). Diagnosis events provide contextual details of theproblems laggedby symptomevents,
and are used by the Reasoner in amore evolved analysis fashion, as by combining the occurrence of
several diagnosis events it might resort to the root causes of the detected symptoms. If we go back
again to the example of YouTube, when it comes to diagnosing QoE-relevant degradation, potential
diagnosis events can be de ined by the occurrence of congestion at the access links, the occurrence
of server-to-customers path modi ications, the occurrence of anomalously high rates of DNS non-
resolved or delayed requests, etc. While non of these diagnosis events is a direct symptom of QoE
degradation in YouTube, it could directly point to the underlying root causes.
The iterative analysis engine of the Reasoner veri ies the occurrence (or not) of different events,
through the analysis of different diagnosis rules, which relate problemswith events and root causes.

Plane
10

318627-mPlane
Design of the Reasoner

The diagnosis of a speci ic issue is performed by following the analysis steps dictated by a diagno-
sis graph. A diagnosis graph combines a set of analysis rules in a graph-like structure, allowing
for fast, structured, and automated anomalies/failures diagnosis and analysis. Events and analy-
sis/diagnosis rules are de ined in the knowledge structure of the Reasoner. This knowledge struc-
ture de ines a set of basic domain-knowledge-based rules that allow the Reasoner to take deci-
sions based on the particular monitoring application it is orchestrating, which can eventually be
expanded by learning from past experiences.
The inal logical component of the Reasoner corresponds to the exploration and automatic extrac-
tion rules engine, which aims at extending the domain knowledge. Domain knowledge and oper-
ational experience can be unreliable or incomplete. Therefore, the speci ication of an initial diag-
nosis graph can be rather under-performing, both in accuracy and completeness. In this direction,
the set of analysis rules is not necessarily static and can eventually be expanded by learning from
past experiences, either automatically of by a manual exploration process.
The role of the exploration and automatic extraction process is to correlate all the events that occur
at about the same time and which are spatially related to the failure/anomaly under investigation,
in order to derive new diagnosis rules. These new rules can be derived either manually, or as we
see next, automatically throughmachine learning algorithms. Final expert intervention is generally
required to validate the identi ied dependencies, adding them into the knowledge structure. The
target is to automate asmuch a possible this process, so as tominimize the inal expert intervention
in this validation process.
In the following sections, we provide a more detailed description of the main logical components
of the Reasoner.

2.1 Events and Diagnosis Graph

The process of anomalies and failures diagnosis requires the exploration and correlation of rele-
vant events. The de inition of relevant events generally requires domain expert knowledge. As we
explained before, network-related events capture a particular type of network condition. For exam-
ple, let us consider the overloading of a speci ic monitored network link. In this example, a simple
link throughput-tracking algorithmwouldmonitor the used capacity of the link, and lag a relevant
link overloading event when the link load attains a pre-de ine utilization threshold, for example, a
90% of the link capacity. An accurate de inition of these events improves the diagnosis capabili-
ties of the Reasoner. Therefore, an event has to be described factually, including its qualitative and
quantitative attributes, the type, the magnitudes, the location, and the associated time span. In the
mPlane terminology, events are de ined asm-tuples consisting of the following ields:

• event name, e.g., link overload.

• location type, e.g., Gn downlink interface.

• time span, e.g., 2013-10-21-12:30:00, 2013-10-21-12:35:00.

• retrieval process, e.g., Simple Link Congestion Detection Algorithm – SLCDA (utilization
threshold Cth).

• additional features, e.g., number of lows, number of bytes, list of server IPs originating
the lows, etc.

Plane
11

318627-mPlane
Design of the Reasoner

Theretrieval processpoints to the actual algorithms/analysismodulesneeded togenerate/detect
the occurrence of the corresponding event. Events are generated by the relevant analysis modules,
applied to a set of monitored KPIs (e.g., abrupt change detection, heavy hitter identi ication, sta-
tistical traf ic/KPIs analysis, etc.). As the reader should note, the ields de ining an event could
be formally de ined as standard entities with a corresponding entity type and name, and using
whatever type of representation language. However, as we claimed in the introduction, we decided
not to follow this approach and let de initions more open, such that every speci ic instantiation of
these concepts could be tailored for the speci ic needs of the analysis process.
An event instance additionally speci ies the initial time of the event, as well as the ending time,
always related to the speci ic retrieval process. For example, if we consider the link overloading
case, the initial timewould correspond to the irst time slotwhen thepre-de ined capacity threshold
is exceeded, whereas the ending time would correspond to the irst time slot when the utilization
drops below the threshold. Based on these de initions, an event instance would potentially look as
follows:

<link_congestion, Gn_1, 2013-10-21-12:30:00, 2013-10-21-12:35:00,
SLCDA(90%), {1.5 kflows, 235.5 MB, srvIP_list,...}>

Aswe said before, these events can be classi ied in two different classes, depending on their nature:
symptom events and diagnosis events. A symptom event characterizes the problem that has to be
analyzed through the mPlane. For example, if we consider once again the YouTube QoE Anomaly
Detection use case, a symptom event could be a major drop in the YouTube lows throughput im-
pacting the QoE of a large number of users. The event could be instantiated as follows:

<YouTube_QoE_anomaly, ISP_A-PoP_1, 2014-02-15-20:30:00, 2014-02-15-20:35:00,
SAD(x1, x2, ..., xk),
{2.3 kflows, 6.1 kusers, srvIP_list, download_th dist, avg_QoE,...}>

In this case, an event re lecting an anomaly in the YouTube QoE of 6,100 users is generated by the
Statistical AnomalyDetectionmodule SAD, con iguredwith the input parametersx1, x2, ..., xk .
The SAD analysis module works on top of the traf ic captured at one of the Points of Presence (PoP)
of a certain ISP A. The additional descriptive features logged on the event instance provide more
details to understand the causes for such anomaly, and can be used to create a speci ic signature
for this speci ic event, out of a set of several instances.
Examples of relevant diagnosis events could include the selection of a different group of servers
provisioning the YouTube lows, the overload of one of the segments in the end-to-end paths from
YouTube servers till themonitoring vantage point, routing changes resulting in network pathswith
worse performance, and so on. The de inition of all these events is done within the knowledge
structure, considering the speci ic use case to tackle. Still, many events are not speci ically tied to a
speci ic use case, and can therefore be integrated in the analysis of different use cases.
Once events are de ined and the corresponding measurements and analysis modules are instanti-
ated to track their occurrence, the key question is how does different events relate to each other,
so as to understand their dependencies and verify their causal relations. These dependencies be-
tween symptom events and diagnosis events are speci ied through dependency or diagnosis rules.
Diagnosis rules are initially de ined on the basis of expert domain knowledge, but can be further
evolved by analyzing the resulting measurements through learning techniques. A very simpli ied
example of decision rule could be the following:

Plane
12

318627-mPlane
Design of the Reasoner

if

YouTube_QoE_anomaly :
QoE anomaly detected in PoP_1, ISP_A

&
Google_load_balancing :
New Google cache selected in AS 15169

&
∼Path_perf :
No performance issues in inter-AS end-to-end paths

&
Server_anomaly :
Server issues detected in new servers between 20hs-23hs

→ YouTube servers
overloaded at peak time.

To limit the spanof the example, this rule does not include all the corresponding events’ parameters,
but in the general case, all the relevant information is included for the analysis, specially regarding
the temporal context, i.e., the occurrence or not of these events is veri ied in a similar temporal
scope.
The quality of the decision rules determines the performance of the overall diagnosis/analysis. In-
deed, the key to fault diagnosis is to clearly understand the dependency relationships between
symptom and diagnosis events. However, building such rules is generally very challenging and
requires multiple types of information, for example:

• topological information (e.g., physical link connecting two different routers, location of base
stations, locations of content caches, etc.).

• cross-layer dependency (e.g., L4 vs L7 quality/performance, L1 devices supporting L3 links,
etc.),

• routing and load balancing (e.g., BGP and OSPF routing info, DNS mappings, etc.).

Identifying relevant events along a timeline of events leading to the speci ic problem to diagnose
improves the de inition of the diagnosis rules. In this direction, the most challenging part is that of
relating events in a cause-effect basis. The notion of diagnosis graph allows to structure andmodel
the dependencies among events, by exploring their temporal and spatial relationships. A diagnosis
graph combines a set of analysis rules in a graph-like structure, which explores the temporal and
spatial relationships between symptom and diagnosis events to ind themost probable root causes.
Events canbe associated to the same spatial location, and also to the same temporal span, i.e., events
happening “at the same time” of the analyzed problem. Different temporal scopes can be de ined
for analyzing these temporal relationshios, in orther to account for delayed causal effects.
Fig. 3 depicts an example of diagnosis graph within the mPlane framework. The nodes of the de-
cision graph correspond to the occurrence (or not) of speci ic diagnosis events. The leaves of the
graph represent the root causes. The links between nodes show the causal dependencies between
events: for example, events are de ined as causal such that if eliminated from the graph, they should
cut the sequence chain of interconnected events. A node within the decision graph might also be
adaptive and recursive, as it might require multiple analysis iterations to come up with an answer
related to the queried event. Indeed, the reader should recall that behind each of these diagnosis
graph nodes potentially lies a complex set of continuous and/or on-demand analysis modules.
When it comes to the speci ic diagnosis process and the reasoningbehind, theReasoner implements
Rule-based Reasoning (e.g., decision-tree like graph). Rules-based reasoning represents a simple

Plane
13

318627-mPlane
Design of the Reasoner

List of Associated Events
 in-network throughput drop (90%)

 dominant server IP/subnet (85%)

 dominant web service: YouTube (72%)

 CDN load balancing occurred (47%)

 novel sever cache (35%)

 ...

 ...

A node in the tree
might be recursive/adaptive

Rule-based Reasoning

Root Causes
Use Case Results

Client

Nodes correspond
to occurrence (or not)

of events

WP2

WP3

WP4.1 - Analysis Modules
(Analysis Algorithms)

Anomaly Detection
QoE-based Web Browsing Assessment
Content Popularity Estimation
Path Change Detection
...

1

Diagnosis Graph

Figure 3: The diagnosis graph. A diagnosis graph combines a set of analysis rules in a graph-like
structure, which explores the temporal and spatial relationships between symptom and diagnosis
events to ind the most probable root causes.

and direct association between the diagnosed root cause and the evidence(s) for better interpreta-
tion; it is very effective in the practice, and different weights can be assigned to symptom-diagnosis
links by expert knowledge so as to improve the performance of the diagnosis. Using such diagnosis
graphs in a per-failure/anomaly class, the Reasoner looks for the presence of diagnostic events, and
identi ies the root cause as the leaf with the highest probability of occurrence.

2.2 Knowledge Structure

The Knowledge Structure of the Reasoner contains a set of manually prede ined relevant events as
well as a set of domain-knowledge based diagnosis rules which permit to structure the diagnosis
graphs. This list of events and rules available at the Knowledge Structure permits their re-usage
to tackle multiple different use cases, without the need of de ining all the required elements from
scratch every time. Indeed, some events and diagnosis rules are generic to any large-scale anomaly
detection and diagnosis process in Internet-like networks, for example, when verifying the occur-
rence of performance degradation events in inter-AS paths connecting the remote servers to the
users. As such, the proposed approach is generic to address the needs of multiple use cases, by
de ining the required events and rules, and re-using those already itting the purpose of the analy-
sis.
As we explained in previous section, the de inition of a new event requires the speci ication of the
retrieval process which generates such events, and these might be parametric as in the proposed

Plane
14

318627-mPlane
Design of the Reasoner

link congestion example. Having this idea inmind, one speci ic event de inition can be reused in dif-
ferent diagnosis use caseswhichmight require different parametrization of the events, for example,
to improve the sensitivity of the analysis and/or to consider the normal behavior of the monitored
KPI.
The knowledge structure will provide a very basic yet useful event-language speci ication to al-
low an expert user to de ine new parametric events and diagnosis rules, but also to construct new
rules based on existing ones. As such, building new diagnosis applications would become faster
and simpler. The speci ication of this event-language de inition will follow the mPlane Reference
Implementation registry andmetadata de initions for interpretation ofmetrics andmeasurements.

2.3 Learning, Explora on and Automa c Rule Extrac on

One of the main challenges in the automatic diagnosis of problems based on expert knowledge
rules is that domain knowledge and operational experience can be unreliable or incomplete. The
domain knowledge of an expert operatormight bewrong, either because the relationships between
events are extremely complex and not well understood, or because the system under analysis is not
behaving as intendedordesigned toperform. This implies that the speci ication of a list of diagnosis
rules for a speci ic use case offered by an expert operator, especially the initial version, can be rather
poor, both in accuracy and completeness. Indeed, no expert can fully understand the entire domain,
specially when considering the type of use cases targeted by mPlane.
For this reason, the Reasoner framework considers the possibility of discovering or learning new
diagnosis rules out of the gathered measurements and logged events. In this sense, the set of di-
agnosis rules is not necessarily static and can eventually be expanded by learning from past ex-
periences, either automatically of by a manual exploration process. Such a learning of new rules
can be done by correlating the symptom event to diagnose with all the diagnostic events logged
by mPlane which occur at about the same time and are spatially correlated to the problem under
investigation, further selecting those presenting causal relations. As the well-known phrase in the
statistics domain explains, “correlation does not imply causation”, which forces the study to per-
form additional statistical tests to avoid creating incoherent rules. In addition, the correlation and
further analysis can be done on top of all the available measurements which show some temporal
and spatial relation to the symptom event. The main idea is that by iteratively selecting and il-
tering the most relevant events and/or measurements which might explain the analyzed problem,
the Reasoner can extend the domain knowledge, gradually acquiring new knowledge or learning
unexpected network behaviors exhibited in the data, which can ultimately be incorporated into the
list of diagnosis rules and into the diagnosis graph.
The learning capabilities of the Reasoner can by no means be fully automated, specially when it
comes to the extraction of new diagnosis rules. If the new learned rules are directly taken into the
knowledge structurewithout expert validation and assertion, the diagnosis graphmight rapidly get
polluted by statistically relevant yet inconsistent diagnosis rules. Therefore, the extension of the
knowledge structure associated to a speci ic use case requires inal expert intervention to validate
the identi ied dependencies. To limit the time required by the expert to verify and validate the
new generated knowledge, the learning algorithms provided within the mPlane framework try to
summarize as much as possible the most relevant information related to the generated rules, i.e.,
they select the most relevant features related to the speci ic events.
Learning approaches for the Reasoner are described in appendix A.

Plane
15

318627-mPlane
Design of the Reasoner

3 Examples of Instan a on of the Reasoner

This section presents the Reasoner by example, with themain target of exemplifying how the previ-
ously descried design can bemapped or instantiated into aReasoner tailored for the considered use
case. We chose two different use cases representing each of the aforementioned use-case classes to
make the exercise more generic: for troubleshooting support-based use cases, we address the
cases of Anomaly Detection and Root Cause Analysis as well as DaaS Troubleshooting. In the case
of generic measurements-based analysis use cases, we select the cases of Content Popularity
Estimation as well as Passive Content Curation.

The following sections brie ly describe the role of the instantiated Reasoner, a set of iterative anal-
ysis and diagnosis rules, and a diagnosis/iterative analysis graph, the last two built from expert
domain knowledge.

3.1 Anomaly Detec on and Root Cause Analysis in Large-scale
Networks

This use case targets the continuous monitoring of large-scale network traf ic, aiming at detecting
and diagnosis anomalies potentially impacting a large number of users. The use case particularly
focuses on the most popular web-based services (e.g., YouTube, Facebook, Google Services. etc.),
deliveredby complex network infrastructuresmaintainedbyomnipresentOverTheTop (OTT) con-
tent providers and major Content Delivery Networks (CDNs) such as Google, Akamai, Limelight,
SofLayer, etc.. Detecting and diagnosing anomalies in such scenarios is extremely complex, due
to the number of involved components or players in the end-to-end traf ic delivery: the Content
Provider, the CDN provider, the intermediate Autonomous Systems (ASes) of the transit Internet
Service Providers (ISPs), the access ISP, and the terminals of the end-users. This high complexity
motivates the usage of mPlane to improve the visibility on the traf ic and on all the intermediate
components. And more speci ically, the diagnosis of the detected anomalies requires the coordi-
nated guidance of the mPlane Reasoner, which shall decide the speci ic measurements and deeper
analysis to perform, once an anomalous event is detected.
As an example of the application of the Reasoner in this use case, we present a scenario aiming at
detecting and diagnosing major anomalies in the delivery of YouTube videos impacting the Quality
of Experience (QoE) of a large number of users. This scenario is used next as a basis for describing
the particular instantiation of the mPlane Reasoner for this use case.

3.1.1 The Role of the Reasoner

The role of the Reasoner in the monitoring, detection, and diagnosis of QoE-based anomalies in
YouTube is 3-fold: irstly, the Reasoner has to coordinate the analysis of the measurements and
results provided by the different analysis modules which participate in the speci ic use case. These
algorithms include anomaly detection, tracking of inter-domain path changes, QoE-basedmeasure-
ments at end devices (if available), or QoE-based YouTube monitoring at the low level, identi ica-
tion of path-congestion from single vantage-point measurements, and the instantiation of active
measurements through geo-distributed measurement platforms such as RIPE Atlas [29]. Secondly,

Plane
16

318627-mPlane
Design of the Reasoner

DBStream

Figure 4: Detection and diagnosis of QoE-based large-scale anomalies in YouTube. The term large-
scale re lects those anomalies which impact a large number of customers. QoE-based measure-
ments at the end-devices are potentially used for diagnosing device-problems. However, as we
target large-scale anomalies, end-device issues are generally discarded from the beginning.

the Reasoner is in charge of guiding the drilling down of any detected anomaly to ind out it root
causes, once an anomaly-detected triggering event is raised by the anomaly detection algorithm.
For doing so, the Reasoner follows the steps dictated by its diagnosis graph. Finally, in case no
root causes are correctly identi ied, the Reasoner triggers additional algorithms to discover new
diagnosis rules to enrich the set of diagnosis rules.

Fig. 4 depicts the con iguration of the different components involved in the detection and diagnosis
of large-scale anomalies in the delivery of YouTube videos impacting the QoE of a large number of
users. Traf ic is passively monitored at the access ISP, in one or multiple Points of Presence (PoPs)
aggregating a large number of customers, using one or multiple mPlane-Tstat passive monitoring
probe(s). Traf ic is monitored at the low-level, generating a large set of low-statistics for all the
downlink and uplink traf ic. Using Tstat low iltering and traf ic classi ication capabilities, only
lows related to YouTube videos are retained for further analysis. Some of these per- low statistics
include: low size, low duration, average download throughput, video bitrate, server IP, RTT, etc..

Flows captured at the passive probes are periodically exported to one of the mPlane’s repositories,
DBStream,which is in charge of performing the large scale analysis of the combinedmeasurements,
which is described next. Tstat lowmeasurements are combined with two other types of measure-

Plane
17

318627-mPlane
Design of the Reasoner

ments: (i) external data coming from geo-localization services such as MaxMind1 and IP-address
analysis services such as Team Cymru Community Services2, and (ii) inter-AS path performance
measurements and routing, generated through the combined usage of the geo-distributed active
measurements frameworkprovidedbyRIPEAtlas [29] andBGPmeasurements coming fromRoute-
Views3.
One important note on this use case is that we perform the YouTubemonitoring from passive mea-
surements at the access ISP and not at the end-terminals, which might highly reduce the visibility
on some of the features of the video lows in case of HTTPS usage. Some other mPlane use cases
show how similar monitoring can be performed directly from end-device measurements, avoiding
traf ic encryption and obfuscation issues at the low transport. This particular use case considers
the additional usage of end-device measurements for diagnosing device-problems. However, as we
target large-scale anomalies impacting a large number of users, end-device issues are generally dis-
carded from the beginning. Indeed, issues at the end device would rarely cause service disruptions
and performance degradation at the large-scale, except from limited situations linked to corrupted
software updates and or compromised terminals (i.e., terminals belonging to a botnet).
Themain triggering event of this use case is the detection of aQoE-based degradation event impact-
ing a large number of users. In the case of YouTube, the download throughput is the main network
KPI that in luences the experience of the user. Even so, our studies [4, 3] have shown that the main
impairment affecting theQoEof the end-userswatchingHTTP video-streaming videos are playback
stallings, i.e., the events when the player stops the playback. One or two stalling events are enough
to heavily impact the experience of the end user. Given that the Tstat lowmeasurements report the
average low download throughput as one of the monitoring KPIs, we rely on our previous results
to better understand how download throughput relates to QoE and stallings in YouTube.
To improve the QoE monitoring capabilities of this speci ic use case, we introduce a simple yet
effective QoE-based KPI tomonitor the QoE of YouTube videos from networkmeasurements. In [4]
we have already devised an approach to estimate stallings in YouTube from passive measurements
at the core network, but the used techniques can not be applied when YouTube lows are carried
over HTTPS. Therefore, we introduced a new approach, based on low-level measurements. This
approach is fully detailed in D4.3. However, for the sake of consistency, we brie ly describe it next.
Intuitively, when the average download throughput (ADT) is lower than the corresponding video
bit rate (VBR), the player buffer becomes gradually empty, ultimately leading to the stalling of the
playback. We de ine β = ADT/VBR as a metric re lecting QoE. As we show in D4.3, no stallings are
observed for β > 1.25, and user experience is rather optimal (MOS> 4). On the other hand, stalling
occurs for values of β < 1.25, resulting in bad quality (MOS≈ 2.5) around β = 1.

3.1.2 Domain-knowledge based Itera ve Rules

As explained in chapter 2, the Reasoner guides the iterative analysis through a set of diagnosing
rules to verify the occurrence (or not) of speci ic signatures explaining the detected issues or symp-
toms. These rules are initially de ined by an expert operator based on his domain knowledge and
operational experience. Given a speci ic symptom event to diagnose – in this speci ic use case, an
important QoE-degradation impacting a large number of users watching YouTube – each of the
rules checks for a prede ined signature characterizing the diagnostic events which might explain

1https://www.maxmind.com
2https://www.team-cymru.org/
3http://routeviews.org/

Plane
18

318627-mPlane
Design of the Reasoner

the symptom, i.e., the root causes.
In order to de ine the set of knowledge based rules to diagnose a problem, the irst step is to identify
which are the possible root causes of such problems, and where could the origins be located. The
large number of possible root causes coupled with the generally much lower number of vantage
points providing information about the symptoms makes the enumeration of the root causes and
their location a complex task. The approach we take is a coarse one, in which we drill down the
detected anomaly to ind out the main part of the end-to-end service delivery responsible for it
(e.g., device, access ISP, Internet, CDN, content provider), rather than the speci ic network element
(e.g., interconnection router, link failure, routing table, etc.). In the speci ic case of Internet-scale
services like YouTube, which are hosted and delivered by highly distributed and omnipresent CDNs,
the origins of the problems could be potentially located at:

• the end terminals: potential issues in the end-terminal are multiple, from software to hard-
ware issues, as well as connectivity and signal strength among others. However, as we said
before, this use case considers QoE impacts in a large number of users, and thus individual
buggy terminal events are out of the scope of the diagnosis analysis. Only problems simulta-
neously affecting a large number of terminals are potentially considered, for example, issues
related to software updates affecting a whole category of devices (i.e., iOS smartphones, Win-
dows 8 OS, etc.).

• the home network: similar to previous observations for end terminal issues, the home net-
work could be a potential issue only in case of problems affecting for example a whole cate-
gory of home gateway devices. However, in this speci ic case, irmware updates aremuch less
frequent than OS and software updates, and thereforewe exclude the home network from the
analysis.

• the access network: diagnosing issues at the access network heavily depends on the type
of access network considered (cellular, WiFi, FTTH, ADSLx). Download throughput problems
at the access can be caused by multiple issues, from congestion events to equipment outages
and miscon igurations.

• the core network of the ISP: problems at the ISP providing the Internet access to the users
are generally the most common ones. These are various, including intra-AS routing, router
outages andequipment failures,miscon igurations, etc.. Theusageof virtualizationand software-
de ined technologies (both the the access and core networks) adds additional sources of po-
tential performance issues.

• the Internet: depending on the location of the YouTube content and on the cache selection
policies used by Google to answer users’ requests, the YouTube lows might have to traverse
multiple ASes from the YouTube servers till reaching the access ISP. YouTubewould normally
assign user requests to the closest servers (in terms of latency), which could even be located
inside the access ISP – Google also follows the “inside the ISP” approach of Akamai, through
the Google Global Cache framework4 – or at the edge, as having direct peering links between
the operator and Google is normal. Still, due to it’s load balancing policies, YouTube might
assign users to other servers farther located, resulting in multi-AS paths from servers to cus-
tomers. As a consequence, problems related to inter-AS routing, congestion at intermediate
ASes, andmulti-AS paths performance degradation are potential root causes for YouTubeQoE
degradation.

4https://peering.google.com/about/ggc.html

Plane
19

318627-mPlane
Design of the Reasoner

• the CDN and the servers: the inal part of the end-to-end service diagnosis corresponds to
the servers hosting and providing the YouTube videos. Software or hardware problems of the
hosting servers, overloading situations ofwrongly dimensioned servers, internal problems of
the hosting datacenter, etc. are possible root causes to additionally diagnose.

Once we have enumerated the list of elements to diagnose, we can de ine a set of rules which shall
be iteratively veri ied to detect the occurrence of events revealing the aforementioned problems.
Recall that theReasonerworks on topof diagnosis events tracked and recordedbydifferent analysis
algorithms, instead of directly operating on top of the rawmeasurements collected by themonitor-
ing probes. Such events are either continuously generated by the running analysis algorithms (e.g.,
anomaly detection, path-change detection, path-congestion detection, QoE-based issues reporting
at end-devices, etc.), or generated on demand, through the analysis of speci ic measurements (e.g.,
check if some speci ic YouTube server is reachable from geo-distributed probes at this time). The
diagnosis rules consists in verifying the occurrence (or not) of these events among the registered
ones by the different components of the mPlane.
The triggering event is generated by the anomaly detection analysis module, and consists of the
detection of a signi icant drop in the QoE of users watching YouTube videos, using the aforemen-
tioned β parameter as monitored KPI. As described in D4.1, the anomaly detection module works
by analyzing the complete empirical distribution of the monitored KPIs. Therefore, one important
step before triggering the diagnosis process is to check the statistical consistency of the detected
anomaly. For example, important deviations in the empirical distribution of theβ KPI can be caused
by a sudden and important drop/increase in the number of YouTube lows, or by an abrupt modi-
ication in the number of users watching YouTube. For doing so, the anomaly detection algorithm
irstly checks for the presence of events related to major statistical variations in the number of
YouTube lows and the number of users watching YouTube. The algorithm additionally de ines a
hysteresis based approach for triggering the diagnosis, in which a number of consecutive anomaly
alarmshave to be lagged before launching the drilling downprocess. The followingnon-exhaustive
list enumerates some of the domain-knowledge based rules for diagnosing this QoE-drop event
through mPlane:

• terminals and home networks:

1. Device-related?→ for all the involved user devices corresponding to the affected lows, check
for the occurrence of end-device issues.

2. Device-OS related? → for all the involved user devices corresponding to the affected lows,
check the heavy hitters of OS type, and the entropy of the OS class.

3. Set-top box related? → for all the involved boxes corresponding to the affected lows, check
the heavy hitters of box-type, and the entropy of the OS class.

• access network:

1. Access-overloading? → check the occurrence of access-overloading events during the last
available days, for the corresponding access networks or slots (e.g., users in the samemobile
cell, or in the same aggregation network, or attached to the same DSLAM, etc.). Compare to
similar events for other users accessing the same YouTube servers through a different access
network. Overloading events tend to be periodic and not constant.

Plane
20

318627-mPlane
Design of the Reasoner

2. Access-con iguration related? → check the occurrence of re-con iguration events related to
the corresponding access networks or slots.

3. Equipment failure related? → check the occurrence of outage events reported by the KPIs
monitored by the ISP at the corresponding access networks.

• core network:

1. Intra-AS routing issues?→ check for routing re-con iguration events tracked by the ISPmon-
itoring system occurring at the times of the detected throughput anomalies. Note that the ISP
might have its ownmPlane instance running, and therefore this and similar ISP-related event
queries can be done through inter-supervisors communication.

2. Congestion-related issues?→ check for co-occurrence of link congestion events.

3. Equipment failure related? → check the occurrence of outage events reported by the KPIs
monitoredby the ISPon its internal equipment, including routing/switching/forwardingequip-
ments.

4. SDN/NFV-related?→ check for (re)con igurationevents, Hypervisor failure-reporting events,
etc. occurring at the times of the detected throughput anomalies.

• Internet:

1. inter-AS path-changes related? → check for end-to-end path change events in the corre-
sponding temporal span of the detected anomaly.

2. path congestion related? check for lagged events related to abrupt increases in packet re-
transmissions per YouTube server, or in (avg RTT - min RTT) – approximation to end-to-end
queuing delay – for all the lows provisioned by the corresponding YouTube servers.

3. intermediate AS issues related? → check for performance degradation events in the inter-
mediate ASes, particularly including latency and congestion in the different end-to-end ASes
path segments.

• CDN servers:

1. YouTube server reachability related?→ verify if geo-distributed reachability measurements
to the identi ied servers result in non-reachability problems.

2. YouTube server hardware/software related? → check for server hardware outages and/or
software-related events at each single identi ied server IP during the tie span of the detected
anomaly.

3. YouTube server overloading?→ check for overloading events at each single identi ied server
IP during the tie span of the detected anomaly.

The reader should note that the necessary measurements to verify this non-exhaustive list of di-
agnosis rules may or may not be available, depending of the topological scope of the monitoring
layer.

Plane
21

318627-mPlane
Design of the Reasoner

3.1.3 Diagnosis/Itera ve Analysis Graph

The previously described diagnosis rules are structured as a diagnosis graph, which is used for
guiding the diagnosis and drill-down of the YouTube QoE-anomaly. As explained before, within
mPlane we consider decision graphs in the form of decision trees. Fig. 5 depicts an exemplifying
decision graph, integrating some of the previous diagnosis rules. As explained in A.4, the branches
of a decision graph can be either conditionally or systematically followed. In our case, the analysis
is conditional, starting from the end terminals till reaching the CDN servers.
The decision graph is structured in ive different blocks, as follows:

1. QoE-based Anomaly Detection.

2. End-device Diagnosis.

3. ISP Diagnosis.

4. Internet paths Diagnosis.

5. CDN servers Diagnosis.

Note that these ive blocks do not fully cover the aforementioned set of domain-knowledge based
rules. Still, the description serves as an example on how to build a diagnosis graph within the
mPlane framework. The QoE-based Anomaly Detection block consists of the anomaly detection
analysis module, coupled with the QoE-baed monitoring for understanding whether the detected
changes are causing QoE-based degradations or not. The End-device Diagnosis block focuses on
the speci ic analysis of the type of end device associated to the anomalous YouTube lows. The ISP
Diagnosis block consists of the diagnosis of the access ISP. The Internet paths Diagnosis block fo-
cuses on the diagnosis of the end-to-end inter-AS paths, including both routing and path congestion
analysis. Finally, the CDN servers Diagnosis block allows to identify server-related performance
issues from end-to-endmeasurements, assuming that access to in-CDNmeasurements is not avail-
able for the realization of this use case.

Plane
22

318627-mPlane
Design of the Reasoner

YesNo

YouTube Flow Throughput
Distribution Change

Drop in QoE KPI
\beta = avg_Th/VBR

Check statistical consistency
drop of flows, users, bytes,
packets

Extract dominant
device/OS type

Flag device/soft
issue

local device diagnosis
(out of scope for our analysis)

Identify srv IPs and usr IPs

ISP diagnosis
(needs in-ISP measurements)

Flag ISP
issue

RIPE Atlas
locate low
perf. ASes

Flag AS
issue & ASes

Events related to device/OS type?
(entropy drop event)

Path perf. (congestion) events?
(increase in rtx, avg_rtt-min_rtt)

Cache change events?

server events?
(elaboration times
TCP flags entropy)

Flag server
issues

P > \lambda_i

P > \lambda_i

P > \lambda_i

P > \lambda_i

No

Yes

Yes No

No

Yes

Yes

No

Yes

No

Path modification events?

RIPE Atlas
Server IPs
Anycast?

Unknown
issues

1

2

3

4

5

Figure 5: Diagnosis graph associated to the detection and troubleshooting support of large-scale
QoE-based anomalies in YouTube.

3.2 Suppor ng DaaS Troubleshoo ng

The goal of this use case is to continuously monitoring the Quality of Experience (QoE) of users
accessing content using Desktop-as-a-Service solutions through thin-client connections. When-
ever the users experience a poor QoE, the mPlane infrastructure, particularly the Reasoner, acts
for troubleshooting its cause and iteratively responds with solutions to improve the overall users’
experience.

3.2.1 The Role of the Reasoner

Fig. 6 outlines the role of each mPlane’s component in this use case and highlights the input of the
Reasoner, based on which troubleshooting decisions are taken.
At irst, probes continuously monitor thin-client connections and passively collect IP-level features
that can be accessed from the thin-client connection while it is running, such as packet size, rate,

Plane
23

318627-mPlane
Design of the Reasoner

Figure 6: mPlane components for the use case “Supporting DaaS troubleshooting”. Given a thin-
client connection, the Reasoner observes as input the evolution of the user experience over time,
and triggers actions based on how the quality evolves.

inter-arrival time, and TCP-level features such as payload length and number of observed packets,
whether they carry data or acknowledge only, TCP lags, etc. These features are collected on a per-
connection basis, i.e., on a per-thin client basis, and within sliding observation time-window.
Periodically, the probe sends the features extracted from a given thin-client connection to the cen-
tral repository, which stores them for the Analysismodule to use. Based on these features, the Anal-
ysis module is responsible for classifying the connection, that is, inferring the application running
on top of the thin-client connection during a time-window through statistical traf ic classi ication
techniques, e.g., Support Vector Machine (SVM).
By combining the information from the Analysis module with the network conditions along the
path between the thin-client and the remote server, the Reasoner can eventually infer the temporal
evolution of users’ QoE. Note that those network conditions are collected in the irst place by active
(traceroute-like) mPlane probes, which periodically send them to the central repository.

3.2.2 Domain-knowledge based Itera ve Rules

The Reasoner exploits two information to infer users’ QoE: the application running on top of the
thin-client connection, and the current delay along the path where the connection is taking place.
To this purpose, the analysis algorithm periodically generates events as follows:

<flow_type, 2013-10-21-12:30:00, 2013-10-21-12:35:00,
DaaS(SVM), {flow_tuple, RTT, ...}>

Different network conditions lead users to perceive different QoE when interacting with the same
application. On the other side, under the samenetwork condition, usersmay perceive different QoE
depending on the speci ic application in use.

Plane
24

318627-mPlane
Design of the Reasoner

QoE Poor Suf icient Goodcategory
Audio RTT ≥450ms 120ms< RTT <450ms RTT ≤120ms
Data RTT ≥400ms 100ms< RTT <400ms RTT ≤100ms
Video RTT ≥70ms 50ms< RTT <70ms RTT ≤50ms

Table 1: Threshold values based on the average RTT of the thin-client connections within a given
time-window.

Given the class of application run by the thin-client user, the Reasoner compares the average Round
Trip Time of the connectionwithin an observationwindow (RTT) against a set of threshold values,
and returns a QoE category. Threshold values are set for each class of applications, i.e., Data, Audio,
Video, and are based on latency values. To set the threshold values, we run subjective tests for
quality assessment by following the Absolute Category Rating method as formalized in ITU-T Rec.
P.910 with the help of fourteen people. As a result, for each class of applications we were able to
identify requirements in terms of Round Trip Time (RTT) values that make the users experience
a good, suf icient or bad quality of the thin-client connections. Table 1 reports on such threshold
values.
By comparing the low type with the current value of RTT, the Reasoner can work on symptom
events of the following kind:

<poor_QoE, 2013-10-21-12:30:00, 2013-10-21-12:35:00,
DaaS(), {flow_tuple}>

3.2.3 Diagnosis/Itera ve Analysis Graph

Whenever the Reasoner detects a poor QoE for a user running a thin-client connection, it irst tries
to identify which is the node causing the bottleneck along the path (included the two end nodes
of the connection). To do that, it interacts with the mPlane Supervisor to instrument probes for
running latency measurements on the path between the thin-client user and the remote server. At
the same time, the Reasoner can interact with the Repository to look for the same information, in
case the measurements are already running on the probes. Events that the Reasoner receives are
as follow:

<end_point, 2013-10-21-12:30:00, 2013-10-21-12:35:00,
traceroute, {(hop,delay),...}>

In case the result of the measurements returns that the bottleneck is due to a node along the path,
the Reasoner tries to circumvent the responsible node by migrating the remote server to another
datacenter. Alternatively, if the bottleneck is due to the remote server, the Reasoner triggers the
migration of such server within the same datacenter, to of load the machine where the service is
currently running. While doing that, the Reasoner keeps a history of when such events occur, to
ind patterns and be preemptive in the future – e.g., a given connection runs into the same issue
with a known temporal periodicity.
An overall schema of the analysis graph is provided in Fig. 7. Each decisionwill lead to a generation
of the corresponding diagnosis event.

Plane
25

318627-mPlane
Design of the Reasoner

Figure 7: Desktop-as-a-Service troubleshooting: Diagnosis analysis graph. A change is detected in
case of poor QoE of a user running a thin-client connection.

3.3 Es ma ng Content and Service Popularity for Network Op-
miza on

The goal of this use case is to optimize the quality of experience of the user and the network load
by inferring the expected-to-be popular contents and identifying optimal objects to cache in a given
portion of the network. To achieve this goal, we exploit the mPlane architecture in order to collect
logs about the traf ic lowing in the network, and extract the contents the users download in sev-
eral points in the network. The acquired information is exploited to predict the popularity of the
contents and suggest ef icient caching replacement strategies to the Reasoner.

3.3.1 The Role of the Reasoner

Differently from use cases that include troubleshooting andwhere iterative reasoning is practically
mandatory, the role of Reasoner is basic for the content popularity estimation use case. Practi-
cally, it orchestrates the two different analysis modules that monitor and estimate the popularity
evolution of contents observed in the traf ic and raises alarms to notify which contents are becom-
ing popular and which network portions. Such information can be exploited, e.g., to optimize the
caching of labeled-as-popular contents in a Content Distribution system with hierarchical infras-
tructure.
Probes located in different points of the network continuously collect information about the re-
quests of the users, and stream requests to the central repository. For each request we store an
identi ier of the content (e.g., the URL to access it), the associated timestamp and the network loca-
tion of the probe. Based on these features, the analysis modules are responsible for predicting the
future popularity of each requested content at each part of the network (i.e., the probe location).
This task is accomplished by employing two different analysis modules: the irst one, named Pop-
ularity Classi ier, takes as input the popularity history for a content, it generates a signature for its
request arrival process using Gaussian Mixture Modelling techniques, and classi ies such content
using a methodology based on the Latent Dirichlet allocation, whose classi ication result is stored
at the repository. In parallel, for each observed content the Online Predictor explores the classi i-
cation results to ind the popularity pattern which maximizes a likelihood function. Once the most
similar popularity pattern has been found, we use it to predict its future popularity. Thus, if the

Plane
26

318627-mPlane
Design of the Reasoner

number of future views overcomes a static threshold N , an event is triggered to the Reasoner to
notify which contents are becoming popular and where in the network.
In its current status, the Reasoner gets the list of (estimated) popular contents from the analy-
sis modules that run continuously, together with information about the network portion (i.e., the
probe) in which such content was observed. Following the terminology de ined in Sec. 2 these cor-
respond to symptom events containing the following parameters:

• Symptom event: Increasing Popularity

• Probe location: indicates the location of the probe at which the content has been labeled
at popular.

• Time span: indicates the time period at which the content is expected to be popular.

• Predictor: the name of the analysis module running the predictor algorithm.

• URL: contains the URL to the content labeled as popular.

Hence, a possible example of symptom event signaling the occurrence of a popular content in the
network could be:

<Popularity-event, PoP_1, 2014-10-21-12:30:00, 2013-10-21-12:35:00,
GMM-LDA, {url=http://path.to/acme/hotcontent.jpg}>

3.3.2 Domain-knowledge based Itera ve Rules

Given the above symptom events the decision rules we de ine for this use case are straightforward.
Essentially, we de ine several decision rules to measure the spatial breadth in the network of the
popularity of each content. This is particularly welcome for hierarchically structured Content De-
livery Networks (CDNs): intuitively, the spatially wider the popularity of the content, the higher
the position in the hierarchy of the server which should cache it. Conversely, if the content shows
a localized popularity, it should be cached in leaf server in the CDN hierarchy. Therefore, for this
use case, each decision rule aims at identifying the different locations at which a content has been
labeled as potentially popular, as depicted in the following example:

if

Popularity_increase :
Content Popularity Increase in PoP_1, ISP_A

&
Popularity_increase :
Content Popularity Increase in PoP_2, ISP_A

&
Popularity_increase :
Content Popularity Increase in PoP_1, ISP_B

&
Popularity_increase :
Content Popularity Increase in PoP_2, ISP_B

→ Spatial Popuparity breadth:
All PoPs.

Plane
27

318627-mPlane
Design of the Reasoner

Loca%on	 =	 A	 &	 B	 &	 C	 ?	

Loca%on	 =	 A	 &	 B?	 Loca%on	 =	 A	 &	 C	 ?	 Loca%on	 =	 B	 &	 C	 ?	

Loca%on	 =	 A?	 Loca%on	 =	 B?	 Loca%on	 =	 C	 ?	

Cache	 Level	 =	 1a	

Cache	 Level	 =	 2a	

Cache	 Level	 =	 0	 No	
Yes	

Cache	 Level	 =	 1b	 Cache	 Level	 =	 1c	

Cache	 Level	 =	 2b	 Cache	 Level	 =	 2c	

Figure 8: Content Popularity Estimation: Diagnosis analysis graph. The graph determines the pop-
ularity spread in the network for each labeled-as-popular content.

3.3.3 Diagnosis/Itera ve Analysis Graph

As rules aim at identifying the network locations at which a given content has been labeled as pop-
ular, the diagnosis graph simply determines the level in the CDN hierarchy at which the caching
scheme should store the content and the network location(s). A simpli ied example of the diagno-
sis graph is depicted in Fig. 8. As shown, if the content is labeled as potentially popular at all the
probes, then it worths being cached in the highest caching level. Otherwise, it has to be cached at
lower, more localized levels of the hierarchy.
Finally, we remark that this use case does not need any iterative reasoning to, and its working low
does not need any “learning capabilities” to be expanded automatically. However, the reasoner can
improve its prediction performance as the LDA-based classi ier has been designed to improve its
accuracy over time.

Plane
28

318627-mPlane
Design of the Reasoner

3.4 Passive Content Cura on

There is more content on the web today than what users can individually discover and consume.
This fact gave birth to a plethora of content curation tools and services. We refer to content curation
as the process of identifying and organizing online content so that users can easily focus on what
is relevant and interesting. A promising family of content curation tools relies on crowdsourcing
with Reddit and Digg being prominent examples. For instance, in Reddit, users submit a link to
their favorite content (e.g., a video or a news article), and the “crowd” of the other users rate it. The
higher the rate, the higher the chance that Reddit shows the link on their homepage. This results
in a platform that tracks the most relevant content on the web according to the reddit community.
This use case takes a different approach to content curation and demonstrates howmPlane can be
used to provide such a service based on the only passive observation of network content traf ic.
Instead of relying on users to actively rate content, we infer interesting content from the crowd’s
browsing behavior. We believe that content clicks are a good measure of interest because users
often have an idea about what they are about to click on (because they saw a preview, a friend
recommended the link etc). Once the clicks are inferred, we track the evolution of their timeseries
to compile a digest of the web URLs that are likely to attract the attention of the crowd at a given
moment in time. This digest of URLs is then presented in a nice web interface to the inal users.

3.4.1 The Role of the Reasoner

This use case is different fromuse cases that include troubleshooting andwhere iterative reasoning
is more than a must. At this point of the project, the role of Reasoner consists so far mainly in
orchestrating the different analysismodules to track rising contents and take decisions aboutwhich
content URLs to promote to users.
In its current status, the Reasoner’s analysis modules get as an input events corresponding to the
detection of interesting URLs that are getting the attention of the crowd (detection done by the
scalable data analysis algorithms that run continuously on the repositories). It starts then to follow
them more closely. The goal is to elect among these URLs the ones that will make it to the inal
promotion web-page. Therefore, considering the terminology de ined in Sec. 2, a symptom event
will contain the following information:

• Symptom event: Interesting URL

• Probe location: indicates the location of the probe at which the URL has been elected.

• Time span: indicates the time period at which the interesting URL has been captured.

• Interesting URL detector: the name of the analysis module running the detector algo-
rithm.

• URL: contains the interesting URL.

Thus, an example of symptom event reporting the occurrence of an interesting URL may be struc-
tured as follows:

<Interesting-URL, PoP_1, 2014-10-21-12:30:00, 2013-10-21-12:35:00,
F-Ref+F-type detector, {url=http://path.to/acme/interesting-url/}>

Plane
29

318627-mPlane
Design of the Reasoner

Since not all interesting URLs are worth recommending to the users, the Reasoner leverages a set
of analysis modules to classify and pinpoint the interesting URLs whose content may represent a
good candidate to be promoted. In particular, content aggregation web pages (e.g., the home page
of a popular online newspaper that promotes a wide number of news) are popular but do not per-
tain to a speci ic news or article. The Reasoner, with the additional help of the content vs portal
analysis module (that will be detailed in next deliverable), must decide whether if an interesting-
URL corresponds to a content or to a portal. In order to do so, the Reasoner continuously updates
a knowledge database illed with URLs that correspond to Portals (which are URLs that we do not
want our system to recommend). The Reasoner, thanks to the content vs portal analysis module,
learns from the past time series of a given interesting URL to infer such an information. Intuitively,
if the URL timeseries shows a daily periodicity, then it corresponds to a portal. The content versus
portal analysis module continuously pulls symptom events containing interesting URLs from the
repository, if the URL is present in the portal knowledge database, it is discarded, otherwise an on-
line heuristic (less precise) is applied to guess whether this unknown URL corresponds to a Portal.
If not, a content URL detection event is created. The Reasoner then appends this URL to the list of
followedURLs. By chaining several analysismodules as the one above described, we forms a simple
primitive diagnosis graph whose role is to diagnose which URLs correspond to content URLs and
which ones should be tagged as portal URLs.
Finally, for the followed URLs, the Reasoner, leveraging the Track rising contentmodule, and instru-
menting the supervisor, asks the repository to get their popularity and timeseries. Our promotion
algorithms currently elect three types of contents. The irst is a live stream of public news that are
attracting the attention of the crowd. The second promotes a mixture of content that is at the same
time fresh and getting popular. The third simply promotes top popular content.
Advantageously, the Reasoner can infer advanced knowledge about the promoted URLs in terms of
location. For instance, it is valuable to guess what content is local to the region (e.g., nearby shops
and restaurants, or local news) as opposed to contents that are valuable nation-wide. In order to
get this information, the Reasoner must couple the historical information about content visits with
their geographical source. For instance, this geographical information could be very valuable for
mobile users to whom we can provide suggestions of content that has a local signi ication with
respect to the place in which they are.
In the future, the Reasoner should request the analysismodule of the content popularity estimation
use case, to get more information about the future evolution of a content URL that it is following.

3.4.2 Domain-knowledge based Itera ve Rules

Given the symptom events reporting the interesting URLs detected by continuous scalable algo-
rithms running at the repository, the Reasoner uses some basic rules to diagnose whether the in-
teresting URLs correspond to content URLs (thus worth recommending) or to Portal URLs (URLs
that correspond to well known home pages, and thus not worth recommending).
A irst set of rules, that wewill detail in the next deliverable as part of the Content vs Portal analysis
module, can be divided into two types. The irst concerns rules that can be applied online imme-
diately after the happening of an interesting URL detection event. The second are rules that can
be applied only after an observation period for a given interesting URL. An example for the irst
family are rules that rely on the size or the structure of the interesting URL names. An example of
the second type of rules are rules that rely on the history of the visits of a given interesting URLs
(e.g. of rules: if a URL shows one day periodicity, then it is likely to be a portal). An example of

Plane
30

318627-mPlane
Design of the Reasoner

decision rule that is responsible for iltering out interesting URLs corresponding to portals and can
take decisions online is structured as follows:

if

Interesting_URL_length :
URL length above threshold

&
!Interesting_URL_path :
URL has no path

→
Interesting URL:

Portal-URL.

Additional rules, need to be applied then following the event of detecting a content-URL. These
rules are needed to decide which content-URLs to promote to the inal promotion web page. These
rules are simple at this point of the work, and simply rely on assigning scores to each content-URL
taking into account, either their popularity, their freshness, their type (news, blogs) or a combina-
tion of all these criteria. An example of decision rule that is responsible for detecting content-URLs
corresponding to news articles is structured as follows:

if
{

Content_URL_News :
URL's hostname is news portal

}
→ Content-URL:

News-URL.

3.4.3 Diagnosis/Itera ve Analysis Graph

Diagnosing content URLs, and discarding Portal URLs, can be represented by the simple diagnosis
graph depicted in Fig. 9

Portal	 vs	 Content	 Rules	

Promo0on	 Rules	

Interes0ng	 URL	 i	
Hot?	

News?	

Fresh?	

i	 is	 content-‐URL	

Go	 to	 HOT	 tab	

Go	 to	 News	 tab	

Go	 to	 Fresh	 News	 tab	

Online	 Classifier	

Offline	 Classifier	

Length(URL)	 >	 Thurl	 	
&	 	

Length(Path)	 >	 Thpath?	

URL-‐Length	 >	 Thlen	 	
&	

Periodicity	 >	 Thper?	

No	
Yes	 i	 is	 portal-‐URL	

Unknown	

Figure 9: Interesting URL diagnosis graph.
The diagnosis graph takes as an input a stream of symptom events containing interesting URLs
and outputs, irst, diagnosis events as<interesting-URLs, label (content-URL/portal-URL)> and, if

Plane
31

318627-mPlane
Design of the Reasoner

labeled as content, the graph runs further analysismodules to understand the nature of the content.
Depending on the outcome, a diagnosis event is generated to drive the URL to the most suitable
curation platform section (e.g., a website tab or page).
As explained above, the rules to distinguish portals from content-URLs can be divided in two cate-
gories: those that rely on the history of visits for a given URL – typically more accurate –, and those
that analyze the structure of the URL (URL length and path) – usually less precise. The irst rules re-
quire to collect observations for a few days before being able to correctly take a decision, while the
latter can be applied to take decisions on-the- ly. Thus, we split the Portal vs Content classi ication
work low into two steps, as depicted in Fig. 9 in whichwe report an example of the diagnosis graph
for this use case. First, we run the rules composing theOf line Classi ier, which collects observations
about all detected interesting URLs and exploit this “knowledge” to distinguish URLs correspond-
ing to portals to those pointing to actual content. In a nutshell, as soon as the interesting-URL i has
been observed enough (W) time (each observation corresponding to the event of a distinct visit to
the URL i), i can be classi ied using the of line domain knowledge rules (which is the most accu-
rate since more informed), and the outcome ci is stored in the Knowledge Database, K. When the
information about the URL contained in K is too poor, the Of line classi ier returns an “unknown”
outcome, and the diagnosis graph relies on a simpler, but less accurate, set of classi ication rules.
The Online Classi ier in Fig. 9 performs classi ication on-the- ly based on the rules which do not
need any knowledge to execute. As shown above, these are the length of the interesting URL and
the presence of a path. These base on the intuition that URLs pointing to portals are usually shorter
and do not contain a path.
Therefore, for every interesting-URL i, we irst rely on the Of line Portal vs Content classi ier result,
if available, i.e., we verify the presence of i inK. Otherwise, we use the faster, but less precise,Online
classi ier result.
Finally, once we get the outcome on this classi ication, interesting URLs pointing to portals are dis-
carded, while remaining content-URLs undergo the Promotion Rules branch of the diagnosis graph.
The objective of this further analysis is to infer the most suitable promotion section in the content
curation platform, that could be, e.g., a website containingmultiple per-content-kind tabs or pages.
The promotion rules investigate the nature of the content by using different means, and generate
diagnosis events which will be processed by the back-end of the content curation platform. For
instance, we rely on a slightly modi ied version of the promotion rule employed by Reddit to deter-
mine which contents are “Hot” in the network, and we distinguish URLs pointing to news articles
comparing their hostnames against a pre-compiled set of news portals (see the example above).
Finally, if a URL is classi ied as news and it has never been seen before, it is labeled as Fresh.

Plane
32

318627-mPlane
Design of the Reasoner

4 Conclusions

This deliverable presented the design and speci ication of the different logical components of the
mPlane Reasoner. The Reasoner-relevant concepts were exempli ied through the realization of the
iterative analysis process for selected use cases, such that the reader can get amore tangible picture
of how the overall mPlane Reasoner approach applies in the practice. Along with these speci ic
Reasoner instantiations, the deliverable provided a set of domain knowledge based rules which
give a basic Knowledge Structure for mPlane, allowing the instantiation of new diagnosis graphs to
tackle new use cases.
Finally, taking into account that relying exclusively on analysis rules de ined on the basis of domain
knowledge and operational experience can result in lower analysis performance, the deliverable
introduced (in the appendix) different learning approaches for extending and/or generating new
analysis rules within the Knowledge Structure.
The design and speci ication of the Reasonerwould be complementedwith the overall, inal release
of the complete Supervisor components, including all the necessary interfaces. This is planned
for the inal WP4 deliverable, D4.4. Still, the core of the system as presented in this deliverable
already brings all the different logical components required for the complete mPlane to operate as
envisioned.

Plane
33

318627-mPlane
Design of the Reasoner

A Learning Approaches for the Reasoner

This section presents a set of different learning techniques to explore data and discover interest-
ing and hidden relations among features related to the analyzed use cases. The inal goal of such
learning approaches is to enhance the analysis capabilities of the Reasoner, by extending the set
of relevant events and analysis rules initially de ined by expert domain knowledge. Besides the
standard battery of supervised and unsupervised machine learning and data mining approaches
usually applied in the domain of data analysis and knowledge extraction, we are working in some
speci ic promising approaches for the case of real network measurements, which by nature are
noisy, unlabeled, and do not always follow speci ic probabilistic distributions.
In particular, we present an approach for extracting knowledge out of unlabeled data based on sub-
space clustering techniques as well as an approach for exploratory data analysis based on associa-
tion rule mining techniques. In addition, we present some basic yet complementary discussion on
the idea of correlatingmeasurements fromdifferent sources, aswell as discussing some interesting
considerations for building diagnosis graphs within the Reasoner framework.

A.1 Clustering for Unsupervised Learning

When it comes to learning techniques for extracting useful information anddetect the occurrence of
speci ic patterns in large amounts of measurements, two different approaches are applied: super-
vised learning for classi ication and prediction, and unsupervised learning for pattern extraction
and data mining. A supervised approach consists in building a model to recognize or predict the
class (i.e., classi ication) or the value (i.e., regression or prediction) of a pattern, i.e., a set of features
describing certain element under analysis. In the mPlane context, a pattern could be for example a
traf ic low, a speci ic network event, etc.. Supervised-based models for recognition and prediction
are generally highly effective to analyze known patterns, provided that a good learning set of pat-
terns correctly labeled is available for training (whatwe call the ground truth). Supervised learning
can also be applied to identify which are the best features describing a certain known pattern, i.e., it
can be applied for feature selection. The main limitation of supervised-based learning approaches
is that of requiring a well de ined ground truth set of measurements to provide proper results. De-
pending on the nature of the data, labeling a dataset is generally not an easy task, which can be done
either manually or under very controlled situations. Labeling datasets is not only time consuming
and expensive, but also very prone to errors in the practice. In addition, in the case of traf ic mea-
surements in the wild, i.e., in the case of Internet based measurements, it is extremely dif icult to
obtain proper ground truth to construct classi ication and/or prediction models.

Supervised learning
for classification
and prediction

Unsupervised learning
for patterns extraction

and data mining

Figure 10: Different learning approaches for extracting useful information and detect the occur-
rence of speci ic patterns in large amounts of measurements.

Plane
34

318627-mPlane
Design of the Reasoner

Our thesis is that supervised-based approaches are not suf icient to tackle the data analysis and
knowledge generation problem when considering mPlane-like measurements, and that a holistic
solution should also include knowledge-independent or ground-truth-independent analysis tech-
niques. To this aim we propose an unsupervised learning based approach that is capable of de-
tecting the occurrence of novel and signi icant changes in the features describing speci ic patterns
without relying on labeled datasets and/or training. Based on the observation that novel network
events are, by de inition, events that deviate markedly from themajority of them, the proposed un-
supervised approach relies on robust clustering algorithms to identify new clusters and outliers.
In particular, we devised a robust multi-clustering algorithm based on a combination of Sub-Space
Clustering (SSC) [26], Density-based Clustering [11], and Evidence Accumulation Clustering (EAC)
[13] techniques. The method uses this multi-clustering algorithm to blindly extract the patterns
which are novel and more relevant. The evidence of relevant structures provided by the clustering
algorithm is used to produce iltering rules that characterize the identi ied patterns and simplify its
analysis. The characterization of novel patterns can be in general a very hard and time-consuming
task, particularly when dealing with unknown patterns. Even experts can be quickly overwhelmed
if simple and easy-to-interpret information is not provided to prioritize the time spent in the anal-
ysis. To alleviate this issue, the most relevant iltering rules are combined into a new traf ic sig-
nature that characterizes the identi ied patterns in simple terms. This signature can ultimately be
integrated into the reasoner’s knowledge base to identify its presence in the future, extending as
such the complete diagnosis process.

A.1.1 Unsupervised Pa erns Analysis

The unsupervised analysis takes as input a set of unlabeled patterns to analyze (e.g., IP lows, net-
workevents, time-slotted traf icmeasurements, etc.). Without loss of generality, letY = {y1, . . . , yn}
be the set ofn unlabeled patterns to analyze. Each pattern yi ∈ Y is described by a set ofm features.
Let xi ∈ Rm be the vector of traf ic features describing pattern yi, and X = {x1, . . . , xn} ∈ Rn×m

the complete matrix of features, referred to as the feature space.
The selection of features is a key issue to any learning-based algorithm, and it becomes critical
in the case of unsupervised analysis, because there is no additional information to select the most
relevant set. The features used can be both selected based on domain knowledge, and/or on a take-
all basis, selecting as many features as possible, and then deciding which are the ones offering the
best structure description. As we said before, such a feature selection can be directly done in the
case of labeled data, but is more challenging to perform in the unsupervised case. Still, techniques
based on Sub-Space Clustering [26] can be applied in this case to select the best sub-spaces of the
feature spacewhich provide the best structural information, based on the de inition of a structural-
information metric.
The complete approach is based on clustering techniques applied to X. The objective of clustering
is to partition a set of unlabeled patterns into homogeneous groups of similar characteristics or
clusters, based on some measure of similarity. Samples that do not belong to any of these clusters
are classi ied as outliers. Our goal is to identify in Y the different patterns that may reveal novel
and relevant information, considering as baseline the normal behavior of the patterns. For doing
so, the reader should note that novelty may consist of either outliers (i.e., single isolated patterns)
or compact small-size clusters, depending on theway patterns are described (e.g., different ways of
aggregating traf ic measurements). Unfortunately, even if hundreds of clustering algorithms exist
[17], it is very dif icult to ind a single one that can handle all types of cluster shapes and sizes.

Plane
35

318627-mPlane
Design of the Reasoner

Figure 11: Sub-Space Clustering: 2-dimensional sub-spaces X1, X2, and X3 are obtain from a 3-
dimensional feature space X by simple projection. Units in the graph are irrelevant.

Different clustering algorithms produce different partitions of data, and even the same clustering
algorithm provides different results when using different initializations and/or different algorithm
parameters. This is in fact one of the major drawbacks in current cluster analysis techniques: the
lack of robustness.
To avoid such a limitation, we have developed a divide & conquer clustering approach, using the
notions of clustering ensemble and multiple clusterings combination. These ideas are well-known
within the machine-learning community, but the application of these techniques for network mea-
surements analysis is novel and appealing: why not taking advantage of the information provided
bymultiple partitions of X to improve clustering robustness and identi ication of structure? A clus-
tering ensemble P consists of a set of multiple partitions Pi produced for the same data. Each par-
tition provides an independent evidence of data structure, which can be combined to construct a
new measure of similarity that better re lects natural groupings and outliers. There are different
ways to produce a clustering ensemble. For example, multiple partitions can be generated by using
different clustering algorithms, or by applying the same clustering algorithmwith different setting
parameters or initializations. We particularly use Sub-Space Clustering (SSC) [26] to produce mul-
tiple data partitions, doing density-based clustering in N different sub-spaces Xi of the original
space.

A.1.2 Clustering Ensemble and Sub-Space Clustering

Instead of directly partitioning the complete feature space X using a traditional inter-pattern sim-
ilarity measure (i.e., the Euclidean distance), we do parallel clustering in N different sub-spaces
Xi ⊂ X of smaller dimensions, obtaining N different partitions Pi of the patterns in Y. Each sub-
space Xi is constructed using only k < m traf ic features; this permits to analyze the structure of
X from N(m, k) different perspectives, using a iner-grained resolution. Each Xi ⊂ X is obtained
by projection of X into k features out of them attributes, resulting inN k-dimensional sub-spaces.
To deeply explore the complete feature space, the number of sub-spaces N that are analyzed cor-
responds to the number of k combinations obtained fromm.
Fig. 11 explains this approach; in the example, a 3-dimensional feature space X is projected into
N = 3 2-dimensional sub-spaces X1, X2, and X3, which are then independently partitioned via
density-based clustering. Each partition Pi is obtained by applying DBSCAN [11] to sub-space Xi.

Plane
36

318627-mPlane
Design of the Reasoner

DBSCAN is a powerful clustering algorithm that discovers clusters of arbitrary shapes and sizes
[17], relying on a density-based notion of clusters: clusters are high-density regions of the space,
separated by low-density areas. This algorithm perfectly its our unsupervised analysis, because
it is not necessary to specify a-priori dif icult to set parameters such as the number of clusters to
identify.
The results obtained by clustering sub-space Xi are twofold: a set of p(i) clusters {Ci

1, C
i
2, .., C

i
p(i)}

and a set of q(i) outliers {oi1, oi2, .., oiq(i)}. To set the number of dimensions k of each sub-space,
we take a very useful property of monotonicity in clustering sets, known as the downward closure
property: if a collection of elements is a cluster in a k-dimensional space, then it is also part of a
cluster in any (k − 1) projections of this space. This directly implies that, if there exists any inter-
esting evidence of density in X, it will certainly be present in its lowest-dimensional sub-spaces.
Using small values for k provides several advantages: irstly, doing clustering in low-dimensional
spaces is more ef icient and faster than clustering in bigger dimensions. Secondly, density-based
clustering algorithms such as DBSCAN provide better results in low-dimensional spaces [17], be-
cause high-dimensional spaces are usually sparse, making it dif icult to distinguish between high
and low density regions. Finally, clustering multiple low-dimensional sub-spaces provides a iner-
grained analysis, which improves the analysis characteristics. Our approach uses therefore k = 2
for Sub-Space Clustering, which givesN = m(m− 1)/2 partitions.
Having produced the N partitions, the question now is how to use the information provided by
the multiple clusters and outliers identi ied by density-based clustering. A possible answer is pro-
vided in [13], where authors introduced the idea of Evidence Accumulation Clustering (EAC). EAC
uses the clustering results of multiple partitions to produce a new inter-patterns similarity mea-
sure that better re lects their natural groupings. In this direction, the information provided by the
partitions Pi is combined to produce a new similarity measure between the patterns in Y, which
has the paramount advantage of clearly highlighting both those outliers and small-size clusters that
were simultaneously identi ied in different sub-spaces. This new similarity measure is inally used
to easily extract the relevant novel patterns from the rest. Brie ly speaking, if we can ind a group
of patterns that are remarkably different from the rest in different sub-spaces, then we have found
an novel piece of information worth to lag and further analyze.

A.1.3 Automa c Characteriza on of Detected Pa erns

The following task after the detection of a group of relevant patterns is to automatically produce
a set of K iltering rules fk(Y), k = 1, ..,K to characterize them. In the one hand, such iltering
rules provide useful insights on the nature of the patterns, easing the analysis task of the network
operator. On the other hand, different rules can be combined to construct a signature of the novel
data, which can be used to easily detect its occurrence in the future. To produce iltering rules fk(Y),
the algorithm selects those sub-spacesXiwhere the separation between the identi ied patterns and
the rest is the biggest. We de ine two different classes of iltering rule: absolute rules fA(Y) and
relative rules fR(Y). Absolute rules are only used in the characterization of small-size clusters, and
correspond to the presence of dominant features in the patterns of the relevant cluster. An absolute
rule for feature j has the form fA(Y) = {yi ∈ Y : xi(j) == λ}. On the other hand, relative iltering
rules depend on the relative separation between novel and previously seen patterns. Basically,
if the patters are well separated from the rest in a certain partition Pi, then the features of the
corresponding sub-space Xi are good candidates to de ine a relative iltering rule. A relative rule
de ined for feature j has the form fR(Y) = {yi ∈ Y : xi(j) < λ or xi(j) > λ}. We shall also de ine

Plane
37

318627-mPlane
Design of the Reasoner

Algorithm 1 Evidence Accumulation for Ranking Outliers (EA4RO)
1: Initialization:
2: Set dissimilarity vectorD to a null n× 1 vector
3: Set smallest cluster-size nmin = α . n
4: for i = 1 : N do
5: Set density neighborhood δi for DBSCAN
6: Pi = DBSCAN (Xi, δi, nmin)

7: UpdateD(j), ∀ outlier oij ∈ Pi:
8: wi← n

(n− nmaxi) + ϵ

9: D(j)← D(j) + dM(oij , Ci
max)wi

10: end for
11: Rank patterns: Drank = sort(D)
12: Set detection threshold: Th = ind-slope-break(Drank)

a covering relation between iltering rules: we say that rule f1 covers rule f2 ↔ f2(Y) ⊂ f1(Y). If
two or more rules overlap (i.e., they are associated to the same feature), the algorithm keeps the
one that covers the rest.
In order to construct a compact signature describing the detected patterns, we have to devise a pro-
cedure to select the most discriminant iltering rules. Absolute rules are important, because they
de ine inherent characteristics of the patterns. Regarding relatives rules, their relevance is directly
tied to the degree of separation between patterns. In the case of outliers, we select theK features
for which the normalized distance to the normal-operation patterns (statistically represented by
thebiggest cluster in each sub-space) is among the top-K biggest distances. In the case of small-size
clusters, we rank the degree of separation to the rest of the clusters using the well-known Fisher
Score (FS) [16], and select the top-K ranked rules. The FS basically measures the separation be-
tween clusters, relative to the total variance within each cluster. To inally construct the signature,
the absolute rules and the top-K relative rules are combined into a single inclusive predicate, using
the covering relation in case of overlapping rules.

A.1.4 Ranking Outliers using Evidence Accumula on

The previously described approach can also be adapted to exclusively focus on the identi ication
of outliers. For doing so, we implement a particular algorithm for Evidence Accumulation, called
Evidence Accumulation for Ranking Outliers (EA4RO): instead of producing a similarity measure
between the n different patterns described in X, EA4RO constructs a dissimilarity vectorD ∈ Rn

in which it accumulates the distance between the different outliers oij found in each sub-space i =
1, .., N and the centroid of the corresponding sub-space-biggest-clusterCi

max. The idea is to clearly
highlight those patterns that are far from the normal-operation patterns at each of the different
sub-spaces, statistically represented by Ci

max.
Algorithm 1 presents a pseudo-code for EA4RO. The different parameters used by EA4RO are auto-
matically set by the algorithm itself. The irst two parameters are used by the density-based clus-
tering algorithm: nmin speci ies theminimum number of patterns that can be classi ied as a cluster,
while δi indicates the maximum neighborhood distance of a pattern to identify dense regions. nmin
is set at the initialization of the algorithm, simply as a fraction α of the total number of patterns n

Plane
38

318627-mPlane
Design of the Reasoner

to analyze. δi is set as a fraction of the average distance between patterns in sub-space Xi, which is
estimated from 10%of the patterns, randomly selected. This permits to fast-up computations. The
weighting factor wi is used as an outlier-boosting parameter, as it gives more relevance to those
outliers that are “less probable”: wi takes bigger values when the size nmaxi of clusterCi

max is closer
to the total number of patterns n. Finally, instead of using a simple Euclidean distance as ameasure
of dissimilarity, we compute the Mahalanobis distance dM between outliers and the centroid of the
biggest cluster. The Mahalanobis distance takes into account the correlation between patterns, di-
viding the standard Euclidean distance by the variance of the patterns. This permits to boost the
degree of dissimilarity of an outlier when the variance of the samples is smaller.
In the last part of EA4RO, patterns are ranked according to the dissimilarity obtained inD, and the
detection threshold Th is set. The computation of Th is simply achieved by inding the value for
which the slope of the sorted dissimilarity values inDrank presents a major change. The detection
is inally done as a binary thresholding operation onD: ifD(i) > Th, then pattern yi is selected as
relevant.

A.1.5 An Example of Unsupervised Analysis

We present now a brief example describing the unsupervised analysis technique, in the speci ic
case of detecting and diagnosing QoE-based anomalies in the YouTube service. The use case corre-
sponds to the detection and diagnosis of an event of performance degradation in the QoE of a large
number of users watching YouTube videos. The idea is to detect the occurrence of such events
by tracking the evolution of the structure of the traf ic, constructed through the presented multi-
clustering algorithm. In this example, a pattern corresponds to all the traf ic provided by a YouTube
server during a speci ic period of time. Each pattern, i.e., each YouTube server, is characterized by
a set of 9 features, including the number of lows, number of bytes, number of users, the median of
the download throughput per low, the entropy of the QoE classes (the de inition of the QoE classes
comes from the previously presented use case on Anomaly Detection), fraction of lows in the low-
est QoE class, median of the min RTT, median of the average RTT, and median of the elaboration
time, all of them computed in a temporal basis, i.e., per hour.
Fig. 12(a) depicts the distribution of the density of the clusters obtained with the presented ap-
proach (the density ismeasured in terms of fraction of TouTube server IPs contained in the cluster)
identi ied during the peak-load hours, on a day previous to the occurrence of one if such QoE-based
anomalies and during the day of the anomaly. There is a clear shift in the cluster density during
the hours of the anomaly, revealing the appearance of a new cluster, containing about 35% of the
YouTube servers. As presented in Figs. 12(b) and 12(c), the newly observed cluster corresponds
to a set of server IPs providing a large share of YouTbe lows with low QoE, impacting a potentially
large number of users. The interesting observation is that this set of server IPs can be identi ied
by the multi-clustering approach, making it possible to detect the studied low QoE event in a com-
pletely unsupervised manner.

Plane
39

318627-mPlane
Design of the Reasoner

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

cluster density (%)

C
D

F

Tue 7.5 −− peak−load hours (20−−23)
Wed 8.5 −− peak−load hours (20−−23)

(a) Distribution of clusters density.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Users per srv IP

%
 fl

ow
s

in
 th

e
lo

w
es

t Q
oE

 r
an

ge

(b) % bad QoE lows vs. # users, be-
fore anomaly.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Users per srv IP

%
 fl

ow
s

in
 th

e
lo

w
es

t Q
oE

 r
an

ge

all servers
servers in anomalous cluster

(c) % bad QoE lows vs. # users, be-
fore anomaly.

Figure 12: Unsupervised detection of the anomaly through clustering. There is a clear shift in the
cluster density during the hours of the anomaly.

A.2 Associa on Rule Mining for network data analysis

The automatic analysis of huge network traf ic data is a challenging and promising task. Associ-
ation rule mining is an exploratory data analysis method able to discover interesting and hidden
correlations among data, and it has been successfully applied to network traf ic data in the con-
text of the mPlane project. The challenge is twofold: (i) this data mining process is characterized
by computationally intensive tasks, thus requiring ef icient distributed approaches to increase its
scalability, and (ii) its results must add value to the domain expert knowledge.

This section describes a cloud-based approach, named S AR M, to ef iciently mine association
rules on a distributed computing model. S AR M has been applied to mPlane network traf ic data
and consists of a series of distributed MapReduce jobs run in the cloud. Each job performs a differ-
ent step in the association rule mining process.

Extracted rules can be exploited by the Reasoner to enrich the domain knowledge and tomodel the
traf ic behavior. The Reasoner could also bene it from extracted rules to better support network
administration staff in drilling down root causes of anomalies and understanding traf ic patterns.

A.2.1 Introduc on

Association rule mining is a two-step process: (i) Frequent itemset extraction and (ii) association
rule generation from frequent itemsets [1]. Since the irst phase represents the most computa-
tionally intensive knowledge extraction task, effective solutions have been widely investigated to
parallelize the itemsetmining process both onmulti-core processors [37, 36, 23, 14] andwith a dis-
tributed architecture [27, 10, 22, 38]. However, when a large set of frequent itemsets is extracted,
the generation of association rules from this set becomes a critical task.

The analysis of the large amount of Internet traf ic data is an important task since a huge amount of
interesting knowledge can be automaticallymined to effectively support both service providers and
Internet applications. To pro ile network communications, we analyzed traf ic metrics and statis-
tical measurements computed on traf ic lows. The results showed the effectiveness and ef iciency
of the S AR M architecture in mining interesting patterns on a distributed computing model.

Plane
40

318627-mPlane
Design of the Reasoner

A.2.2 Problem statement

Let D be a dataset whose a generic record r is a set of features. Each feature, also called item, is
a couple (attribute, value). Since we are interested in analyzing statistical features computed on
traf ic lows, each feature models a measurement describing the network low (e.g., Round-Trip-
Time (RTT), number of hops).
An itemset is a set of features. The support count of an itemsets I is thenumber of records containing
I . The support s(I) of an itemset I is the percentage of records containing I . An itemset is frequent
when its support is greater than, or equal to, a minimum support thresholdMinSup. Association
rules identify collections of itemsets (i.e., set of features) that are statistically related (i.e., frequent)
in the underlying dataset. Association rules are usually represented in the formX → Y , whereX
(also called rule antecedent) and Y (also called rule consequent) are disjoint itemsets (i.e., disjoint
conjunctions of features). Rule quality is usually measured by rule support and con idence. Rule
support is the percentage of records containing bothX and Y . It represents the prior probability
ofX ∪ Y (i.e., its observed frequency) in the dataset. Rule con idence is the conditional probability
of inding Y given X . It describes the strength of the implication and is given by c(X → Y) =
s(X∪Y)
s(X) [25].

Given a dataset D, a support threshold MinSup, and a con idence threshold MinConf , the min-
ing process discovers all association rules with support and con idence greater than, or equal to,
MinSup andMinConf , respectively.
Furthermore, to rank the most interesting rules, we used the lift index [25], which measures the
(symmetric) correlation between antecedent and consequent of the extracted rules. The lift of an
association ruleX→ Y is de ined as [25]

lift(X,Y) = c(X → Y)

s(Y) =
s(X → Y)

s(X)s(Y) (A.1)

where s(X → Y) and c(X → Y) are respectively the rule support and con idence, and s(X) and
s(Y) are the supports of the rule antecedent and consequent. If lift(X,Y)=1, itemsets X and Y are not
correlated, i.e., they are statistically independent. Lift values below 1 show a negative correlation
between itemsets X and Y, while values above 1 indicate a positive correlation. The interest of rules
having a lift value close to 1 may be marginal. In this work the mined rules are ranked according to
their lift value to focus on the subset of most (positively or negatively) correlated rules.

A.2.3 Architecture

S AR Mconsists of a series of distributed jobs run in the cloud. Each job receives as input the result
of one or more preceding jobs and performs one of the steps required for association rule mining.
Currently, each job is performed by one or more MapReduce tasks run on a Hadoop cluster.
The S AR M architecture contains the following jobs, described in details in the subsequent sec-
tions:

• Network measurement acquisition

• Data pre-processing

• Item frequency computation

Plane
41

318627-mPlane
Design of the Reasoner

• Itemset mining

• Rule extraction

• Rule aggregation and sorting

A.2.3.1 Network measurement acquisi on

The irst step to analysenetwork traf ic is collectingnetworkmeasurements. To this aim,weepxloited
a passive probe running Tstat [12, 24], a passive monitoring tool developed in the context of the
mPlane project. Tstat rebuilds each TCP connection bymatching incoming and outgoing segments.
Thus, a low-level analysis can be performed [24]. A TCP low is identi ied by snooping the signal-
ing lags (SYN, FIN, RST). The status of the TCP sender is rebuilt by matching sequence numbers on
data segments with the corresponding acknowledgement (ACK) numbers.
To evaluate the S AR M cloud-based service in a real-world application, we focus on a subset of
measurements describing the traf ic low among themany provided by Tstat. Themostmeaningful
features, selected with the support of domain experts, are detailed in the following:

• the Round-Trip-Time (RTT) observed on a TCP low, i.e., the minimum time lag between the
observation of a TCP segment and the observation of the corresponding ACK.RTT is strongly
related to the distance between the two nodes

• the number of hops (Hop) from the remote node to the vantage point observed on packets
belonging to the TCP low, as computed by reconstructing the IP Time-To-Live1

• the low reordering probability (P{reord}), which can be useful to distinguish different paths

• the low duplicate probability (P{dup}), that can highlight a destination served by multiple
paths2

• the total number of packets (NumPkt), the total number of data packets (DataPkt), and the
total number of bytes (DataBytes) sent from both the client and the server, separately (the
client is the host starting the TCP low)

• the minimum (WinMin), maximum (WinMax), and scale (WinScale) values of the TCP
congestion window for both the client and the server, separately

• the TCP port of the server (Port)

• the class of service (Class), as de ined by Tstat, e.g., HTTP, video, VoIP, SMTP, etc.

Based on measurements listed above, an input data record is de ined by the following features:
RTT ,Hop, P{reord}, P{dup}, NumPkt,DataPkt,DataBytes,WinMax,WinMin,WinScale,
Port,Class. To obtain reliable estimates on reordering and duplicate probabilities, only TCP lows
which last more than P = 10 packets are considered. This choice allow focusing the analysis on
long-lived lows, where the network path has amore relevant impact, thus providingmore valuable
information.

1The initial TTL value is set by the source, typical values being 32, 64, 128 and 255.
2P{reord} and P{dup} are computed by observing the TCP sequence and acknowledgement numbers carried by

segments of a given low.

Plane
42

318627-mPlane
Design of the Reasoner

A.2.3.2 Data pre-processing

This step performs the following two activities:

• Value discretization

• Transactional format conversion

Associaton rule mining requires a transactional dataset of categorical values. The discretization
step converts continuously valued measurements into categorical bins. Then, data are converted
from the tabular to the transactional format. An example is reported in Table 2.
Automatic discretizationapproaches canexploit state-of-the-art techniques (e.g., clustering, statistical-
basedalgorithms, etc.) to select appropriatebinsdependingondatadistribution. These approaches
yielded poorly signi icant bins on network data considered in this study. More speci ically, themost
frequent values were split into too many bins with respect to the real applicative interest. Hence,
discretized bins are ixed-size and determined by domain experts based on the signi icance in the
networking context. The ixed-size bins have been determined as follows:

• RTT : a bin each 5ms for values from0ms to 200ms, an additional bin for values higher than
200 ms.

• Hop: a bin for each value from 1 to 20, an additional bin for values exceeding 20.

• P{reord}: a bin each 0.1 from 0 to 1.

• P{dup}: a bin each 0.1 from 0 to 1.

• NumPkt,DataPkt, andDataBytes: logarithmic bins, base 10, e.g., 5432 falls in the 3-4 bin
since the value is between 103 and 104.

• WinMax andWinMin: a bin for each multipleN of 4 Kb, whereN is a power of 2, e.g., the
bin 8-16 means that the TCP window is between 8 and 16 times 4 Kb.

• WinScale, Port, and Class: a bin for each value (no discretization).

Both the value discretization and the transactional format conversion are performed by a single
map only job. Each record is processed by the map function and, if the number of packets is above
the threshold (10 packets), the corresponding discretized transaction is emitted as a result of the
mapping. This task entails an inherently parallel elaboration, considering that can be applied inde-
pendently to each record.

RTT NumPkt P{reord}
original 7 5432 0.88
discretized 5-10 3-4 0.9
transactional RTT=5-10 NumPkt=3-4 P{reord}=0.9

Table 2: Pre-processing example

Plane
43

318627-mPlane
Design of the Reasoner

A.2.3.3 Item frequency computa on

A second job is exploited to compute the item frequency from the transactions emitted by the pre-
processing phase. An example is reported in Tables 3 and 4. Table 3 has three sample transactions
that represent a possible output of the pre-processing phase. Amap function is exploited to process
each transaction: the map emits a (key, value) pair for each item in the transaction, where the key
is the item itself (e.g.,RTT=5-10), and the value is its count, i.e., always 1. A reduce function is then
executed to sum all the values for each key, hence computing the support count of each item. This is
a typical group-by query performed as a distributedMapReduce job. As a running example, wewill
consider the sample result of this job reported in Table 4, as obtained by the sample transactions
in Table 3.

transaction 1 RTT=5-10 NumPkt=3-4 Hop=10
transaction 2 RTT=5-10 Hop=11
transaction 3 RTT=5-10 NumPkt=3-4
transaction 3 RTT=5-10 NumPkt=3-4 Hop=11

Table 3: Sample transactions

item sup count sup
RTT=5-10 4 100%
NumPkt=3-4 3 75%
Hop=10 1 25%
Hop=11 2 50%

Table 4: Sample items

A.2.3.4 Itemset mining

A third job performs the itemset mining by exploiting the parallel FP-growth algorithm. This step
consists of multiple MapReduce tasks. From the sample items of Table 4, a result of this job is
reported in Table 5, where only itemsets with support higher than 50% have been extracted.

ID itemset sup count sup
1 RTT=5-10 4 100%
2 RTT=5-10 NumPkt=3-4 3 75%
3 RTT=5-10 Hop=11 2 50%
4 NumPkt=3-4 3 75%
5 Hop=11 2 50%

Table 5: Sample itemsets

Plane
44

318627-mPlane
Design of the Reasoner

A.2.3.5 Rule extrac on

The rule extraction step consists of a MapReduce job, as detailed in the following. For each itemset
of length k (k-itemset), the map function emits:

• a (key,value) pair with

– key: the k-itemset itself
– value: the k-itemset support count

• for each (k − 1)-itemset, a (key,value) pair with

– key the (k − 1)-itemset
– value the pair (k-itemset, support count of the k-itemset).

Then, the reduce function performs the actual rule extraction. Since each (k−1)-itemset emitted as
key contains its k-itemset and the k-itemset support count as value, themissing item in the (k−1)-
itemset with respect to the k-itemset is the rule consequent (head), whereas the (k − 1)-itemset
is the antecedent (rule body). The support count values of the k-itemset, the (k − 1)-itemset and
the consequent item are used to compute the support, con idence, and lift of the rule, as de ined
in Section A.2.2. Table 6 reports the rules extracted from the itemsets of the running example (see
Table 5).

rule sup count sup conf lift
RTT=5-10→NumPkt=3-4 3 75% 75% 0.75
NumPkt=3-4→RTT=5-10 3 75% 100% 1.33

RTT=5-10→Hop=11 2 50% 50% 0.50
Hop=11→RTT=5-10 2 50% 100% 2.00

Table 6: Sample rules

A.2.3.6 Rule aggrega on and sor ng

A inal step is executed by means of a MapReduce job to sort and aggregate the rules according to
the consequent and the quality measure. As discussed in Section A.2.2, we selected the lift as rule
quality measure. Sorting and aggregating on the consequent helps in analyzing the extracted rules
for inding signi icant correlations. A sample output based on our running example is reported in
Table 7.

antecedent consequent
Hop=11,NumPkt=3-4 → RTT=5-10

RTT=5-10 → NumPkt=3-4
RTT=5-10 → Hop=11

Table 7: Sample rules, sorted and aggregated

Plane
45

318627-mPlane
Design of the Reasoner

A.3 Approaches for Data Correla on

One of the key features of the Reasoner is the ability to correlate data coming frommultiplemPlane
components, e.g., probes and repositories, to effectively drill down to the root cause of a problem
or to optimize the network usage with respect to the different use cases that the project plans to
address.
Several use cases take advantage of supervised approaches to achieve their goal and require to
combine of line data, such as themodels gathered during a training phase, with online data, such as
real-time information about the connections as collected by the mPlane probes, or the topological
information of the network. The importance of collecting of line data to perform training serves
two purposes. First, it is useful for bootstrapping the analysis module and being able to feed the
reasonerwith input right from the beginning. Second, it allows to collect historical data, whichmay
be exploited to update the models themselves over time, in an on-line learning fashion.
For example, in the use case “Supporting DaaS troubleshooting”, models of (classes of) applications
of thin-client connections represent the historical (of line) data kept in the repository; live mea-
surements of thin-client connections taken by probes, such as packet sizes and inter-arrival times,
represent instead the online data that the analysis module combines with the of line models to
match the thin-client connection to a particular application. By correlating topological and delay
information, e.g., collected by mPlane probes running tracebox, with the above information, the
Reasoner can identify the node responsible for the bottleneck (i.e., the poor users’ QoE) along the
path, and act accordingly to overcome the issue: for instance, bymigrating the remote server across
datacenters. Decision-tree tools can drive such decisions, and some of them are described in the
work lows of the speci ic use cases in Chapter 3.

Figure 13: Correlating of line and online data in the use case ”Estimating content and service pop-
ularity for network optimization”.

Data correlation is useful for gaining a better picture of the status of the network where a given use
case is deployed, improving its troubleshooting, and optimizing network resources’ usage. More-
over, it allows the coexistence of several specialized probes, designed around a speci ic task, and
combine the outcome of all of them.
In the use case “Estimating content and service popularity for network optimization”, models of
content popularity evolution represent the historical (of line) data kept in the repository; the evo-
lution of views for contents being seen by vantage points represents instead the online data that the

Plane
46

318627-mPlane
Design of the Reasoner

analysis module combines with the of line models for determining to which model the popularity
evolution of a content belongs to, based on which the Reasoner suggests caching strategies.
Fig. 13 outlines the use of of line and online data in the context of this use case. In this scenario, a
smart use of other source of data could actually improve the overall caching strategy. In fact, given
that the Reasoner takes as input also the topological position of the caches for which it computes
the list of upcoming popular objects, those list of objects could be clustered and their placement
further optimized: for instance, knowing that some caches are organized according to a hierarchical
scheme, we can include objects which are popular in multiple areas served by different caches into
an upper-layer cache. Hierarchical clustering approaches could be exploited for this purposes.

Plane
47

318627-mPlane
Design of the Reasoner

A.4 Considera ons for Building Diagnosis Graphs

In this section, we develop considerations that are especially important when building diagnosis
graphs that are, at least in part, based on active measurements.

We give both general insights, as well as experimental indings to corroborate our reasoning, that
we describe using the formalism exempli ied in Fig. 14, where diagnosis actions are arranged as a
tree. Depth in the tree represents a loose temporal sequence, so that items at the same depth are
actions happening in parallel. (e.g., actionsB andE, or any in {C,D,G,H, I}).

Branches can be either conditionally or systematically followed: for instance, irrespectively of re-
sults of actionA, the system launches actionsE andB (the former is faster than the latter, so their
execution is not necessarily happening or completed at the same time). Similarly, C and D are
launched after completion of taskB. Conversely, depending on the result of action F , either action
G (when F = −1) orH (when F = 0) or I (when F = 1) is launched.

This simplistic formalism allows to both:

• Encodedrill-downmethodswhere chains of actions are followeddepending on values of their
predecessor actions, so that one single path of the tree is followed from the root to the leaves
(i.e., in case all edges have conditions depending on results at the previous node)

• Encode sequences of measurements, with a variable degree of parallelism and loose schedul-
ing properties, that ultimately allow to gather a set of measurement features (namely, in the
example of Fig. 14 the feature vector will be constituted by all theA,B,C,D,E, F measure-
ments and one of the {G,H,I}) over which data mining or big data approaches can be applied.

A

B

C D

E

F

G

−1

H

0

I

1

Figure 14: Example of diagnosis and measurement scheduling tree

With the above formalism, we now list challenges that can be faced by the mPlane supervisors. We
also give guidelines on how to avoid them, or propose solutions whenever possible.

Plane
48

318627-mPlane
Design of the Reasoner

A.4.1 Scheduling tradeoff

We assume for simplicity that measurements have no conditional execution3, and represent three
scheduling strategies as shown in Fig. 15.

At the extreme left, allmeasurements are scheduled in sequence. Themaindrawbackof this schedul-
ing strategy is the long execution time: as the measurement conditions evolve over time, diagnosis
decisions are possibly taken over measurements that represent a different behaviour of the net-
work service to be measured, weakening the correlation between measurements.

At the extreme right, all measurements are scheduled in parallel, which guarantees the shortest
execution time, but possibly raises problemsdue topossible interferenceofmultiplemeasurements
happening in parallel. Notice that while the igure represents a single tree, this tree will possibly
be instantiated per user. Therefore, the number of simultaneous measurements due to the fanout
of the per-user tree has to be scaled up by the scale of the measurement campaign.

The intermediate scenario represents a tradeoff between the longdurationof sequential scheduling
and the possible interference of parallel scheduling. Remapping a sequential or a parallel tree to
an intermediate one is not easy in the general case; yet, scheduling implications have a possibly
determinant effect on the net result of the outcome of the reasoner algorithm, andwe discuss them
further in the remainder of the section.

Scheduling strategies

Sequential

A

B

C

D

Intermediate

A

C

B

D

Parallel

A B C D

Figure 15: Scheduling tradeoff

3In case measurements have conditional execution, considerations developed in this section still hold, but this would
unnecessarily lead to amore complex notation. Indeed, a genericmeasurement label (e.g.,X) can be thought of encoding
a more complex scenario depending on previous steps (e.g.,X = F = −1?G : F = 0?H : F = 1?I : Exceptionwhere
conditions reported in Fig. 14 are encoded with the ternary operator condition?ifclause : elseclause).

Plane
49

318627-mPlane
Design of the Reasoner

A.4.2 Implica ons of temporal proper es and guidelines

Inmachine learning terms, the vector ofmeasurements (A,B,C,D) represents a scenariowhere all
measurements are takenatpossiblydifferent times (A(tA), B(tB), C(tC), D(tD)). where tA, tB, tC , tD
represent the measurement start time (that is t = tA = tB = tC = tD only for parallel scheduling
in Fig. 15).
Clearly, in the case of sequential scheduling, the network conditions can potentially change during
the measurement period (or the phenomena causing performance degradations can possibly van-
ish, depending on the length of the chain). This also implies that correlation between any pair of
measurementsX,Y ∈ A,B,C,D may weaken making the detection problem harder: ifX(t) and
Y (t) are correlated at time t, it does not mean that they are necessarily correlated at times tX and
tY .
This becomes especially problematic if measurementA,B,C,D are carried from different probes,
implying that inmPlane terms, a newHTTPS connection has to be established, and aTLS handshake
performed. To reduce unnecessary delay ∥tX − tY ∥ between any pair of measurement sX,Y ∈
A,B,C,D, and of the whole measurement chain, it would be desirable to opportunistically estab-
lish connections in parallel at the root of the tree, and then sequentially schedule measurements
over these established connections. Consequently, the time delay between a pair of consecutive
measurements would be bound to the duration of the measurement itself (which is generally ei-
ther known, deterministic, and tunable, or can be accurately statistically bound). Possibly, some
proactively opened connections might not be used in practice later on, if trees encode conditional
execution.

A.4.3 Interac on of homogeneous measurements

Whenmeasuring any given metric of interest, precision and accuracy are intrinsic to each tool, and
can limit the usefulness of the measurement, or even possibly lead to misinformation in case of a
large bias. More importantly, there may be side effects for the measurement tools, that are possibly
well-known and thus avoidable or hidden and thusmore insidious. An example of a well-known ef-
fect is representedby theHeisenberg uncertainty principle of quantummechanics, which expresses
limits on the simultaneous precision of complementary physical properties (in this speci ic case,
position and momentum).
In the context of the Internet, let us focus on bandwidth measurements, that are notoriously dif i-
cult. Already considering a single measurement, there are not only several techniques based on a
variety of principles (e.g., that can be coarsely split into Probe Gap [15, 34], vs. Probe Rate [18, 28])
models, but there are also studies that compare the precision and accuracy of different bandwidth
measurement techniques [32, 21, 33, 31]. In general, techniques that are more intrusive are also
more accurate, which is an intuitive tradeoff.
Yet, what the above tradeoff is hiding, is the fact that it applies to independent measurements, as
these techniques implicitly assume that they are used in isolation. In practice, in the context of
mPlane, this is unlikely (due to the scale of the population, the scale of the measurement campaign
per each reasoner, and the existence of several independent reasoners) or anyway hard to enforce
at any time. Consequently, while side effects may arise, it would be hard to precisely traceback the
events leading to these side effects. This has already been observed in previous research on Peer-
2-peer networks [8], as the peer-selection component needs to take an informed decision based

Plane
50

318627-mPlane
Design of the Reasoner

Diagnosis root at node i, measure:

Bw(i, j)

RTT (i, j) Loss(i, j)

Bw(i, k)

RTT (i, k) Loss(i, k)

Figure 16: Interaction of homogeneous measurements: Bw(i, j) andBw(i, k)maymutually inter-
fere

Figure 17: Interference between available bandwidth estimation tools (courtesy of [8])

on measurements coming from a relatively large peer population. Therefore, parallel probing is
used in order to reduce the duration of the peer selection process as noted in A.4.2. Simultaneous
measurements of a bottleneck link from a number of hosts [8] show that the accuracy of current
available bandwidth estimation tools, namely Spruce [34], Pathload [18], and PathChirp [28] drops
signi icantly due to mutual interference. As shown in Fig. 17, when only one host is measuring the
bottleneck link, all tools provide accurate estimations. However, as the number of probing hosts in-
creases, tools tend to under-estimate the available bandwidth. Pathload and PathChirp are severely
impacted by simultaneous measurements whereas Spruce results, in comparison, show more ro-
bustness. In addition to these valuable results, Croce et al. [8] also suggest the use of piggy-backed
probes whenever possible to alleviate the effects of mutual interference.
At the same time, more general guidelines are hard to precisely state due to the fact that concur-
rent measurements do not necessarily imply interference. For instance, consider the example in
Fig. 16 where host i is scheduling parallel bandwidth measurements to hosts j and k (i.e.,Bw(i, j)
and Bw(i, k)), and subsequently scheduling parallel measurements of RTT and losses to the same
hosts (RTT (i, j), RTT (i, k), Loss(i, j), Loss(i, k)). Clearly, measurements Bw(i, j) and Bw(i, k)
will interact if i is using the same physical interface for both measurements (in case a multi-homed
host i probes j, k over unrelated interfaces such as 3G andWiFi, this would not cause interference).
Additionally, the bottleneck towards Bw(i, j) and Bw(i, k) should be located in the path segment
common to both i, j and i, k pairs (which may not be the case when per- low load balancing tech-
niques are used, or when the bottleneck is not close to node i, etc.).
As such, while it is known that measurements may interfere, and that thus it would be good prac-

Plane
51

318627-mPlane
Design of the Reasoner

Diagnosis root at node i, measure:

Bw(i, j)

RTT (i, j) Loss(i, j)

Loss(i, k)

RTT (i, k) Bw(i, k)

Figure 18: Interaction of heterogeneous measurement: RTT (i, j)may be affected byBw(i, k)

tice to reduce their potential interference by scheduling them in series, at the same time it would
be perfectly legitimate to schedule them in parallel in the case of a non shared bottleneck. How-
ever, this is hard to assess in the general case as it not only requires that ine-grained topological
information is taken into account to de ine the scheduling tree, but also it depends on dynamic com-
ponents that will be hard to assess in real time. Clearly this is even more challenging since while
the example considersBw(i, j) andBw(i, k), whose path shares a vertex (and an edge unless in the
multi-homed case), however potentially anyBw(i, j) andBw(m,n)measurement may interfere if
the measurements share a bottleneck link. It follows that the problem of distributed measurement
scheduling cannot be solved in the general instance. Additionally, we have exempli ied the interfer-
ence problem through the measurement of the bandwidth, but interference is a general problem
(e.g., from SNR measurement of nearby hosts at the physical-layer, to application-layer response
time on idle vs busy servers) and clearly ad hoc studies similar to [8] may be necessary for the
metric of interest.

A.4.4 Interac on of heterogeneous measurements

Not only twomeasurements of the samemetricmay interact, but theymayalso interferewith simul-
taneous measurements of other metrics. To illustrate the situation, we again resort to an example
of a simple tree, and focus on parallel measurements of bandwidth vs. delay (or loss) as shown in
Fig. 18.
As we have seen in the previous section, bandwidth estimation tools can be coarsely split into two
classes. The probe gapmodel infers available bandwidth fromobserving the inter-packet-gap (IPG)
measured on a packet pair injected by the sender, which is thus a very low level of intrusiveness. It
follows that, irrespectively of its lower accuracy to measure the available bandwidth, its in luence
on delay (or loss) measurement is expected to be very limited.
In the probe rate model, the sender iteratively injects trains of packets at different rates: the re-
ceiver then detects when the available bandwidth is exceeded by observing the increase of the
One-Way-Delay (OWD) or Round Trip Time (RTT). In other words, the very same principle is to use
self-induced congestion and measure the response to an intrusive active probe, varying the probe
rate so as to ind the right level: i.e., when the probe rate is lower than the available bandwidth no
queuing happens, so that the available bandwidth is found for a probing rate yielding the smallest
non-null amount of queuing delay.
Interferencewith delay (or loss)measurement is thus intrinsic in themethodology: as probes typi-

Plane
52

318627-mPlane
Design of the Reasoner

Figure 19: Interference of latency and load measurement: methodology to infer queueing delay
(left) and validation with controlled background traf ic (right).

cally iteratewith dichotomic or binary searches to let the probe rate converge to the available band-
width rate (where convergence is measured as a function of the inferred queueing delay), it follows
that the mechanism by design alters queuing (and possibly induces losses when the probe rate is
too aggressive). As a consequence, in Fig. 18, RTT (i, k) may be affected by Bw(i, k), depending
on the technique employed to measureBw(i, k). Additionally, in case the bottleneck is located in a
segment common to both the i, j and i, k paths, then bandwidth measurementBw(i, j) can possi-
bly affect Loss(i, k)when the probing rate is too high with respect to the available bandwidth, and
provided that the buffer ills up during themeasurement timescale (similar considerations hold for
Bw(i, k) vsRTT (i, j) and Loss(i, j)).
This is illustrated in [6], which shows an account of the techniques developed inmPlane tomeasure
the extent of queuing delay of remote Internet hosts, by exploiting chunk transfers fromunmodi ied
BitTorrent hosts[7, 5]. Speci ically, we estimate queuing delay by collecting one-way delay (OWD)
samples, establishing the minimum as a baseline delay, and then measuring the degree to which a
sample differs from the baseline, as illustrated (validated) in the left (right) plot of Fig. 19. This is
a classic approach used in congestion control to drive congestion window dynamics, starting from
Jain’s pioneeringwork in the late 80s [19], to thewidely knownTCPVegas [2] in the late 90s, to ulti-
mately the LEDBAT [30] protocol proposed in 2010 by BitTorrent as a replacement of TCP for data
transfer. Speci ically, our innovation in [6] was to demonstrate how a passive observer of LEDBAT
or TCP traf ic can use this approach to estimate the uplink delays experienced by a remote host,
and to conduct large scale measurement studies showing that, when the maximum queuing delay
is potentially very large (up to several seconds[20], for which the bufferbloat termwas coined) this
was due to the measurement methodology of latency under load, causing mutual interference be-
tween measurements, and that whenever measurements were done in a non-biased non-intrusive
fashion, the typically observed queueing delay statistics were much lower[7, 5].
In this context, the knowledge of the measurement methodology is useful as it implicitly shows the
principle behind self-induced congestion, and shows the intrinsic interference between bandwidth
latency and loss. Considering the top plot, where no other traf ic other than probe traf ic is sent,

Plane
53

318627-mPlane
Design of the Reasoner

mPlane node

Reasoner a

User 1

A

C

B

D

User n

A

C

B

D

Reasoner b

User 1

E

F

G

H

Userm

E

F

G

H

Figure 20: Multiple levels of dependencies: per-user, per-reasoner, per-node

results show that the available bandwidth exploited by LEDBAT causes a 100ms queueing delay:
while this queueing delay is not harmful for the user compared to multi-second queueing delays
(aka bufferbloat), however it affects the queueing delay measurement. In mPlane terms, LEDBAT
can be thought as an available bandwidth measurement tool, and the 100ms queuing delay can
be thought as the lowest empirical value that allows to reliably identify the bottleneck bandwidth,
and the magnitude of in luence on delay measurement. In the bottom plot of Fig. 19, it can be
seen that under sustained TCP transfers, the queuing delay saturates to the maximum available
(aka bufferbloat): since the buffer is full, some TCP packets will be dropped, so that we also infer a
bandwidth-loss interference.
Exposing interference betweenmeasurements allows to arrange scheduling trees that, at least for a
single user, minimizes the interference. Additionally, as in the previous section, it is possible to se-
lect tools that are less intrusive, to reduce the interference, though this may lead to loss of accuracy
for some measurements. Assessing that the combination of tools, and the selected scheduling of
measurements, will not cause interferencewhile retaining suf icient accuracy tomeet the reasoner
objectives, requires rigorous calibration and validation.

A.4.5 Interac on of mul ple diagnosis trees

Finally, a further level of dependencies occurs in the case where a given mPlane node is running
multiple reasoners as shown in Fig. 20. Here, measurements instrumented by reasoners a and b
are likely to mutually interfere leading to a biased or inaccurate diagnosis.
Three scenarios can potentially lead to mutual interference in this context. The irst scenario con-
sists inmore thanone reasoner requesting a givenuser registered to the domain of themPlanenode
to run the same kind of network performance measurements, e.g. measure the delay of the access
link. Multiple instances of the same measurement will be running at the user access link causing
waste of network resources, interference with user traf ic, and interference with each other. In
the second scenario, the same user is requested to launch two different measurements (e.g., delay

Plane
54

318627-mPlane
Design of the Reasoner

and bandwidth of a given path) from two diagnosis graphs. Both scenarios are similar to the cases
discussed at length in the previous sections where homogenous and heterogenous parallel mea-
surements from one diagnosis tree and one user mutually interact. In the third scenario, multiple
reasoners send requests to a subset of their users (not necessarily the same users) to measure, for
instance, the latency of a video streaming service experiencing a performance deterioration. Al-
though the measurements are launched from different users, they are targeting the same service.
If the geographical scope of the measurements is limited to one area and a signi icant number of
mPlane probes are sending measurements to the same target server(s), this situation could over-
load the server (thus biasing all the measurements). In addition, depending on the frequency of
measurements, the servers can interpret this measurement traf ic as a distributed denial of service
attack. They can also blacklist themPlane probes causing a situationwhere diagnosis of the service
performance problems is not feasible anymore.
Coordination among the reasoners running on the same mPlane node can potentially reduce the
effects of mutual interference. Sharing measurements or scheduling them are two possible ways
of coordination. For instance, if reasoners a and b are actively monitoring the same performance
metric of a given network component, then it is better to measure this component once. Sharing
measurements across reasoners also implies giving mutual access to historic performance data of
common users at the mPlane repositories. When the reasoners require measurements of different
metrics from the same user such as delay and bandwidth, scheduling policies can solve the interfer-
ence problem by allocating non overlapping time slots for each reasoner. However, implementing
such scheduling policies is not so trivial as it should take into account the execution time and the
priority level of each measurement. Another possible alternative to scheduling, which is currently
adopted by RIPE atlas is to enforce a cap on the data rate consumption of a given reasoner per user
and a limit on the number of probes targeting the same destination.

Plane
55

318627-mPlane
Design of the Reasoner

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB ’94,
pages 487–499, 1994.

[2] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: new techniques for congestion detection and avoid-
ance. ACM SIGCOMM CCR, 24(4):24–35, 1994.

[3] P. Casas, A. Sackl, S. Egger, and R. Schatz. YouTube & Facebook Quality of Experience in Mobile Broad-
band Networks. IEEE GlobecomWorkshops, 2012.

[4] P. Casas, M. Seufert, and R. Schatz. YOUQMON: A System for On-line Monitoring of YouTube QoE in
Operational 3G Networks. IFIP Performance, 2013.

[5] C. Chirichella and D. Rossi. To the moon and back: are internet bufferbloat delays really that large. In
IEEE INFOCOMWorkshop on Traf ic Measurement and Analysis (TMA’13), Turin, Italy, April 14-19 2013.
keyword=ledbat,bufferbloat,mplane.

[6] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and A. Pescape. Passive bufferbloat measurement exploit-
ing transport layer information. In IEEE GLOBECOM, December 2013. keyword=traf ic,ledbat.

[7] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and A. Pescape. Remotely gauging upstream bufferbloat
delays. In Passive and Active Measurement (PAM), Extended Abstract, Hong Kong, China, March 18-19
2013. keyword=ledbat,bufferbloat,mplane.

[8] D. Croce, M. Mellia, and E. Leonardi. The quest for bandwidth estimation techniques for large-scale
distributed systems. In Proc. ACM SIGMETRICS, 2010.

[9] R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? AI Magazine, 14(1):17–33,
1993.

[10] M. El-Hajj and O. R. Zaïane. Parallel bifold: Large-scale parallel pattern mining with constraints. Dis-
tributed and Parallel Databases, 20(3):225–243, 2006.

[11] M. Ester, P. Kriegel, J. Sander, and X.Xu. A Density-based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. ACM SIGKDD, 1996.

[12] A. Finamore, M.Mellia, M.Meo, M.Munafo, and D. Rossi. Experiences of internet traf icmonitoringwith
tstat. IEEE Network Magazine, May 2011.

[13] A. Fred and A. K. Jain. CombiningMultiple Clusterings Using Evidence Accumulation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(6), 2005.

[14] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-K. Chen, and P. Dubey. Cache-conscious
frequent pattern mining on modern and emerging processors. The VLDB Journal, 16(1):77–96, 2007.

[15] N. Hu and P. Steenkiste. Evaluation and characterization of available bandwidth probing techniques.
IEEE Journal on Selected Areas in Communications (JSAC), 21:879–894, 2003.

[16] T. Jaakkola and D. Haussler. Exploiting Generative Models in Discriminative Classi iers. Advances in
Neural Inf. Processing Sys. II, 1998.

[17] A. K. Jain. Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters, 31(8), 2010.
[18] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement methodology, dynamics, and

relation with tcp throughput. In ACM SIGCOMM, 2002.
[19] R. Jain. A delay-based approach for congestion avoidance in interconnected heterogeneous computer

networks. ACM SIGCOMM CCR, 19(5):56–71, 1989.
[20] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating the edge network. In ACM

Internet Measurement Conference (ACM IMC’10), 2010.
[21] K. Lakshminarayanan, V. N. Padmanabhan, and J. Padhye. Bandwidth estimation in broadband access

networks. In Proc. Internet Measurement Conference, 2004.

Plane
56

318627-mPlane
Design of the Reasoner

[22] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp: parallel fp-growth for query recommendation.
In RecSys, pages 107–114, 2008.

[23] L. Liu, E. Li, Y. Zhang, and Z. Tang. Optimization of frequent itemset mining on multiple-core processor.
In Proceedings of the 33rd international conference on Very large data bases, VLDB ’07, pages 1275–
1285, 2007.

[24] M. Mellia, M. Meo, L. Muscariello, and D. Rossi. Passive analysis of tcp anomalies. Computer Networks,
52(14):2663–2676, 2008.

[25] Pang-Ning T. and Steinbach M. and Kumar V. Introduction to Data Mining. Addison-Wesley, 2006.
[26] L. Parsons, E. Haque, andH. Liu. Subspace Clustering forHighDimensional Data: a Review. ACMSIGKDD

Expl. Newsletter, 6(1), 2004.
[27] I. Pramudiono andM. Kitsuregawa. Tree structure based parallel frequent patternmining on pc cluster.

In DEXA, pages 537–547, 2003.
[28] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell. pathchirp: Ef icient available band-

width estimation for network paths. In Proc. of Passive and Active Measurement Workshop, 2003.
[29] https://atlas.ripe.net.
[30] S. Shalunov et al. Low Extra Delay Background Transport (LEDBAT). IETF RFC 6817, 2012.
[31] A. Shriram and J. Kaur. Empirical evaluation of techniques for measuring available bandwidth. In IEEE

INFOCOM, 2007.
[32] A. Shriram,M.Murray, Y. Hyun, N. Brownlee, A. Broido,M. Fomenkov, and kc claffy. Comparison of public

end-to-end bandwidth estimation tools on high-speed links. In Proc. of Passive and Active Measurement
Workshop, 2005.

[33] J. Sommers, P. Barford, and W. Willinger. Laboratory-based calibration of available bandwidth estima-
tion tools. Microprocessors and Microsystems, 31(4):222–235, 2007.

[34] J. Strauss, D. Katabi, and F. Kaashoek. Ameasurement study of available bandwidth estimation tools. In
Proc. Internet Measurement Conference, 2003.

[35] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates. G-RCA: A Generic Root Cause Analysis Platform
for Service Quality Management in Large IP Networks. ACM CoNEXT, 2010.

[36] O. R. Zaïane, M. El-Hajj, and P. Lu. Fast parallel association ruleminingwithout candidacy generation. In
Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM ’01, pages 665–668, 2001.

[37] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency, 7(4):14–25, Oct.
1999.

[38] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng. Balanced parallel fp-growth with mapreduce. In
2010 IEEE Youth Conference on Information Computing and Telecommunications (YC-ICT), pages 243 –
246, 2010.

Plane
57

