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Abstract:

This deliverable presents an extended set of Analysis Modules, including both the improvements done to those presented
in deliverable D4.1 as well as the new analysis algorithms designed and developed to address use-cases. The deliverable
also describes a complete workflow descrip on for the different use-cases, including both stream processing for real- me
monitoring applica ons as well as batch processing for “off-line” analysis. This workflow descrip on specifies the itera ve
interac on loop between WP2, WP3, T4.1, and T4.2, thereby allowing for a cross-checking of the analysis modules and the
reasoner interac ons.
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Disclaimer

The information, documentation and igures available in this deliverable are written by the mPlane
Consortium partners under EC co- inancing (project FP7-ICT-318627) and does not necessarily re lect
the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is it for any particular purpose. The user uses the information at its sole risk and liability.
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1 Introduc on

mPlane consists of a DistributedMeasurement Infrastructure to perform active, passive and hybrid
measurements. It operates at a wide variety of scales and dynamically supports new functionality.
The mPlane infrastructure is made of several components: TheMeasurement component provides
a geographically distributed network monitoring infrastructure through active and passive mea-
surements. The Repository and data analysis component is in charge of storing the large amount
of data collected and processing it prior to later analysis. The Analysis component provided by the
supervision layer allows mPlane to extract more elaborated and useful information from the gath-
ered and pre-processedmeasurements. Finally, theReasoner component is themPlane intelligence.
It allows for structured, iterative, and automated analysis of the measurements and intermediate
analysis results. It orchestrates the measurements and the analysis performed by the probes, the
large-scale analysis repositories and the analysis algorithms, actuating through the Supervisor to
interconnect with the other mPlane components.
In this deliverable, we update analysis algorithms provided in Deliverable D4.1 [73] (Chapter 2).
In particular, we inspect each use cases and discuss improvements and validation results obtained
since the early stages of the mPlane project. In addition, we provide an insight into more generic
analysis algorithms that are related to network topology and routing.
Wenext showhoweach algorithmbehaves in thewholemPlanework low (Chapter 3), i.e., howvar-
iousmPlanemodules are used by each algorithm, thereby allowing for a cross-check of the analysis
modules discussed in Chap. 2 and the reasoner interactions.
Finally, Chapter 4 concludes this deliverable.
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2 Analysis Module

In this chapter,weprovide improvements to algorithms irst provided inmPlanedeliverableD4.1 [73].
We also provide new analysis algorithms designed and developed to address use-cases, and addi-
tional generic algorithms.
The irst series of proposed analysis algorithms are presented in the context of speci ic use-cases.
They enable to:

• ind the cause of Quality of Experience (QoE) degradations,

• estimate the future popularity trends of services and contents for network optimization,

• classify and promote interesting web content to end-users,

• assess and troubleshoot performance and quality of multimedia stream delivery,

• diagnose performance issues inweb and identify the segment that is responsible for the qual-
ity of experience degradation,

• ind root cause of problems related to connectivity and poor quality of experience on mobile
devices,

• detect and diagnose anomalies in Internet-scale services (e.g., CDN-based services),

• verify SLAs.

The second series of analysis algorithms have a generic nature and are therefore presented sepa-
rately. They enable to :

• ind measurement probes near some point of interest in the network,

• discover network topology (presence of MPLS tunnels and of middleboxes, inference of IGP
weights),

• detect anycast services, enumerate and geolocalize the replicas.

These algorithms thus cover a large range of functionalities, such as:

• classi ication and iltering (e.g., of lows, applications, content),

• estimation/prediction (e.g., of Quality of Experience (QoE), popularity, path metrics, topol-
ogy),

• detection (e.g., of anomalies, threshold-based changes, interfering middleboxes, hidden rela-
tionships between policy rules),

• correlations (e.g. between measurements and QoE, traf ic directions and caches/servers),

• diagnosis (e.g., of QoE or web degradation, lack of connectivity).
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2.1 Suppor ng DaaS Troubleshoo ng

2.1.1 Use Case Reminder

The goal of this use case is to continuously monitoring the Quality of Experience (QoE) of users
accessing content using Desktop-as-a-Service solutions through thin-client connections. When-
ever the users experience a poor QoE, the mPlane infrastructure, particularly the Reasoner, acts
for troubleshooting its cause and iteratively responds with solutions to improve the overall users’
experience.

2.1.2 Sta s cal Classifica on Module

The role of the reasoner in this use case is to combine the information about the kind of application
on top of a RDP connection given by the statistical classi icationmodule, with the information about
the delay on the end-to-end path, so to instrument the network on the troubleshooting action to
take to overcome poor QoE issues. Detecting the kind of application on top of the connection is
therefore key.
In D4.1 [73], we presented several analysis algorithms we considered to detect the application on
top of a given thin-client connection. The main goal there was the design and tuning of an effective
statistical classi ication technique which can effectively take advantage of the available features
provided by the mPlane probes.
In D3.3 [73], we described the robustness of the statistical classi ication technique based on SVM
to network conditions, when the training has been done without considering any network impair-
ments, whereas the testing includes traces with impairments such as packet loss and packet delay.
In this deliverablewe collected all the previous results and carried out additional evaluations, to de-
termine the algorithms and the classi ication parameters that allowus to achieve best accuracy, also
considering the variety of network impairments that we introduced when collecting the dataset
used for training and testing.
Weprovide adetaileddescriptionof the technique and its application to inferringusers’ QoE in [29].
Details about the testbed are provided in D5.1 [73].

2.1.3 Results and Lessons Learned

Our results support the idea that considering theSVMalgorithmto classifyRemote-Desktop-Protocol
(RDP) connections over a ten-second time-window allows to infer with high accuracy (up to 99%
in some cases) the class of applications that is running over the thin-client connection. Table 2.1
reports on the results achieved with the SVM algorithm on a ten-second time-window. Given that,
we focused on the SVM algorithm only for the following experiments.
We investigatedhowtheaccuracyof the statistical classi ication techniques changeswhen the train-
ing conditions differ from the testing ones. Table 2.2 and Table 2.3 report on the composition of our
training set and testing set, respectively.
Our experiments show that the accuracy in detecting lows carrying Video drops by 60% in terms
of epochs (40% of bytes) when traces used for training are collected only under the optimal case,
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% VLCa WMPa AdR PPT VLCv WMPv

Audio
VLCa 100 – – – – –
WMPa – 99/95 – 1/5 – –
Skype 100 – – – – –

Data
AdR – – 84/93 13/6 – 3/1
PPT – 1/1 22/10 77/89 – –
WebB – 5/<1 45/35 50/65 – –

Video
VLCv – – – – 100 –
WMPv – – – – – 100
WebF – – 20/12 9/6 71/82 –

Table 2.1: Classi ication results (percentage) for the SVMalgorithmwith a ten-second timewindow.
On the left, accuracy by epoch. On the right, accuracy by byte.

Category Network conditions
Apps Duration Bytes down/uplink delay loss

[sec] [MB] [bps] [ms] [%]

Audio WMPa 1400 37 6M/1M – –
VLCa 1400 35 6M/1M – –

Data AdR 1400 63 6M/1M – –
PPT 1400 73 6M/1M – –

Video VLCv 1400 703 6M/1M – –
WMPv 1400 344 6M/1M – –

Table 2.2: Training set composition. AdR stands for adobe reader, while PPT for Powerpoint pre-
sentations. VLC is marked as VLCa and VLCv when used for generating audio and multimedia con-
tent, respectively. Same consideration holds for WMP.
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Category Network conditions
Apps Duration Bytes down/uplink delay loss

[sec] [MB] [bps] [ms] [%]

Audio

WMPa
980 13 6M/1M – –
980 13 3M/512K – –
980 13 1.5M/256K – –

VLCa
980 26 6M/1M – –
980 29 3M/512K – –
980 26 1.5M/256K – –

Skype 560 15 6M/1M – –

Data

AdR
980 77 6M/1M – –
980 45 3M/512K – –
980 26 1.5M/256K – –

PPT
980 47 6M/1M – –
980 39 3M/512K – –
840 24 1.5M/256K – –

WebB 560 83 6M/1M – –

Video

WebF 560 274 6M/1M – –

VLCv
980 498 6M/1M – –
980 277 3M/512K – –
980 153 1.5M/256K – –

WMPv

980 302 6M/1M – –
980 265 3M/512K – –
980 153 1.5M/256K – –
140 26 6M/1M 10 –
140 27 6M/1M 20 –
140 19 6M/1M 40 –
140 25 6M/1M 80 –
140 23 6M/1M 120 –
140 21 6M/1M 160 –
140 28 6M/1M – 1
140 20 6M/1M – 2
140 7 6M/1M – 3

Table 2.3: Testing set composition. WebF stands for web pages with embedded Flash videos, WebB
for other kinds of web pages. VLC is marked as VLCa and VLCvwhen used for generating audio and
multimedia content, respectively. Same consideration holds for WMP.
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i.e., without introducing any impairment on the network, whereas traces used for testing expe-
rience a bandwidth squeezing of a factor of four (from a downlink/uplink rate 6Mbps/1Mbps to
1.5Mbps/256Kbps).
We believe this result is important for two reasons. First, it practically shows the rate by which the
accuracy of SVM decreases as we force the technique to classify traf ic for which it did not receive
any training, both in terms of application and network conditions. Second, it points out that the
misclassi ied epochs are actually the ones that carry few bytes, which means that the bandwidth
squeezingwe apply is so that it alters the values of the features uponwhichwe trained our classi ier,
thus altering the behavior of the application inside the thin-client connection, e.g., the multimedia
streaming is bursty. As long as the conditions return similar to the optimal ones, such as in the case
where the testing traces have a downlink/uplink rate of 3Mbps/512Kbps, the classi ier can keep
up and is still able to detect the Video category with an accuracy of bytes around 80%.
To prove this thesis, we further analyzed whether there is room for improvement in the classi i-
cation of the testing set in case also the training set includes RDP sessions collected under some
forms of network impairments, such as with different bandwidth conditions. Preliminary tests
show that the accuracy increases on average of 25% (15%) in terms of epochs (bytes) for multime-
dia content. It is worth noting that although these results may justify a motivated service provider
to collect training traces in different network conditions to achieve better accuracy, they open to
the potential over-specialization (over- itting) of the training set against the testing set.

2.2 Es ma ng Content and Service Popularity for Network Op-
miza on

2.2.1 Use Case Reminder

The goal of this use case is to optimize the QoE of the user and the network load by inferring the
expected-to-be popular contents and identifying optimal objects to cache in a given portion of the
network. To achieve this goal, we exploit themPlane architecture in order to collect a large number
of online traf ic information requested by the users in several points in the network. The acquired
information is exploited in order to predict the content popularity and suggest ef icient caching
replacement strategies to the Reasoner.

2.2.2 An Almost Reasoner-less Approach

Differently from other use cases that include troubleshooting and where iterative reasoning is al-
mostmandatory, the role of Reasoner is basic for the content popularity estimationuse case. Indeed
it orchestrates the two different analysis modules that monitor and estimate the popularity evolu-
tion of contents observed in certain portions of the network. The only reasoning task which may
require some iteration is the identi ication of the network portions in which contents are labelled
as potentially popular.
In its current status, the Reasoner gets the list of expected popular contents from the analysis mod-
ules, that run continuously on the repositories, together with information about the network por-
tion (i.e., the probe) in which such content was observed. In the scenario of a hiercarchical Content
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Figure 2.1: Mean percentage reconstruction error when predicting the future popularity of the
video based on the history length (bins represent days). Note how the reconstruction error in-
creases as we predict further in the future.

Delivery Network, it would be useful to get the additional knowledge about the location of the con-
tents that are expected to be more popular. Consequently, this information could be utilized in
order to identify the caching level in the hierarcical CDN at which proactively prefetching the cor-
responding content.

2.2.3 Preliminary Evalua on Results

Here we describe the results in inferring the evolution of content requests over time by means of
the predictor as described in D4.1 [73]. In particular, we run our prototype on a commercial ISP
anonymized trace reporting the requests to YouTube videos watched by a population of 28,000
users.
We adopted a supervised approach, based on heterogeneous mixture models. First, we gathered
the models of our target applications by collecting a set of requests for YouTube videos over time
(grouped by day) that served as training set. Then, we tested the validity of suchmodels on a subset
of 2,000 requests to videos available in our trace.
The goal of this irst evaluation is to assess the ability of the technique to accurately predict the
popularity of a given content. We believe this is the irst step into the implementation of caching
strategies: it constitues the input for optimizing the cache usage given its size, and for reducing the
amount of bytes that we have to transfer if required to be transfered when we knowwhich content
should be kept into the cache as it will become popular in the future.
We started investigating the accuracy of our algorithm in predicting the future popularity of the
videos, given that the algorithm has seen the irst X data samples of the requests of the videos
over time, whereX ranges from 11 to 91, with step 5. Fig. 2.1 reports the results in terms of Mean
Percentage Error (MPE), that is the ratio between the absolute estimation error (the difference
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between the estimated and the real requests) and the number of requests that the video actually
gets in the data sample we are trying to predict.
As shown, the algorithm shows good accuracy (MPE is below 20%) in predicting the popularity
of the objects in the short-term (e.g., up to the next ten data samples in the future), whereas the
accuracy degrades themore we try to predict long-term, especially when the known history is very
little (e.g., over 80% of error when the algorithm tries to predict up to 80 data samples ahead in the
future, based on the knowledge of the irst 11 data samples).
As future analysis, we plan to assess how the accuracy of the prediction algorithm brings bene it
to the overall reduction of the amount of traf ic that has to be transfered over the network across
different levels of cache.

2.2.4 Other Approaches

In our ongoing effortswe are analyzing other prediction approaches and evaluating their scalability
with respect to the current implementation.

2.3 Passive Content Cura on

2.3.1 Use Case Reminder

We remind that the content curation use case aims at providing a service that helps users identify-
ing, fast, relevant content in theweb. This use casemonitors various probes in the network, detects
URL clicks (called user-URLs) out of the streams of HTTP logs observed on the probes, and performs
some analysis on these clicks in order to pinpoint the set of URLs that are worth recommending to
users.
In D4.1 [73], we presented two of line analysis modules that aim at detecting (1) user-URLs (URLs
that were clicked intentionally by users) out of a stream of HTTP logs, and (2) interesting-URLs
(user-URLs that are likely to be interesting to recommend to users).
In D3.3 [73], we enhanced our user-URLs detection heuristics and modi ied them to run online at
high rates of HTTP requests (up to 5 million per hour). Since this algorithm needs to run continu-
ously onHTTP logs streamed from themPlane probe, we decided tomake it a scalable data-analysis
algorithm that runs on the repository instead of an analysis module on its own. The output of this
algorithmwill be user-URLs, togetherwith their timestamps, referrer and a lag sayingwether they
contain or not a social plugin.
In D4.2 [73], we sketched how we modi ied the structure of the analysis modules to work online,
and we present in this document two new analysis modules which rely on the output provided by
WP3: (1) the content versus Portal module and (2) the content promotion module.

2.3.2 Content versus Portal Analysis Module

As also described in Sec. 3.3, our use case needs a Content versus Portal module which focuses on
discriminating interesting-URLs corresponding to web portals from those pointing to speci ic con-
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tent. We use the termweb portal or portal-URL to refer to the front page of content providers, which
mostly has links to different pieces of content (e.g., nytimes.com/ and wikipedia.org/); whereas
a content-URL refers to the web page of, e.g., a single news or a wikipedia article. We thus engineer
an analysis module that is a classi ier that distinguishes between web portals and content-URLs.

2.3.2.1 Features

We use ive features to capture both URL characteristics and the arrival process of visits users gen-
erate.
URL length. This feature corresponds to the number of characters in the URL. Intuitively, portal-
URLs tend to be shorter than content-URLs.
Hostname. This is a binary feature. It is set to one if the resource in the URL has no path (i.e., it is
equal to “/”); and to zero, otherwise. Usually, requests to portal-URLs have no path in the resource
ield.
Frequency as hostname. This feature counts the number of times a URL appears as root of other
interesting-URLs. The higher the frequency, the higher the chances that the URL is a portal.
Request Arrival Process (RAP) cross-correlation. The URL request arrival process is modelled
as a vector in which each element counts the number of visits in ive-minute bins. We noticed that
users often visit portal-URLs following some diurnal periodic pattern. Intuitively, the more the re-
quest arrival process signal of a given URLs is “similar” to that of a well known portal, the higher
the chances that the URL corresponds to a portal. To capture such a similarity, we compute the
maximum cross-correlation between (1) the request arrival process of a tested URL and that of
(2) well-known portals (e.g., www.google.com or www.facebook.com). The cross-correlation, a
well known operation in signal processing theory, measures how similar the two signals are, as a
function of a sliding time lag applied to one of them. The higher the value of the maximum of the
cross-correlation, the larger the chance of a URL being a portal.
Periodicity. This is a binary feature that captures the fact that users visit portalswith some period-
icity. We use the Fast Fourier Transform (FFT) on the discretized aggregate visit arrival process for
a given URL. If the visit arrival process shows one-day periodicity (principal frequency of 1/24h),
then we set periodicity to one; zero, otherwise.
Note that the last two features would intuitively work only for popular-enough portals that get
enough clicks to exhibit the periodic diurnal cycle. However, as we will see in Sec. 2.3.3, we only
promote content that has captured a suf icient amount of attention. As such, unpopular portals are
less likely to be promoted.
Finally, we opt for a supervised machine learning approach to build a classi ier based on the above
features. Given the heterogeneity of the URL characteristics, we choose the Naive Bayes classi ier.
This classi ier is simple and fast, which is important for online implementation. As we will see, it
achieves good performance, not calling for more advanced classi iers.

2.3.2.2 Accuracy

To evaluate the accuracy, we observe a stream of interesting-URLs (extracted from http logs of a
commercial ISP) and by visiting such URLs, we manually pick among them 100 content-URLs and
100 portal-URLs. We use this set for both training and testing. In particular, we randomly divide
the 200 URLs into two sets: two thirds of the URLs for training and one third for testing. We use a
ten-fold validation, averaging results from 10 independent runs.
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Figure 2.2: Work low of the online content vs. portal URL classi ier

We build several combinations of features and choose the one that shows the best tradeoff be-
tween precision and recall. Our results show that we achieve the best accuracy by combining the
URL length and the periodicity. This combination achieves 100% precision and 93% recall for web
portals, and 94% precision and 100% recall for content-URLs, which translates into an overall ac-
curacy of 96%. This means that we have a very high precision whenever we tag a URL as Portal.
However, around 6% of what we tag as content-URLs are in reality portals.

2.3.2.3 Online Classifier

Ouranalysismoduleneeds to runonline, that is todecide as soonas it is seenwhether an interesting-
URL is a content-URL or a portal-URL. We now describe the online version of the classi ier we use
to distinguish content-URLs from portal-URLs. It takes as an input a stream of tuples<interesting-
URLs, timestamps>, and it outputs binary labels as<interesting-URLs, label (content-URL/portal-
URL)>.
Despite we achieve the best accuracywhen combining the features URL-length and periodicity, this
latter complicates the design of the online classi ier, as it has to observe each interesting-URL for
some time, e.g., a week. Therefore, we design the online classi ier based on the observation that
the features can be split in two categories: those that analyze the structure of the URL (URL Length
and hostname), and those that rely on the visit arrival process (RAP cross-correlation, periodicity
and frequency as hostname). For the irst set we can take decisions on-the- ly, while the latter
requires to collect observations for a few days before being able to correctly take a decision. Thus,
we split the classi ication work low into two threads, as depicted in Fig. 2.2. The left thread, named
OFF-Thread, collects observations for the features RAP cross-correlation, periodicity and frequency
as hostname. As soon as the interesting-URL i has been observed for enough (W ) times (being
each observation corresponding to a user visit to i), i is classi ied using features URL-length and
periodicity (the most accurate in our experiments, method OFF-CL in Fig. 2.2), and the outcome ci
is stored in theKnowledge Database,K. The right thread, namedON-Thread, performs classi ication
on-the- ly based on the per-URL “online” features (method ON-CL in Fig. 2.2). In particular, we test
our classi ier on a groundtruth trace thatwe build by visiting the top 100websites in Alexa ranking.
We observe that combining URL length and hostname gives us a 93% accuracy on the groundtruth

Plane
16



318627-mPlane
Cross-Check of Analysis Modules
and Reasoner Interac ons

trace.
Therefore, for every interesting-URL i, we irst rely on the OFF-CL result, if available, i.e., we verify
the presence of i in K. Otherwise, we use the faster, but less precise, ON-CL result.

2.3.3 Content Promo on Analysis Module

This analysis module is useful to decide which content-URLs to promote and show to the users, it
takes as an input content-URLs, computed by the previous analysis module. In the current status
of the use case, we test four different promotion mechanisms to use for as many sections (or tabs)
in the front end website that we built for a irst prototype of our use case.
Hot. This mechanism is an adaptation of Reddit’s Hot ranking algorithm [109], which promotes
URLs that are both popular and recent. The algorithm behind Reddit’s Hot ranking assigns each
URL a score based on users’ votes. We replace such votes with the number of visits, and modify
Reddit’s formula to obtain the following:

Score = log(Nviews) +
Tfirst − Tstart

TP

Nviews reports the number of views, Tfirst is the time corresponding to the irst time the content-
URL has been observed (i.e., visited), and Tstart is the time corresponding to an absolute reference,
i.e., the start of the system. Finally, TP represents the normalization factor that we use to de ine a
”freshness period”, and that we set to 12 hours. Intuitively, this formula inds a balance between
the content popularity (the number of views) and its freshness (its age with respect to the absolute
reference). When a content-URL stops getting attention, its ranking starts decreasing due to its age.
Top. This mechanism produces a simple ranking of URLs depending on the number of views. In
the current version, in order to keep the memory usage of the system steady, this ranking accounts
only for one week of history.
Fresh news. This mechanism focuses on one category of content-URLs, namely news, and aims at
promoting the freshest news seen in the network. In order to detect if a content-URL corresponds
to a news, we rely on a prede ined list of traditional news media websites in Italy: if the hostname
of a content-URL belongs to this list, and if the content-URL has never been seen before, we tag it
as news and promote it as fresh news. We construct the list of news websites by observing Google
News, a popular news aggregation and indexing system that uses an active approach based onweb-
crawlers to collect and promote news. More precisely, Google servers regularly query a prede ined
set of popular news portals, looking for new articles to push on the front page [38]. To construct
the list of news portals, we crawl the Google News front page every 20 minutes for a period of one
week, looking for new websites. This allowed us to obtain more than 500 distinct news websites.
Live news stream. It simply promotes the news, as de ined earlier, as soon as they get attention
from users in the network, i.e., in a continuous manner.
Finally, when a content-URL receives a visit, this analysis module updates the score of the URL and
its number of views. The content promotion analysis module periodically recomputes the ranking
and updates, if necessary, the database used to store the contents in the Hot and Top categories.

2.3.4 Preliminary Prototype and Online Deployment

We build a preliminary prototype of this use case.
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Figure 2.3: Screenshot of the website running the Content Curation prototype available at http:
//tstat.polito.it/netcurator/

By feeding the online algorithms described in previous sectionswith a live streamofHTTP requests
that has been made available from Politecnico di Torino, we deploy a complete prototype of the
system running in an actual operational network.
Thanks to a Tstat probe installed at the egress vantage point of the campus network and obtain
HTTP requests generated by around 15,000 users, i.e., students and personnel regularly accessing
the Internet. On average, users generate 7MHTTP requests per day. Out of these the systemextracts
on average 55,000 user-URLs, corresponding to 5,000 interesting-URLs. The backend server of the
system receives the stream of HTTP requests and processes it to detect, irst, interesting-URLs,
then, content-URLs, and, inally, among those the URLs to promote on the website, that we named
NetCurator: http://webrowse.polito.it/.
As depicted in Fig. 2.3, the website consists in four tabs, one for each promotion method. Each
tab contains a content feed whose design is inspired by the “wall” implemented in popular social
networks such as Facebook and Twitter, and URLs that make it to the feed are presented with a
preview image, a title, and a description when available. In our ongoing efforts we are working to
make all the system components mPlane-compliant.

2.3.5 Evalua on

This section evaluates various aspects of our prototype. First, to evaluate its ef iciency in processing
HTTP logs, we apply it on the passive HTTP log trace that have been collected in a commercial
European ISP. This trace reports the HTTP activity of 19,000 users regularly accessing the Internet
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Figure 2.4: HTTP requests rate (left y axis) and processing time (right y axis) over time for one day
extracted from HTTP-ISP

through ADSL/FTTH access technologies. The trace, that we name HTTP-ISP, reports in total more
that 190M HTTP requests that users have generated over a period of three days of April 2014. As
we described in D4.2, Sec. 2.3.5.1 evaluates the performance of the prototype when we feed it with
the passive trace HTTP-ISP. Finally, Sec. 2.3.5.2 focuses on the Fresh News tab (see Sec. 2.3.4 for a
detailed description) to see how ef icient it is in detecting fresh news.

2.3.5.1 Performance

In order to understand the performance of the prototype, we evaluate how it behaves when it pro-
cesses HTTP-ISP, whose per-hour rates of HTTP requests are much larger with respect to the live
deployment we described in Sec. 2.3.4. We show how the prototype performs against the day in
HTTP-ISP that has the largest peak hourly rate of HTTP requests. We split the one-day trace in 1-
hour long sub-traces, and use them to feed our prototype. For each hour, we measure the time that
the prototype spends to end the processing. For this experiment, we run the prototype on a six-core
Intel 2.5GHz CPU and 32GB RAM server.
Fig. 2.4 reports the amount of HTTP requests (left-hand y axis) and the corresponding processing
time (right-hand y axis), for all the 1-hour long bins in the day of HTTP-ISP. The igure shows that
the implementation of the prototype is able to inish all the one-hour traces in less than one hour.
This demonstrates that it can sustain the processing of such large rates ofHTTP requests on a rather
standard server like the onewe picked above. Finally, we note that itsmemory footprint isminimal,
as less than 5% of memory was used throughout the experiment.

2.3.5.2 How fast can our Content Cura on system Detect Content?

Finally, this section assesses what we expected to be a nice property of our prototype when we
designed it: fast discovery of Internet content. Indeed, if Google News has robots that actively look
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for new content to index, our system can rely on an “army” of userswho explore theweb looking for
fresh news. In this section, we set the bar high and leverage our online deployment to compare the
two approaches and assess how fast is our content curation system in discovering news content.
Since the content in both “Fresh news” and Google News relies on the same list of traditional news
providers, the only differencebetween them is that ours uses the crowdof users todiscover content,
while Google’s uses robots.
To compare the two approaches, each time our prototype promotes a content-URL to “Fresh news”,
we check if Google has already indexed it,1 and if it has, we measure since when (this “age” is an
information available below each link returned by Google Search). We run this experiment for a
period of one day (after that, Google has banned our IP network because of the extensive probing).
We observe that despite the small sample of users that our prototype has in its current live deploy-
ment, it was able to ind few not-yet indexed news URLs. Fig. 2.5 shows the number of not indexed
news in each hour of the day. We put this number in perspective with the total number of “Fresh
news” per hour. The igure shows, not surprisingly, that the more views we have, the higher the
chances that we ind not-yet-indexed content.
We conclude that with such a small number of users, our content curation system cannot compete
on the speed of content discovery, especially when the space of news to discover is limited (a pre-
de ined list of news portals). Indeed, our analysis of the age of news shows that in 96%of the cases,
our prototype is more than 1 hour later than Google News in discovering a news URL.
However, an interesting observation is the age of the news articles that are consumed by users in
the network (and that are therefore promoted by the prototype). In fact, although platforms like
Google News promote on their front page very fresh news (from few minutes to two hours old),
our experiment shows that 44% of the consumed news were published one to several days before
(according towhen theywere irst indexed by Google). Thismeans that although content freshness
is important for news, a big portion of news article are still “consumable” one to fewdays after their
publication.

2.4 Service ProviderDecision Tree for Troubleshoo ngUseCases

2.4.1 Use Case Overview

The reference scenario, as depicted in Fig. 2.6, is based on a typical SP’s infrastructure. The SP has
built and runs a completely private instantiation of the mPlane infrastructure. This means that all
the probes, the repository, the supervisor and the reasoner are under the exclusive control of the
SP.
In order to evaluate the QoE of a speci ic service (e.g., video streaming) a continuous monitoring
infrastructure built upon a set of passive probes is used. Passive probes are placed in multiple van-
tage points and extract from traf ic lows data useful to estimate the QoE. For instance, the average
throughput per low or the Round Trip Time can be usefully used to build performance parameters
associated to the monitored service. Besides the set of passive probes, the reference scenario also
considers the availability of a set of active probes. The active probes are located directly behind a
subset of access nodes (e.g. DSLAMs, OLTs, etc.), within the PoP site and next to the Internet Gate-

1We use several instances of a headless browser to do a “site:” search on Google Search for each news-URL the pro-
totype detects.
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Figure 2.5: Number of not-indexed news-URLs (left y axis), and number of news-URLs (right y axis)
during one day (Online deployment)

ways. These probes are able to perform active measurements: for instance, Ping/traceroute or
actively requesting video contents and takingmeasures fromOver The Top services (e.g. YouTube).
The active probes work on demand, following triggers coming from the Reasoner (through the Su-
pervisor).

2.4.2 Diagnosis Algorithm

Fig. 2.7 depicts the diagnosis algorithm.
The Analysis module is the trigger of the overall troubleshooting process. When the performance
measures are below the threshold, a ”NOT OK” response is sent to the Reasoner which starts the
process to ind the cause of the problem, according to the actions described in the graph. The al-
gorithm is described in detail in deliverable D4.2 [73]. It is based on a very basic decision tree
that highlights the iterative interaction with the probes. More sophisticated algorithms ormachine
learning approaches could be used to speed-up the process and reduce the communication with
the probes. Anyway, at this stage, we prefer to propose an algorithm that is easy to understand for
people working in network operation teams because it is based on an expert-driven approach, the
same they use daily to solve the issues. In thisway, the purpose of each step of the algorithm is clear.
At the same time, the overall process, including the communication with the probes, is completely
automatic, boosting the ef iciency of the analysis.
Currently, part of the analysis module has been implemented. Speci ically, the software that ag-
gregates the QoE parameters measured by the passive probes is available. The aggregation is per-
formed on a per-DSLAM basis, in order to have a suf icient granularity to trigger the Reasoner pro-
cess. The QoE parameters taken into account are the bandwidth and the Round Trip Time (RTT).
The passive probes calculate these quantities for each session and store the values into the Reposi-
tory. The analysis module takes these values, aggregates them per-DSLAM, and calculates the aver-
age. The obtained result is compared to a pre-de ined threshold: if the result is below the threshold,
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Figure 2.6: Reference scenario

the analysismodule interprets it as a QoE degradation and triggers the Reasoner process to ind the
cause of the problem. An example of the average bandwidth per-DSLAM is shown in Fig. 2.8, where
the value is calculated every 10 minutes. After each calculation, the analysis module sends a feed-
back to the Reasoner process: ”OK”, if all the DSLAMs are over the threshold, ”NOT OK”, if one or
more DSLAMs are below the threshold. In both cases, the values are sent to the Reasoner.
Fig. 2.9 shows an example of RTT calculated from the sessions of a speci ic DSLAM. In this case, the
values are classi ied also on the basis of the pro ile of the access line. This option can be enabled
also for the bandwidth calculation.
The RTT is primarily useful to detect rerouting events that move the traf ic on longer paths. These
events can be within the SP’s network (e.g., a link fault on the primary path) or can be due to the
Content Provider that starts serving the content from a different site. The bandwidth gives infor-
mation that partially overlaps with RTT, but it additionally gives hints on packet loss events, that
can be due, for example, to network congestion.

2.5 Quality of Experience for Web browsing

2.5.1 Use Case Overview

The QoE for Web browsing use case aims at identifying the root cause of a poor performance in
browsing (i.e., high Web page loading time). The identi ication of the root cause exploits measure-
ments taken on distributed probes, both actively and passively. The probes passively records HTTP
time measurements from an instrumented headless browser (i.e., phantomJS) and couples them
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Figure 2.7: Diagnosis algorithm

with the log collected at the TCP level by Tstat. The probes perform then active measurements
(namely, Ping and Traceroute) over the collected IP addresses. The result of the diagnosis is an in-
formation on the location of the root cause (e.g., local host / lan, home gateway, remote web server,
and so on).

In D4.1 [73], we presented the preliminary algorithm and scenario aiming at identifying the seg-
ment that is responsible for the high Web page loading time. In D4.2 [73], we further detailed the
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Figure 2.8: Average bandwidth aggregated per-DSLAM

Figure 2.9: Average RTT aggregated per-DSLAM
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Symbol Metric Passive or Active
Tnhop RTT to the nth hop Active
∆n T(n+1)hop − Tnhop Simple Computation
Tidle Client idle time Passive
Ttot Total web page downloading time Passive
TDNS DNS response time Passive
Ttcp TCP response time Passive
Thttp HTTP response time Passive

Table 2.4: Metrics used in the diagnosis algorithm for the Web QoE Use Case

work low for the iterative analysis at the Reasoner level.
Nowwe present the complete picture, relying both on the probe measurements and on the reposi-
tory data.

2.5.2 The Diagnosis Algorithm

We remind all the collected metrics that are exploited by the diagnosis algorithm in table 2.4.
We can identify different segments where the problem of a high page loading time could be located
(each segment is indicatedwith a questionmark in Fig. 2.10, taken fromDeliverable D4.2 [73]): (1)
at the probe side, i.e., local probe, local network, gateway; (2) at the domain side, i.e., middle boxes
(if any), DNS server; (3) the backbone network; and (4) the remote web server.

Figure 2.10: Network Scenario
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The main diagnosis algorithm is described in Algorithm 1.
Lines 1-9 are executed on data coming from the single probe to infer the status of the probe (e.g.,
CPU usage) and browser level measurements2 (lines 3-9).
If the total time of retrieving all the objects in the web page is under a certain threshold (test on
line 3) then we investigate the remote web server part of the path, namely the page dimension, the
time for setting up a TCP connection and the time taken to resolve the URL. On the contrary, if the
total time of fetching all the items on a web page is high, there can be three distinct cases: all the
other devices in the same local network are experiencing some problems, none of the other devices
is experiencing any problem, and just some of the other devices are experiencing some problems
(lines 11-34).
In case all the different devices are experiencing some problems (lines 12-18) the algorithm can
directly exclude that the problem is due to the remote server (assuming that not all the devices are
contacting the same remote server). The algorithm assumes then that most probably the problem
is located close to the devices (otherwise probably not all the devices would experience problems)
and thus begins this diagnosis phase by checking the gateway and the local network (Algorithm 2),
if the problem is neither in the gateway nor in the local network, it checks the middle boxes (Algo-
rithm 3), and inally, if the problem is neither in the middle boxes, it concludes that the problem is
in the backbone network (probably in the portion of the backbone that is close to the local network,
given that all the local devices are traversing it).
Let us dive into the check-gateway-lan algorithm (Algorithm 2). First of all (lines 1-5), the algo-
rithm veri ies if the CUSUM [97] (see Sec.2.5.3) applied to the T1hop (where 1hop is the gateway)
exceeds an appropriate threshold. If this is the case, this can justi ied by either the fact that the lo-
cal network is congested or by the fact that the gateway is overloaded and the PING response time
is “anomalous”. To discriminate between this two cases the probe also checks the CUSUM applied
to Tp (where p is another device of the network) and if it is “anomalous” too, it concludes that the
problem resides in the local network, which is probably congested, otherwise it concludes that the
problem is in the gateway, which is probably overloaded.
Else, if the T1hop is “normal”, the algorithm cannot yet exclude the overloaded gateway case (be-
cause the relation between the ping response time and the machine load is not always signi icant,
as usually PING messages are directly managed by the network card) and performs a check on the
CUSUM applied to∆1. Note that this metric, from a practical point of view roughly represents the
sum of the time needed to traverse the gateway, the time needed to go through the irst link out-
side the gateway, and the time required by the second hop to process the PING request. If this is
“anomalous”, the algorithm also checks the CUSUMapplied to∆2 and in case it is “anomalous” too it
concludes that there is congestion on the irst link outside the gateway, which is reported as back-
bone network problem (note that if there are middle boxes the algorithm instead proceeds to the
next phase), otherwise it concludes that the problem is in the gateway that is overloaded.
In case∆1 results to be “normal”, the algorithm can exclude the overloaded gateway case, and pro-
ceeds by checking themiddle boxes, if any. The veri ication of themiddle box (Algorithm3) is based
on a process that is very similar to the one used to check the gateway. The algorithm checks the
CUSUM applied to Tnhop (where n is the middle box). If this is “anomalous”, it can conclude that the

2The current implementation of the probe with the headless browser does not allow the capturing of DNS times and
idle times. The irst, because we can not distinguish DNS requests from the Tstat logs, the second because on a headless
browser there is no rendering of the web page. This choice was driven by the need to lighten the probe on low-power
hardware, and todeploy theprobe as a standaloneboxonwhich take themeasurements. User interaction (i.e., the explicit
warning that a high page loading time is experienced) is always collected by a “full browser” plugin.
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Algorithm 1Web QoE diagnosis main algorithm
1: if Tidle

Ttot
> ψ1 orCPU usage > ψ2 then

2: return local client ▷ otherwise exclude local client
3: if Thttp < ψ3 then ▷ exclude any kind of network problem
4: if PageDimension > ψ4 then
5: return page too big
6: if Ttcp > ψ5 then
7: web server too far
8: if TDNS > ψ6 then
9: return DNS ▷ otherwise exclude the DNS problems

10: else ▷ the problem is somewhere in the network
11: check other probes in the local network
12: switch Do they have problems? do
13: case They are ALL experiencing problems ▷ exclude the remote server
14: if CHECK GW/LAN then
15: return GW/LAN
16: if CHECK MiddleBox then
17: return Middle Box ▷ exclude gateway and local network
18: return network ▷ the problem can be only in the net (near portion)
19: case NONE is experiencing problems ▷ exclude GW, LAN, Middle boxes
20: if CUSUM(Thttp − Ttcp) > ψ6 then ▷ reload page and check again
21: return remote web server
22: else
23: return network ▷ the problem can be only in the net (far portion)
24: case SOME are experiencing problems ▷ exclude gateway, local network, middle box, and almost certainly

the remote server
25: return network
26: case No Other Probe Available
27: if CHECK GW/LAN then
28: return GW/LAN
29: if CHECK MiddleBox then
30: return Middle Box ▷ exclude gateway and local network
31: if CUSUM(Thttp − Ttcp) > ψ6 then ▷ reload page and check again
32: return remote web server
33: else
34: return network ▷ the problem can be only in the net (far portion)

problem is in themiddle box, otherwise it checks if any anomaly is present in∆n: if not, it excludes
the middle box and, in case, goes to the next middle box, otherwise it also check∆n+1, concluding
that the problem is in the middle box, if the latter is “normal”, or in the congested network, if not.
Note that this phase is apparently simpler than the one responsible for checking the gateway, just
because it can exploit all the information already obtained from the previous phases: if the algo-
rithm cannot locate the problem neither in the gateway and local network, nor in themiddle boxes,
it concludes that the problem resides in the near portion of the backbone network.
Back at the main algorithm, let us analyze now the case in which none of the other devices of the
local network is experiencing any problem (Algorithm 1, lines 19-23). In this case, we can easily
exclude the gateway, the local network, and the middle boxes, restricting the possible results to
either the remote web server or the backbone network. Hence, the irst check is performed on the
remote server (that is assumed to bemore probable than the backbone network, given that the only
device that is experiencing problems is the one navigating that remote server).
To perform such a check, the algorithm veri ies if the CUSUM applied to the metric Thttp − Ttcp is
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Algorithm 2 CHECK GW/LAN
1: if CUSUM(T1hop) > ψ then
2: if CUSUM(Tp) > ψ then
3: return Local
4: else
5: return GW ▷ optionally I can ask another probe to verify
6: else
7: if CUSUM(∆1) > ψ then
8: if CUSUM(∆2) > ψ then
9: return Network (backbone) congestion

10: else
11: return GW

▷ exclude GW and LAN

Algorithm 3 CHECK MiddleBox
1: to apply for each middle box
2: consider middle box n ▷ for the irst middle box after the gw, n = 2)
3: if CUSUM(Tnhop) > ψ then
4: return MiddleBox n ▷ note that CUSUM(∆n−1) < ψ
5: else
6: if CUSUM(∆n) > ψ then
7: if 	 thenCUSUM(∆n+1) > ψ
8: return network congestion
9: else

10: return Middle box n
11: else
12: check next Middle Box

▷ exclude MiddleBoxes

“anomalous” or not3. If yes, the algorithm concludes that the problem is located in the remote web
server, otherwise that it is located in the backbone network.
If some of the local network devices are experiencing some problems and some are not (lines 24-
25), the algorithm directly concludes that the problem is in the backbone network.
Note that, despite the quite complicated description of the algorithm, the number and the type of
the operationsmade by the probemake it suitable for being used on a background task, without sig-
ni icantly affecting systemperformance. Indeed all the checks are performed by either simply com-
paring some passive measurements to a threshold or computing the CUSUM statistics (CUSUM is
well-known for being suitable for all kind of real-time applications) and comparing it with a thresh-
old.
Finally (lines 26-34), if no other probe are available in the local network, then we fall back to the
case in which all probes in the network are experiencing problems.

2.5.3 Cumula ve Sum

To discover anomalies, we exploit a well knows technique named Cumulative Sum (CUSUM) [97],
also known as cumulative sum control chart. It is a sequential analysis technique,q typically used
for monitoring change detection. Let us suppose to have a time series, given by the samples xn
from a process, the goal of the algorithm is to detect with the smallest possible delay a change in

3Note that this metric roughly represents the time needed by the remote server to process the HTTP GET request,
being Ttcp almost independent on the server load, when the server is not in the local network
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the distribution of the data. The assumption of the method is that the distribution before and after
the change (fθ1(x) and fθ2(x)) are known. As its name implies, CUSUM involves the calculation of
a cumulative sum, as follows:

S0 = x0

Sn+1 =
(
Sn + log

(fθ2 (x)
fθ1 (x)

))+ (2.1)

The rationale behind the CUSUM algorithm is that, before the change the quantity log
(fθ2 (x)
fθ1 (x)

)
is

negative, whereas after the change it is positive: as a consequence, the test statistics Sn remains
around 0 before the change, and it increases linearly with a positive slope after the change, until it
reaches the threshold ξ when the alarm is raised.
Note that the assumption about the knowledge of the two distributions fθ1(x) and fθ2(x), implies
that CUSUM is only able todecidebetween two simple hypotheses. But, in case of networkproblems
we cannot suppose that the distribution after the change is known (usually neither the distribution
before the change is known). This implies the need of using the non parametric version of the
algorithm [97], which leads to a different de inition of the cumulative sum Sn. In more detail in this
work we have used the non parametric CUSUM (NP-CUSUM), in which the quantity Sn is de ined
as:

S0 = x0
Sn+1 = (Sn + xn − (µn + c · σn))+

(2.2)

where µn and σn are the mean value and the standard deviation until step n, while c is a tunable
parameter of the algorithm.
As far as the estimations of µ and σ are concerned, we can use the Exponential Weighted Moving
Average (EWMA) algorithm de ined as:

µn = α · µn−1 + (1− α) · xn
σn = α · sigman−1 + (1− α) · (xn − µn)

2 (2.3)

where α is a tunable parameter of the algorithm.

2.5.4 Exploi ng Analysis Modules at the Repository Level

The analysis modules computing statistical distributions and values at the repository level are pro-
vided as tools to check this (see Sec. 3.5). At the repository level, the Reasoner can check:

• historical values of the RTTs to a particular IP address,

• changes in the traceroutes to the same host,

• other probes in the same network (i.e., same 1st hop in traceroute: same gateway),

• other probes in the same area (i.e., geo-location tools),

• particular segments with high RTTs (e.g., traceroute from different probes intersecting two
subsequent hops),
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• the target web server against different probes geographically distributed,

In order to present consistent data to the Reasoner, (i) cleaning, (ii) normalization, and (iii) trans-
formation are performed at the Repository level. The irst is the process of detecting and correcting
corrupt or inaccurate records, caused, for example, by user entry errors or corruption in transmis-
sion or storage; the second aims at reducing data to its canonical form, to minimize redundancy
and dependency; and the third converts a set of data values from the data format of the source into
the data format of the destination system (in our case we store JSON objects into HDFS).
After this preprocessing, the Repository presents the capability of computing simple statistic func-
tions to be applied to the collected data (mean value, standard deviation, median, etc.) with differ-
ent time granularities (e.g., hour, day, week, month), as well as the capability to cluster the collected
data about users, lows, servers, ISP or geographical locations. As a result, we can dive in more de-
tails in all cases in which the main algorithm returns a generic “network” problem.
As for now, all the analysis modules on the Repository must be explicitly invoked, while our goal is
to automate them as soon as new data arrive from the probes (i.e., moving from batch processing
to stream processing).

2.6 Mobile Network Performance Issue Cause Analysis

2.6.1 Use Case Reminder

This scenario focuses in identifying the cause of possible problems that are related to experiencing
video-on-demand on mobile devices.
Video stream delivery on mobile devices is prone to a multitude of faults originating either from
device hardware constrains, failures in the wireless medium or network issues occurring in differ-
ent points along the data path. Although well established video streaming QoE metrics such as the
frequency of stalls during playback are a good indicator of the problems perceived by the user, they
do not provide any insights about the nature of the problem norwhere it has occurred. Quantifying
the correlation between the aforementioned faults and the users’ experience is a challenging task
due the large number of variables and the numerous points of failure. To address this problem, we
are developing a root-cause diagnosis framework for video QoE issues. With the aid of machine
learning, our solution analyzes metrics from hardware and network probes deployed on multiple
vantage points to determine the type and location of the problems.

2.6.2 System Model Overview

In a typical scenario where a user streams a video on a mobile device from a popular service like
YouTube, a request to the content server is made to receive the video data. When the server re-
ceives the request, it sends the data either directly from the content server or through a Content
Distribution Network (CDN). Then the data stream enters the Internet Backbone until it arrives to
the client’s ISP network. If the client is connected on a cellular network, then the data is delivered
to the mobile from the client’s serving cellular tower. If the device is connected from aWi-Fi home
network, then the video is delivered over a broadband access link to the home gateway and inally
to the mobile device.
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Each hop of the data path may suffer from impairments that can affect the smooth delivery of the
video and therefore the user’s experience. Congestion or bandwidth bottlenecks in the local or re-
mote network segments, high load on the devices and problems in thewirelessmediumare some of
themost signi icant issues that cumber the performance of video streaming services and contribute
in the user’s QoE degradation.
To detect the types of failures that may cause issues during the video playback, we need to place
measurement probes at multiple vantage points (VP) so that we can extract performance metrics
from different segments and devices along the path. In an ideal con iguration, probes in all the
intermediate devices of the path would provide us with measurements regarding the performance
of each individual hop.
However, our approach only requires probes at themobile device, the home router and the content
server. We only use these three points as they allow us to capture issues at the boundaries of each
of the three important entities in the video delivery path, the user, the ISP and the content provider.
With the mobile and the server probes we are able to collect measurements from both the data
receiver and sender’s point of view, which correspond to the endpoints of the connection. The
home gateway acts as an intermediate VP capable of acquiring metrics from both the local (LAN)
and the wide are network (WAN).
In thiswork, we focus onunderstanding the contribution of eachVPwhendetecting problems, their
type and location andwithwhat accuracy. We also examine the bene its of combining the data from
multiple VPwhen they cooperate and inwhich scenarios the combination becomesmore bene icial.

2.6.3 Descrip on of the Probes

Since the majority of popular video streaming services deliver content over TCP, statistics of TCP
lows are key to analyze the network metrics that could reveal problems deeper in the data path.
For the purpose of collecting networkmetrics, we use the TCP statistics tool tstat. Tstat is capable
of periodically generating logs based on statistics extracted from the TCP lows that are observed
during runtime, such as delay, re-transmissions, window size and time-outs.
The mobile probe. We developed the mobile probe for the Android platform to measure TCP,
network interface and hardware metrics and monitor the system’s log for events relevant to the
progress of the video sessions and the performance of the playback. The probe is capable of col-
lecting three types of metrics, network, hardware and system events.
In more detail, the network metrics that we obtain are the parameters and TCP low statistics col-
lected by tstat. From the logs created by the toolwe extract 113metrics and statistics about a single
TCP low, including RTT, number of packets, low duration, window sizes, out-of-order packets and
re-transmissions.
In addition to tstat, the probe is con igured to log all incoming and outgoing packets at the NIC as
well as the errors and dropped packets. The hardware metrics are required for providing informa-
tion about the available resources on the device and the state of its connectivity. These metrics are
directly correlated to the performance of video streaming and video decoding.
The hardware metrics on the smartphone capture the percentage of CPU utilization, the amount
of free system memory in KB and the wireless connectivity status (RSSI). These three parameters
give us important information about the hardware state and the amount of load of the device. Other
hardware parameters were also considered but we concluded that the ones presented here are the
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most signi icant for describing the device’s performance.
Finally, the mobile probe monitors the system event log for information about the start-up delay of
the video and the number and duration of rebuffering events. The rebuffering events indicate the
depletion of the video buffers that force the playback to pause until the buffers ill up to a certain
threshold. These interruptions experienced by the user, are indicators of problematic sessions and
the QoE of the user. Except from stalls due to buffer outages we also consider stalls caused by high
load on the device that do not allow the proper decoding of the video stream.
The router probe represents the irst hop of the connection between the device and the server.
It resides on the edge of both the LAN and WAN segments and therefore it is an important VP for
measuring the performance of both sides. Although in our model we use a home router, in real
scenarios it could be placed at any point that provides wireless connectivity such as a cellular base
station.
The router probe con igured to capture network metrics in a similar manner to the mobile probe.
There is an instance of tstat running on the device and at the same time the probe logs statistics
regarding the number of packets seen arriving or leaving the wireless interface and the number of
packets that were dropped. In addition, the probe is capable of monitoring the RSSI of the wireless
interface of the connected clients.
The server probe. The selection of the server for the placement of the probe allows the mea-
surement of lows frommultiple clients connecting from a large number of devices. It additionally
serves as a measuring point with a view from the endpoint of the connection that helps identify
issues like bottlenecks and slow response times.
The probe on the server is as well instrumented with tstat for measuring network parameters and
with a tool to monitor and log statistics about the machine’s NIC using the same approach as the
router probe.
In this section we presented probes that were developed to be compatible with different platforms
depending on the architecture and operating system of the host device. Hence, in our system we
have versions of these probes for Android, OpenWRT and Linux.

2.6.4 Detec on System

It is dif icult to measure the correlation between QoEmetrics such as playback stalls and hardware
or network performance metrics, due to their non-monotonic and some times counter-intuitive
relation. Establishedmethods for identifying network or hardware faults do not return information
on whether nor how these problems affect the viewer’s experience.
For that purpose, we usemachine learningmethods to learn the correlations between performance
and QoEmetrics and to create a predictive model for detecting and characterizing the root cause of
playback problems. Before applying themachine learning tools, we employ two techniques, feature
construction (FC) and feature selection (FS) that help improve the performance of the classi ier.
Feature Construction involves the creation of new features by processing the already acquired
data as a means of increasing the information related to a given problem. To accomplish this task,
instead of using the rawnumber of bytes or packets, we generatemore general statistics that re lect
performance issues regardless the size of the payload or the duration of the low.
Speci ically, for the better classi ication of sessions suffering from congestion and shaping, we ini-
tially constructed the average bitrate per direction from the received and transmitted bytes of each
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device’s NIC divided by the duration of the session. Based on the the maximum bitrate observed
for each interface we then calculate an estimation of the interface’s utilization.
In order to create more general metrics that can be used to compare sessions regardless the size
or duration of the video, we normalize all the parameters which are expressed in bytes or packets
with the respective total number of bytes or packets that were exchanged during the session. This
way we obtain ratios of the initial parameters based on the size of the payload. We apply the same
approach for the duration of the video which is normalized with the duration of the video session.
Feature Selection: To increase the performance of the algorithm in terms of both accuracy and
execution time, it is important to signi icantly reduce the size of the feature space. For that purpose
we apply the Fast Correlation-Based Filter method, which we use in conjunction with an attribute
set evaluator. The reduction of the total number of features used to train the algorithm minimizes
the over- itting problem that adds noise and reduces the overall accuracy.
After applying FS, the number of features is reduced from 354 to 22. Among the remaining 22 fea-
tures, those with higher rankings were the 3 hardware metrics from the mobile device: the free
memory, the CPU utilization and the RSSI. There are also many of the constructed features we pre-
sented above, such as the upstream and downstream utilization of the interfaces and the normal-
ized values of re-transmitted, reordered and out-of-order packets as well as the number of packets
with payload. More parameters that received high ranking during the FS process are the average
and standard deviation of RTT, the minimum segment size observed, the arrival time of the irst
payload packet and the receiver and sender window sizes.
Machine Learning: For the data processing and analysis we use version 3.6.10 of Weka. Weka is
a collection of machine learning algorithms and tools for processing, classi ication, regression and
clustering. From the variety of algorithms offered by Weka we select Decision Trees to perform
the classi ication of the instances. Our classi ier of choice for the data analysis is J48 which is an
implementation of the popular C4.5 algorithm.
Given that the datasetsweobtain fromour experiments are comprised of a large number of features
that often have a non-linear relation between them, decision trees arewell suited for our predictive
model since the performance is not affected by such non-linear relations.

2.6.5 Controlled Experiments

In our system we use two approaches to collect measurements for our datasets. First, we collect
a set of measurements in a controlled environment in the lab. The second approach involves real-
world tests in a real environment. We perform the controlled experiments to set the ground truth
and evaluate the performance of the system, and later we deploy it in a real scenario to validate it
under realistic conditions.
In order to model realistic conditions in the controlled experiments, we use measurements col-
lected in the wild frommobile devices which were instrumented to run YouTube videos and collect
the related network parameters. From the obtainedmeasurements, we extract the distributions for
the delay, loss, throughput and download rate for video sessions both onWLAN andmobile broad-
band connections and we then apply these values when simulating different network conditions in
the lab.
Here, we describe the methodology for the controlled experiments and the process of generating
the corresponding dataset.
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2.6.5.1 Setup

Weuse the controlled environment of the lab to simulate a range of problematic scenarios in differ-
ent segments of the data path that potentially cause interruptions in the playback and QoE degra-
dation. We will later discuss about the accuracy of the algorithm in real-world experiments.
We set-up a simple testbed with a video server, a router/AP (Access Point) and an Android phone.
The mobile is connected to the Wireless LAN of the AP and the server is in turn connected via an
Ethernet cable to the router. A wired client acting as a background traf ic generator to introduce
variability, is also connected to the router. We use tc and netem to simulate a DSL link by shaping
the downstream of the link between the server and the router to 7.8Mbit/s and to 5.22Mbit/s to
simulate a mobile broadband link. We obtain these values from analyzing the video sessions in the
real-world experiments.
For the DSL link we apply 50ms delay and 1.4% loss both following a normal distribution between
± 20ms and ± 1% respectively. 100ms±30ms delay and 0.75%±0.5%was added for the mobile
link (Fig. 2.11).

Figure 2.11: Device setup in the testbed

The video server operates on Linux with the Apache HTTP server installed. The videos from the
top 100 most viewed list [110] have been previously downloaded from YouTube to the server in
either Standard or High De inition to ensure the diversity of the collection. Furthermore, for some
of the experiments real YouTube servers and existing streaming con igurations have been used (see
details below).
For the router/APwe used a NetgearWNDR3800 running OpenWRT. The access point of the device
was con igured to work on the 5GHz band in order to minimize interference from surrounding
sources andwe veri ied that no other deviceswere operating in the same frequency. For themobile
client, we used a Samsung Galaxy S II running Android 4.4.2.
Themobile application thatwedeveloped is responsible forperformingHTTPrequests to the server
and open the returned video stream using the default Android media player. Similarly, the applica-
tion candownload videos fromother services such as YouTube, etc. As soon as the playback inishes
the application repeats the process by launching another random video from the list.

2.6.5.2 Background Varia ons

To generate the dataset for the controlled experiments, for each scenario we performmultiple iter-
ations with random videos and gradually increment the intensity of the problem until we observe
frequent re-buffering events. At the same time, attempting to create more realistic network con-
ditions, we introduce variance to the system during every experiment by adding synthetic traf ic
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workloads of different patterns and at random intervals. For that purpose, we use the Distributed
Traf ic Generator [13] that supports traf ic generation based on different applications such as Tel-
net, FTP, gaming, VoIP and more. We also use ApacheBench (ab) to create realistic HTTP traf ic.
Both tools were set to create traf ic at random intervals and for random periods during the experi-
ments.

2.6.5.3 Simulated Problems

Apart from constant background variations, we generate a set of speci ic problems to label our
measurements. Speci ically, we create scenarios for the controlled experiments that represent real-
worldproblemsandwecompile a list of common faults thatwewill simulate to cause stallingduring
the video playback. These scenarios can be grouped in three basic categories, networking, device
hardware and wireless medium issues.
The generation of the problematic conditions is performed in an automated fashion to easier con-
trol the experimentswithout theneedof supervision. Inmoredetail, when anewexperiment starts,
the background traf ic sources and sinks are dispatched. At the same time, the experiment con-
troller script sets up the environmental parameters that are speci ic to the problematic scenario
that we want to simulate.
Next, the hardware and network monitoring probes are launched in the mobile, the router and the
server. In the following step, a random video is selected and launched from the top 100 list. Based
on the duration of the video a timeout is calculated so that we can detect when a video has inished
playing plus some extra delay due to stalls and startup time. If the video has inished or timed out,
we collect and aggregate the statistics from all the VPs for the given video session.
After the playback of 10 consecutive videos, the experiment controller script will modify the value
of a parameter that contributes to the speci ic problem. This parameter and its value are de ined
according to the type of the problem we want to simulate and the intensity of the problem. De-
pending on the scenario we are simulating, the parameter could either stand for the CPU load, the
traf ic generated to create congestion, the amount of shaping of a link or the number of interference
sources.
Shaping and Congestion. In the irst category we have the LAN or WAN congestion and LAN or
WAN shaping scenarios. These cases correspond to real-world conditions where the resources of
the network are limited due to increased traf ic, or due to bottlenecks such as slow links or band-
width caps.
To simulate LANcongestion, weusemultipleiperf instances to transmitUDP traf ic from thewired
LAN client to the router, while for theWANcongestionwe generate the traf icwith the samemethod
but from the server to the router.
The traf ic shaping scenarios are simulated with different bandwidth caps, delay and loss on the
downstream of the related link. For the LAN shaping we select to limit the available bandwidth
based on the data rates offered by common 802.11 standards such as a, b, g and n that are capable
of providing rates per stream ranging from 1 up to 70Mbit/s. In these scenarios we apply delay
with a normal distribution around 1ms and zero loss.
For the WAN traf ic shaping we apply caps, delay and loss according to the distributions of the re-
spective values observed in themeasurements in thewild. For clients connectedovermobile broad-
band we obtained throughput values normally distributed around 5.22Mbit/s, delay of 100ms and
loss of 0.75%. For the WLAN connections the respective values observed were 7.8Mbit/s, 50ms
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delay and 1.4% loss.
Mobile Load. In the second category we examine cases where the high load on the device hard-
ware does not allow the proper decoding and playback of the video. This type of problems are
more common on handheld devices that come with limited hardware capabilities. The hardware
load simulation is performed with the Linux workload generator tool stress that allows CPU, I/O,
memory and disk workload generation in order to stress-test the host system.
Low RSSI. The last category deals with the simulation of two faults common in 802.11 networks.
In the irst scenario (low RSSI) we simulate poor signal reception by placing the phone far from
the AP and blocking the line-of-sight with physical objects. As a result, there is degradation in the
wireless link’s SNRand the available data rate. noticed high re-buffering frequencywithRSSI values
of -89dB and lower and link speeds less or equal to 2Mbps.
WiFi Interference. The scenario titled WiFi interference, involves creating interference on the
wireless channel from external sources. In real use cases, interference can be caused by adjacent
devices transmitting or receiving on the same frequency range. For our experiments we create
interference by generating large traf ic workloads on a secondWLANwhere the AP operates on the
same channel as the AP we use for our measurements.

2.6.5.4 Dataset

All the collected metrics that correspond to a single video session are aggregated to one instance
in the dataset. Each instance in the dataset is comprised of 354 metrics out of which there are
117 networkmetrics for each of the three VPs, the total number of rebuffering events and from the
hardwaremeasurements of themobile we get themaximum CPU utilization, the minimum amount
of availablememory and theminimum value of the RSSI. It is important to note that the rebuffering
events are only used for labeling the instances and not as a feature.
Overall, the dataset from the controlled experiments consists of 3919 instances in total out ofwhich
3125 are labelled as good, 450 as mild and 344 as severe.

2.6.5.5 MOS-based Labelling

Before performing the analysis, the instances in the dataset need to be labelled appropriately in
order to be identi ied and evaluated by the classi ier. Our labelling system is required to express
the quality of the video session in terms of user satisfaction so that we can correlate problematic
videos with the QoE.
For that purpose, we convert application performance metrics such as startup delay and the fre-
quency and duration of stalls to Mean Opinion Score (MOS) ratings based on the work of Mok et
al. [72] who derived an equation for calculating the MOS from performance metrics by means of
regression analysis.
Based on the obtained scores, we label instances with MOS greater than 3 as ‘good’, instances with
scores between 2 and 3 as ‘mild’ and those with MOS lower than 2 are labelled as ‘severe’. Good
instances represent video sessions with fast startup times and close to zero stalls. The instances
that were labelled asmild correspond to sessionswith increased number and duration of stalls and
initial delay, while instances marked as severe imply sessions with large amount of stalling and/or
startup times usually longer than 5 seconds.
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For thedetectionof the locationof theproblem,we create six new labels ‘wanmild’, ‘wan severe’, ‘lan
mild’, ‘lan severe’ and ‘mobilemild’, ‘mobile severe’ basedon the locality and severity of theproblem.
In label ‘wan’ we merge wan congestion and wan shaping problems, ‘lan’ contains instances from
lan congestion, lan shaping, wi i interference and low rssi scenarios and inally in the ‘mobile’ we
place the problematic instances that correspond tomobile load. For the evaluation of the algorithm
when detecting the exact problem, we label problematic instances according to the type.

2.6.6 Evalua on

In this section, we evaluate the system’s performance for three tasks, detecting the existence of
problems, detecting theproblem’s locationand inally for identifying the exact problem. In Sec. 2.6.9
we only evaluate for the detection of problems since we lack the ground truth for the type of prob-
lem. In the following sections we will also examine the performance of the algorithm in the wild.
Apart from the overall accuracy of the algorithmwe additionally present the accuracy results using
the Precision and Recall metrics. Precision expresses the ratio of True Positives (TP) over TP and
False Positives (FP) and Recall the ratio of TP divided by TP and False Negatives (FN).

2.6.6.1 Who Can Detect a Problem?

In this part, we examine which VP or combination of them is performing better when identifying
problems. We prepare the data bymerging all the labels from problematic instances to labels ‘mild’
and ‘severe’, while preserving all ‘good’ labels. We consecutively evaluate for every VP separately
and inallywith all the points combined. The overall accuracy for themobile is 88.1%, for the router
86.4%, for the server 85.6% and for the combination of all 88.8%. Although the server VP is per-
forming slightly worse than the other two when used separately, we observe improvements in the
classi ication of all the labels when we take measurements from all probes combined.
We can already see from these results that the system performs extremely well even when using
a single VP while there is up to 3.2% improvement when using them combined. Moreover, the
mobile VP outperforms the router and the server and can help achieve a classi ication accuracy
almost equal to the combination of the VPs.
Fig. 2.12 (a) and (b) present the performance of the algorithm per VP in terms of Precision (P) and
Recall (R), where we see that all VPs alone or combined perform extremely well for detecting good
instances. This calls for instrumentation closer to the mobile terminals where the majority of the
problems occur.

2.6.6.2 How does Severity Affect Detec on?

With slightly lower accuracy, we are able to detect instances labelled severe from the mobile and
the combination of the VPs while there is loss due to false negatives for the case of the router and
the server.
The accuracy of the algorithm for all VPs decreases when identifying instances with mild problems
as a result of the increase of false positives and false negatives as shown by the Recall values for
the server and the router. The increased number of false negatives is attributed to ‘mild’ instances
classi ied as ‘good’ due to the subtle differences between network and hardware conditions in se-
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Figure 2.12: Precision and Recall for problem detection (a), (b) per VP and per VP pair (c), (d)

vere instances that the classi ier is unable to detect. In a similar way, the increase of false positives
occurs because of the often similar conditions with the good instances.
A possible approach to tackle this issue in the future, is to increase the number of labels for the
problematic scenarios in order to provide a more ine grain division of the intermediate conditions
between mild and good and mild and severe.
Our indings above show that either end users, ISPs or content providers can bene it from the sys-
tem to detect problematic video sessions and the intensity of the given problem without having to
exchange information with each other. In this way, providers can remotely evaluate their services
and the client’s QoE.

2.6.6.3 What are the Benefits of Vantage Point Pairs?

Next we examine the advantages when VPs cooperate in pairs. In Fig. 2.12 (c) and (d) we ind
that the combination of VPs in pairs yields improved accuracy when detecting mild problems as
compared to the single VP approach. The greatest improvements can be observed for the mobile-
server pair where the higher Recall numbers show the decrease of the number of mild cases which
are falsely detected as severe and vice versa. There are also better results for both Precision and
Recall for themobile-router pair and smaller improvements for the respective values for the router
and server combination.
The overall improvement is a good indication that the collaborative use of two VPs can help reduce
the number of FN and therefore the amount of mild problems that are classi ied as severe. Two en-
tities can collaborate to more effectively identify issues that affect the users’ experience. Moreover,
this approach can be applied to improve problem detection in cases where agreements to share
information among more than two parties is not feasible.
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2.6.7 Detec ng the Loca on

2.6.7.1 Who Can Detect a Problem's Loca on?

In the next step we aim in verifying the algorithm’s accuracy when identifying in which part of the
data path the problem has occurred.
The percentage of the correctly classi ied instances increases to 89.21% in this evaluation case.
As expected the accuracy for identifying good instances remains approximately the same as for
good/mild/severe classi ication. In the related accuracies shown inFig. 2.13 (a) and (b), weobserve
that the combined use of all three VPs is bene icial for the prediction of all the labels. As previously,
the algorithm performs better for severe problem classi ication than for mild in all the cases.
Therefore, while a single VP can detect the existence of a problem, inding the exact problemmight
require some collaboration between two or more parties.

2.6.7.2 Does Proximity Improve Detec on?

When identifying wan faults, the server outperforms the other two VPs, while the use of themobile
VP guarantees higher accuracy for the mobile problems. However, the detection of problems that
occur in the lan is more accurate with the mobile instead of the router. This is attributed to the
lack of RSSI measurements that is paramount for detecting faults that are attributed to low signal
reception.
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Figure 2.13: Precision and Recall for location detection per VP (a), (b) and per VP pair (c), (d)

From the values of Precision and Recall, we see that the algorithm is incorrectly identifying many
problematic instances as good and vice versa. This is a result of the large number of false positives
and false negatives for the problems that are located in the lan segment.
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Similar observations can be made with regards to the mobile problems which are very dif icult
to detect from the router or the server due to the lack of information about the device’s CPU and
memory resources. However, in the case ofmildmobile problems, the joint use of the three VPs can
give small improvements in accuracywhen compared to just using themobile. These improvements
mainly derive from the delayed acknowledgments that arrive from the mobile to the router and
from the router to the server.

The results above show that each VP is performing better when identifying problems in the same
location or segment of the path. This is a good indicator that users as well as providers can verify if
the problem has occurred in their part of the network or not by performingmeasurements on their
own networks and equipment.

The rawmetrics which contributedmore for detecting problems in themobile are the CPU, the free
memory, the RSSI, the TCP window size and the time the irst packet with payload arrived to the
router. For the lan detection, the parameters with the highest weight are the RSSI, the maximum
RTT on the router, the time irst acknowledgement was received and the TCP window size of the
mobile and the router. Finally, for the wan label we observed that themost signi icant metrics were
the RTT on the server, the minimumMSS of the server, the number of packets carrying video data,
and the time the irst packet with payload arrived to the server.

2.6.7.3 What are the Benefits of Vantage Point Pairs?

Weagain evaluate thebene its of usingpairs of VPs insteadof one at a time. ThePrecision andRecall
values for the respective combinations can be found in Fig. 2.13 (c) and (d). The improvements are
again signi icant for the mild cases but we can also observe accuracy increase for severe problems
as well. Here we can consider the two VPs of the Mobile-Router and Router-Server pairs as the
endpoints of the respective segments. From this point of viewwe notice the the Router-Server pair
provides better results for wan problems, while the Mobile-Router increases performance for the
problems in the lan.

From the obtained results we conclude that similar to the previous section, the usage of VP pairs
contributes to a more accurate detection of the segment in which the problem has occurred. More-
over, the combination of the endpoints of a segment will result in better performance for the local-
ization of the problems that take place in that segment.

2.6.8 Detec ng the Exact Problem

In the following part of the controlled experiments analysis, we train and evaluate the algorithm
using all the labels of problematic scenarios that are available in our dataset. In this way we assess
the accuracy with which the classi ier can detect the root cause behind the problem experienced
by the user.

From the output of the classi ier we get 88.95% correctly identi ied instances when using all three
VPs, while different labels are classi ied with different accuracies as seen in Table 2.5.
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2.6.8.1 Which Problems are Easier to Detect?

In more detail, we observe higher performance for the wi i interference and low rssi related prob-
lems. This is attributed to the biggerweight of the hardwaremetrics thatweextract from themobile
device that help the algorithm classify these instances with higher accuracy.
The main reasons of loss is miss-classi ications between mild and severe cases of the same type of
problem such as mild and severe congestion or mild and severe shaping. Moreover, mild problems
are falsely identi ied as good or non-problematic instances are marked as problematic.
In both scenarios of loss described above, the classi ier has trouble distinguishing the mild prob-
lems from good and severe because of marginal cases where network and hardware conditions
have many similarities. For the marginal cases the probability of a miss-classi ication is further
ampli ied from the different patterns of noise generated from the background traf ic.

Precision Recall
good 0.94 0.97
wan congested mild 0.43 0.34
wan congested severe 0.63 0.6
lan congested mild 0.65 0.62
lan congested severe 0.84 0.67
wan shaped mild 0.42 0.33
wan shaped severe 0.59 0.58
lan shaped mild 0.66 0.6
lan shaped severe 0.76 0.69
mobile load mild 0.54 0.52
mobile load severe 0.73 0.67
low rssi mild 0.7 0.86
low rssi severe 0.87 0.93
wi i interference mild 0.71 0.43
wi i interference severe 0.79 0.88
Weighted Avg. 0.88 0.89

Table 2.5: Accuracies for root-cause detection in controlled experiments.

2.6.8.2 Who Can Detect the Exact Problem?

In terms of overall accuracy, the mobile is better than the router VP which in turn is better than the
server, with respective accuracies 88.18%, 85.74% and 84.2%. These numbers demonstrate the
system’s high performance when carrying out the task of identifying the exact problem.
Fig. 2.14 (a) and (b) offer a more detailed view of the Precision and Recall metrics per VP and their
combination. We can see that the VP on the mobile is able to detect with higher accuracy problems
in the LAN segment and issues of the wireless medium. The router performs well when detecting
lan congestion and lan shapingwhile the problems the server can identifywith better accuracy than
the other VPs is wan shaping and wan congestion.
With regards to faults of the wireless medium, both the mobile and the router VPs are capable
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of accurately identifying wi i interference problems but low rssi cases are better detected by the
router. These results are intuitive and expected since the server cannot obtain information about
errors or performance issues that take place in the wireless channel.

Moreover, similar to the previous evaluation examples, the mobile problems are more accurately
identi ied when using themobile device as a VP. Again here the hardwaremetrics from the handset
are playing a decisive role in the correct classi ication of these instances.

The improved accuracy we obtain from the mobile, is a strong motivation for installing probes on
users’ devices. With a single probe collectingmeasurements from themobile, the user is able to ver-
ify if the problemoccurs locally or in a remote part of the network. In the case of a local problem, the
algorithm can help the user troubleshoot by providing information about its root cause. If the issue
occurs remotely, the user is able to report the problem to the respective network administrator.
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Figure 2.14: Precision (a) and Recall (b) for exact problem detection per VP

2.6.8.3 Do Feature Construc on and Selec on Help?

The objective of this section is to show the improvement we obtained with Feature Construction
(FC) and Feature Selection (FS). We repeat the evaluation in Sec. 2.6.6 initially without FC and FS.
Next, we apply FC and FS and compare the resulting accuracy. The analysis shows that when ap-
plying both methods we are able to get up to 2.27% improvement in accuracy.

It is evident that both FS and FC play a signi icant role in improving the system’s accuracy and
that these bene its can be ampli ied when the twomethods are used together. The reduced feature
space that results from FS minimizes over itting problems and reduces the execution time. FC on
the other hand, introduces more relevant information to the feature set and thus it results in better
classi ication results.
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2.6.9 Real World Deployment

The set of experiments in this section are performed outside the lab in real use cases and network
conditions. More speci ically, wedistribute iveGalaxy S II devices to equal number of users for a pe-
riod of onemonth. The phones are again equipped with an application that automatically launches
random videos from the top 100 list, while coordinating the network and hardware probes. The
users were instructed to carry the phones with them in order capture measurements from a wide
range of different networks.

In these experiments the videos are streamed fromboth our private video server and fromYouTube
with probabilities 0.25 and 0.75 respectively and the devices are con igured to use both the Wi-Fi
and mobile broadband connections to access the videos. We select these probabilities so that we
end up with a dataset where the majority of measurements corresponds to YouTube sessions and
a smaller part to streams from our server. The later set of measurements will be used to further
train the algorithm and improve its accuracy.

We run a server probe to collect network statistics for the sessions that are streamed from our
private server. With this approach we are able to collect measurements from two VPs (mobile,
server) when the user is streaming the video from the private video server and one point (mobile)
when streaming from YouTube.

2.6.9.1 Dataset

For the real-world experiments, although all hardware measurements as well as the number of
re-buffering events are always available for each instance in the database, the number of network
metrics varies depending on the number of VPs that were used. Therefore, in the inal dataset we
have instances with either 117 for one VP or 234 network parameters when using two. The real-
world dataset contains 3495 instances fromwhich 2940 are good 555 bad. problems and 144with
severe.

2.6.9.2 Results

The purpose of the analysis in this section is to validate the results we observed in the controlled
experiment with measurements we obtained from experiments in real-world conditions.

Training the Classi ier: To train the classi ier we use the ground truth that we established in the
controlled experiments evaluation. Therefore, instead of applying cross-validation, we use again
J48 and train it with the dataset from the controlled experiments. With this approach the classi ier
is able to predict labels based on the labeled instances in the controlled dataset.

Detecting Problems: In contrast to the controlled experiments, in this dataset we only have mea-
surements from themobile and the server probes. Moreover, since the experiments are done in the
wild, we are unaware of the root cause behind the stalls and the startupdelay thatwere experienced
by the user. Therefore we can only mark instances as good and bad based on these events using
the MOS scale as previously. For that reason in this section we evaluate the dataset for good/bad
classi ication alone.
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2.6.9.3 Does it Work in Real Condi ons?

We initially evaluate for the mobile VP only, consecutively for the server and inally for the two
combined. The total accuracy is 82.89% for the mobile probe, 81.34% for the server and 83.70%
for the combination. Fig. 2.15 shows the Precision and Recall for each case where we see that the
combination of VPs improves the detection of videos without problems but performance is worse
when inding problematic ones.
Similar to the controlled experiments, we ind that the mobile probe is a better choice than the
server for identifying both good and problematic instances while the combined use improves the
system’s accuracy. However, the main reason for loss here is the large number of false positives
and false negatives when classifying bad instances. We attribute this phenomenon to the different
patterns of noise that exist in real scenarios from the ones we generate in the lab. The different
noise variations causemiss-classi ications when dealingwithmild problems that aremore dif icult
for the algorithm to identify. Note that once such problems are troubleshooted by the ISP or the
content provider they can be added to the training test, expanding the possibility of identifying
them.
Overall, the results from the real experiments evaluation verify that the algorithm can detect prob-
lems in thewild (82.9%accuracy) evenwith fewerVPsavailablewhile thedetectionof non-problematic
instances is performed with higher accuracy.
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Figure 2.15: Precision and Recall for problem detection per VP pair in the real-world deployment

2.6.10 Prac cal Implica ons

Based on the indings in previous sections, providers should take advantage of installing probes
in their part of the data path not only to identify problems but more importantly to tell if these
problems have occurred inside their networks and there is need to take action. This is an important
task as it supports SLA agreements, it providers awareness about the status of their network and it
provides feedback from the end-devices, something that most providers are still missing.
We demonstrated that only a few network metrics such as delay, loss and throughput need to be
extracted from residential gateways or content servers to provide details about the issue affecting
the user.
When compared to theother twoparties, theVPat the content provider’s sidehad inferior detection
capabilities. Although its performance is adequate for identifying problems at its side, the accuracy
is reduced for mobile and lan fault detection. The mobile VP showed overall better performance in
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the scenariosweevaluated. This advantage is attributed to thedevice’s hardwaremetricsmeasured
by the probe that contribute in detecting a wide range of local problems.
It is clear that the instrumentation of themobile device is paramount for all the parties in the video
delivery system. Moreover, content and service providers need to access measurements from the
mobile device in addition to their own networks to infer the type of problems that affect QoE with
high accuracy. Although these measurements do not contain sensitive information, some users
might be reluctant to share these. Whenever providers are not able to get the users’ consent, our
results revealed that improvements can be achieved from the collaboration of content and service
providers.

2.6.11 Limita ons

One of the limitations of our system, is the inability to detect faults that it has not been trained for
yet in the lab. Thesewould not only include new problems such asmiddleboxes and DNS or routing
miss-con igurations but also the co-occurrence of problems that jointly affect video QoE.
Another limitation that in some cases affects the system’s performance, is themiss-classi ication of
instances with mild problems as either severe or non-problematic. This issue is more prevalent in
marginal cases where the hardware or network conditions are very similar.
As discussed in the previous section, collaboration and exchange of information between parties
is required in some cases in order to improve the system’s performance. Such collaborations are
often dif icult to establish due to privacy concerns and fear of sensitive information leaks.

2.7 Anomaly Detec on and Root Cause Analysis in Large-Scale
Networks

This use case targets the continuous monitoring of large-scale network traf ic, aiming at detecting
and diagnosis anomalies potentially impacting a large number of users. The detection is based on
statistical approaches, thuswe stress the fact that the target is the detection of signi icant statistical
changes in the analyzed measurements. In this sense, the detection of anomalies in a per- low
or per-customer basis is out of scope. Also, the analysis is done on top of passive measurements
re lecting the activity of a largenumber of users, thuswe consider passivemeasurements at vantage
points located in Points of Presence (PoPs) of high traf ic aggregation. These measurements are
done at either the packet or the low level.
The use case particularly focuses on the most popular web-based HTTP services (e.g., YouTube,
Facebook, Google Services, Apple Services, etc.), delivered by complex network infrastructures
maintained by omnipresent Over The Top (OTT) content providers and major Content Delivery
Networks (CDNs) such as Google, Akamai, Limelight, SofLayer, etc..
Detecting and diagnosing anomalies in such scenarios is extremely complex, due to the number of
involved components or players in the end-to-end traf ic delivery: the Content Provider, the CDN
provider, the intermediate Autonomous Systems (ASes) of the transit Internet Service Providers
(ISPs), the access ISP, and the terminals of the end-users. This high complexity motivates the usage
of mPlane to improve the visibility on the traf ic and on all the intermediate components.
To detect and diagnose anomalies in web services, which additionally impact the end users, certain
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Figure 2.16: HTTPTag deployment in an operational 3G Network

pre-conditionsmust be satis ied: irstly, onemust be capable of discriminating among the different
web services in the stream of monitored packets/ lows, and secondly, metrics re lecting the expe-
rience of the end users and methods to map network measurements to user experience have to be
applied.
Next we present four different algorithms which allow to integrally tackle the detection and diag-
nosis of anomalies in web-based services, spanning (i) the automatic classi ication of traf ic lows
running on top of HTTP, (ii) the monitoring of HTTP services from a Quality of Experience (QoE)
perspective, (iii) the detection of traf ic anomalies based on statisticalmeasurements analysis tech-
niques, and (iv) the diagnosis of such anomalies.

2.7.1 On-line HTTP Traffic Classifica on through HTTPTag

HTTP is doubtlessly the dominating content delivery protocol in today’s Internet. The popular-
ity of services running on top of HTTP (e.g., video and audio streaming, social networking, on-line
gaming, etc.) is such that they account for more than 75% of today’s residential customers traf ic.
In this scenario, understanding HTTP traf ic composition and usage patterns is highly valuable for
network operators, with applications in multiple areas such as network planning and optimiza-
tion (e.g., content caching), traf ic engineering (e.g., traf ic differentiation/prioritization), market-
ing analysis (e.g., heavy-hitter applications), just to name a few of them.
To classify web-based applications we have developed HTTPTag, a lexible on-line traf ic classi ica-
tion system for analyzing applications running on top of HTTP. The approach adopted for the HTTP
classi ication is based on tagging, i.e. associating a set of labels or tags to each observed HTTP
request, based on the contents and service being requested. This association is performed by sim-
ple regular expressions matching, applied to the host ield of the corresponding HTTP request’s
header. HTTPTag currently recognizes and tracks the evolution of more than 280 services and ap-
plications running on top of HTTP, including for example tags like YouTube, Facebook, Twitter,
Zynga, Gmail, etc. Due to the highly concentrated traf ic volume on a small number of heavy hitter
applications, the current list of services spans more than 70% of the total HTTP traf ic in the 3G
network of a leading European provider.
HTTPTag works with packet data, passively captured at the vantage point of analysis. Fig. 2.16
shows current deployment of HTTPTag in the network of a major Europeanmobile operator. Pack-
ets are captured on the Gn interface links between the GGSN and SGSN nodes. HTTP packets are de-
tected and analyzed on the ly: every new HTTP transaction is parsed and the contacted hostname
(extracted from the URL) is compared against the de ined regular expressions or patterns, see
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URL: http://www.bbc.co.
uk/news/business-20663037

Request bytes: 172
Response bytes: 420
Timestamp: 1343484000

[...]

HTTP ticket

Google 
(search)

Facebook^www\.facebook\.com$

^www\.google(\.[a-z]{2,3}){1,2}$

^www\.fbcdn\.net$

^www\.bbc\.(co\.uk|com)$

Facebook

regular expressions services

BBCpattern 
matching ...

Figure 2.17: Matching URLs and Hostnames with patterns and services

Fig. 2.17. If a matching pattern is found, the transaction is assigned to the corresponding service.
HTTPTag runs on top of DBStream, a fast and scalable parallel database system tailored for large-
scale network monitoring. For every new HTTP transaction analyzed by HTTPTag, a summary
ticket is stored and indexed in DBStream, providing long term traf ic analysis capabilities to the
system. Each ticket contains a timestamp, the IP address of the contacted server, the requested
URL, and volume stats (i.e., transferred bytes up/down). To improve patternmatching, patterns are
ordered by probability of occurrence, which are computed from the history of successful matches.
Many other different optimizations are performed at each of the steps of HTTPTag, including fast
data imports within DBStream, ef icient indexing for fast data access, and lexibility in the data
query to allow multiple types of analysis on the tagged services.
HTTPTag tagging approach is based on manual de inition of tags and regular expressions, which
might a priori impose scalability issues. Indeed, there are millions of websites on the Internet and
it would be impossible to de ine enough patterns to classify every requested URL. However, the
well knownmice and elephants phenomenon also applies to HTTP-based services, and limiting the
study to the most popular services already captures the majority of the traf ic volume/users in the
network. While the initial de inition of tags is a time-consuming task, regular expressions identify-
ing applications tend to remain stable in time, basically because they are associated to the name of
the application itself and thus recognizedby the end-user. This is specially true for popular services,
which at the same time carry themost of the traf ic. In the practice, an initial effort in classifying the
top 50 sites combined with weekly updates ensures a high classi ication rate. HTTPTag provides a
GUI-based exploring system to identify the tophost names responsible for the largest non-classi ied
traf ic volume and number of visitors, easing the tagging of new services. HTTPTag does not recog-
nize HTTPS traf ic, since the requested URLs are encrypted. To actually identify services running
on top of HTTPS, HTTPTag applies the same tagging procedure on top of the DNS queries. In a
nutshell, every time a user issues a DNS request for certain Full Quali ied Domain Name (FQDN),
HTTPTag assigns a tag to the corresponding FQDN, and creates an entry mapping this user to the
server IPs provided in the DNS reply. Each entry is time stamped and expires after a time-out based
on the TTL of the DNS reply. Using these mappings, all the subsequent lows between this user and
the identi ied servers are assumed to belong to the service assigned by HHTPTag to the requested
FQDN.
To show some examples of howHTTPTag performs, Fig. 2.18(a) and 2.18(b) depict the distribution
ofHTTP traf ic volumeandnumber of users coveredbyHTTPTag in a standardday. Using about 380
regular expressions and 280 tags (i.e. services) manually de ined, HTTPTag can classify more than
70%of the overall HTTP traf ic volume caused bymore than 88%of theweb users in an operational
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Figure 2.18: HTTPTag classi ication coverage and some long-term tracking examples revealing dif-
ferent events of interest in an operational 3G network

3G network. As previouslymentioned, a small number of heavy hitter services dominates theHTTP
landscape: the top-10 servicesw.r.t. volume account for almost 60%of the overall HTTP traf ic, and
the top-10 servicesw.r.t. popularity are accessed by about 80%of the users. These results reinforce
the hypotheses behind HTTPTag: focusing on a small portion of the services already gives a large
traf ic visibility to the network operator.
Fig. 2.18(c) and 2.18(d) depict two long-term tracking applications of HTTPTag. In 2.18(c)we track
the traf ic generated by three popular antivirus services (Symantec, Kaspersky, and Avira) over a
four months period (from the 26/05/12 to 15/10/12). Analyzing the traf ic patterns on a suf i-
ciently long period gives a good image on the different approaches the three companies use to
manage software and virus-de inition updates. While Kaspersky shows a quite constant behav-
ior, both Symantec and Avira present important peak volumes on speci ic update periods, which
might heavily load the network. This information could be directly used by the network operator
to de ine routing, load balancing, or prioritization/shaping policies. Fig. 2.18(d) depicts a compar-
ison of four video streaming services on a 6-months period (from the 1/12/11 to the 25/05/12):
Megavideo, Stream2k, and two adult video services (AVS 1 and 2). After 46 days from the starting
tracking day, Megavideo traf ic completely disappears, which correlates to the well-known shut-
down of the Megaupload services on the 19/01/12. Part of the video streaming volume provided
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by Megavideowas taken by a direct competitor, Stream2k, which shows a slow yet constant growth
on the following months. Finally, we observe a drastic shift in the consumed volume from the two
AVS services after 3months and a half of steady traf ic. We do not have a direct answer for this shift,
but a change in the charging policy to access the content (e.g., free to subscription-based access)
could explain such a variation. Having a complete picture of these popularity/usage modi ications
gives the operator the chance to better react to them (e.g., by de ining speci ic content caching poli-
cies to reduce the load on the core links).
In the case of detecting anomalies in web-based HTTP services, HTTPTag allows to focus the anal-
ysis on speci ic services and/or speci ic CDNs, which is paramount to isolate issues and drill down
into them.

2.7.2 YouTube QoE-based Monitoring from Traffic Measurements

Aswe said before, with HTTPTag it is possible to identify the speci ic services one is interested in to
analyze and in particular, to detect anomalies. YouTube is the most popular application in today’s
Internet, accounting for more than 30% of the overall traf ic worldwide. For this reason, analyzing
YouTube and detecting anomalies associated to this service is highly relevant, specially for network
operators, who need to engineer their systems to handle the huge volume of traf ic in ef icientways.
When it comes to the analysis of anomalies in highly popular services such as YouTube, the most
important aspect to consider is the end-user of the service. While there are many different stan-
dardized approaches and Key Performance Indicators (KPIs) for QoE-based traf ic analysis in voice
and video over UDP-like services, standardization efforts regarding progressive download, HTTP-
based video streaming are still ongoing, with some relevant yet under discussion results provided
by ITU-T study group SG12 under questions Q13/12, Q14/12 and Q17/12. Another limitation of
these approaches is that their practical application for real networkmonitoring is not always really
discussed nor evaluated, offering basic models but lacking the how-to-get input parameters; check
for example the recent P.1201 recommendation series [49].
For this reason, and despite not being part of the original DoW,we have devoted a lot of effort to the
problem of QoE-based YouTube monitoring, developing, among others, two different QoE-based
monitoring approaches for YouTube HTTP video streaming. The former approach is capable of
estimating the quality experienced by userswatching YouTube videos fromnetwork traf ic, packet-
level measurements only. We have called this YOUQMON. The latter is a simpli ied, light-weight
version, and operates with low-based measurements, making it easier to scale up to millions of
customers (still, as we show next, we have been using YOUQMON with large-scale traf ic at a 3G
operational network, showing excellent results in terms of scalability).
YouTube QoE monitoring is about measuring the quality impairments perceived by the user at the
application layer. From previous studies we know that the dominant QoE in luence impairments
of an HTTP video streaming service like YouTube are the number and the duration of the playback
stallings, i.e., the events when the player stops the playback. Stallings occur due to the depletion
of the player’s buffer at the user’s terminal. Some approaches to detect YouTube stallings rely on
browser plugins or apps installed at the user’s terminal. However, this approach is not highly ex-
tensible to large user communities and relies on the cooperation of the end-user. Hence, the big
challenge and interest for a network operator willing tomonitor the YouTube QoE of his customers
is to detect such stalling patterns exclusively from the network side, being completely transparent
to the end-users. This is exactly the approach followed by YOUQMON.
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Figure 2.19: Stallings and QoE in YouTube.

YOUQMONworks with packet data, passively captured at the vantage point of interest. In this spe-
ci ic description of the algorithm, packets are captured on the Gn interface links. Intuitively, when
the downlink bandwidth (DLW) or the throughput achieved by the YouTube lows (Thmax) are
lower than the corresponding video bitrate (VBR), the player buffer becomes gradually empty, ul-
timately leading to the stalling of the playback. However, measuring DLW and/or Thmax is not
always enough to get a precise picture of the user experience. Fig. 2.19(a) shows the number of
stallings measured at the YouTube player and it’s correlation with the ratios β1 = Thmax/VBR and
β2 = DLW/VBR, for hundreds of different YouTube videos streamed to a local host with traf ic
shaping capabilities. While some marked relations can be observed for the average set of videos
(e.g., no stallings if β2 > 1.3), it is dif icult to estimate the exact number of stallings for each speci ic
video stream. For this reason, YOUQMON’s QoE estimation principle is based on reconstructing
the complete stalling pattern (i.e., number and duration of stallings) of a YouTube video from the
analysis of the headers in the corresponding video packets.
YOUQMON is highly optimized to run on-line in standard 3G networks, as is its capable of decoding
the complete 3GPP protocol stack in real-time. Nevertheless, the techniques apply to any IP-traf ic
vantage point. YOUQMON is fully developed in C for improved performance, and supports the two
most popular video formats currently used by YouTube, namely Adobe-Flash and MPEG4.
The traf ic analysis consists of two steps: (i) identify the beginning of everynewYouTubevideo low
by HTTP header inspection, and (ii) extract the playtime offsets of the corresponding video frames
to estimate the buffered video playtime at the YouTube player. The latter is achieved by inspecting
the headers and tags of the video container (e.g., FLV or MP4). To preserve user privacy, any user
related data are removed on-the- ly, and payload content is ignored. Using the extracted frame
time offsets, YOUQMON tracks the amount of video playtime τ so far downloaded. The difference
between τ and the current time of the video t corresponds to the remaining buffered video playtime
∆ = τ − t. The video time t is computed as the difference between the actual time and the time
tp when the player starts to play the video; tp is the time when the irst packet containing actual
video content is observed, plus an initial buffering time αplay . The video playback starts when the
buffered playtime ∆ > αplay , and stalls when ∆ < αsta. Both αplay and αsta are estimated from
large measurement campaigns. By tracking the evolution of∆, YOUQMON can estimate on the ly
when the YouTube video is playing or stalled. Every 60 seconds, YOUQMON computes a new ticket
containing the number of stallings n and the fraction of stalling time λ for each detected video. The
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Figure 2.20: YOUQMONvalidation. Estimated (a) number of stallings, (b) distribution of errors, and
(c) duration of stallings for 386 YouTube videos streamed from youtube.com through a bottleneck
link

inal step consists inmapping the resulting stalling pattern into aMean Opinion Score (MOS) value.
Using both lab and ield subjective studies on YouTubeQoE, we have conceived amodel thatmapsn
and λ into a user experiencemeasure: MOS(n)i = ai ·e−bi·n+ci, ∀i = 1, . . . , 5. Each of the 5MOS
functions {ai, bi, ci} corresponds to a different fraction gapλi (e.g., λ1 < 5%, 5% < λ2 < 10%, etc.).
Fig. 2.19(b) depicts the corresponding QoE estimation model. All the aforementioned techniques
are based on YouTube as video streaming service, but can be easily extended to other HTTP-based
streaming applications, simply by re-computing the player’s buffering thresholds.
Fig. 2.20 reports some validation results of YOUQMON. Results correspond to 386 YouTube videos
streamed from youtube.com through a bottleneck link of controlled capacity (from 128kbps to
20Mbps). Fig. 2.21 depicts the characteristics of the corresponding videos, in terms of 2.21(a) video
duration, 2.21(b) video size, and 2.21(c) VBR. Fig. 2.20(a) and 2.20(c) show that the number and
total duration of stallings per video computed by YOUQMON are highly consistentwith the stallings
measured at the YouTube player. Fig. 2.20(b) shows that for 131 videos, the number of stallings is
zero and the absolute difference between the estimated (ne) and the real (na) number of stallings
is 0. For the 255 remaining videos, the relative difference |ne−na|

na
is still 0 for 30% of the cases, and

below 15% for about 90% of the videos. Hence, for more than 93% of the 386 tested videos, the
estimation is either exact or there are errors for na > 6. According to the QoE model depicted in
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Figure 2.21: Characterization of the videos used in the validation of the stalling detector. More than
80% of the videos are shorter than 10 minutes, 90% are smaller than 60 MB, and the average VBR
is 590 kbps

Fig. 2.19(b), MOS differences for n > 4 are negligible, showing that YOUQMON is actually perform-
ing highly accurately in the validation dataset.
To validate the QoE estimation properties of YOUQMON, we replay one day of the network packet
traces captured in a ield trial study, for which theMOS values declared by the users are provided as
ground truth. Fig. 2.22(a) compares both the declared MOS and the YOUQMON MOS values for 16
different videos which experienced different stalling patterns in the ield trial. Obtained results are
very accurate and close to the MOS values actually declared by the participants, with only minor
differences at the edges of the rating scale, which arise from rating saturation effects (e.g., in the
ield trial, ratings for 0 stallings correspond toMOS values around 4.5, while themodel gives a MOS
value of 5 in such cases) and are therefore not an issue.
Fig. 2.22(b) depicts an histogram on the number of reported tickets and the total played seconds
of YouTube videos at the different estimated QoE levels, for one hour of real traf ic monitored at
the live 3G network previously mentioned. These results show that using YOUQMON it is actually
possible to have a clear view of the performance of the mobile network as regards the satisfaction
of the customers consuming YouTube videos. As reported by the charts in Fig. 2.22(c) and 2.22(d),
the resulting YouTube QoE in this network is excellent (i.e., MOS = 5) for about 90% of the issued
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Figure 2.22: System validation in a mobile network

tickets and of the video time consumed during the analyzed hour. For 9% of the issued tickets and
4% of the total video time, the quality achievedwas average (i.e., MOS = 3.4 in this case). Regarding
bad quality events, YOUQMON can not say whether bad quality events come from problems on the
network or in any other part of the end-to-end path (the customer terminal, the YouTube servers,
a bad SNR, etc). Diagnosing such bad QoE events is part of the overall mPlane troubleshooting
support tasks.
We come back now to the analysis of the β2 indicator, which conforms the second approach we
use for QoE-based YouTube monitoring. Even if it is not possible to estimate the exact number of
stallings a video suffers from the computation of β2, this indicator can still be used as a measure of
how good is YouTube doing from a QoE perspective in terms of stallings/no-stallings. As depicted
in Fig. 2.19(b), already 2 stalling events degrade the QoE to bad user experience (i.e., MOS< 3); as
such, having a binary indication of the occurrence or not of stallings tells already a lot about theQoE
at the end-user level. This is exactly the type of information one can extract from the computation
of β2.
Fig. 2.23 reports the overall QoE and the acceptance rate as declared by users watching YouTube
videos during a ield trial test, both as a function of the average downlink rate. During this one-
month long ield trial test, about 40 users regularly reported their experience on sur ing their
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(a) YouTube overall QoE versus downlink rate
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(b) YouTube acceptability versus downlink rate

Figure 2.23: YouTube overall QoE and acceptability in terms of average downlink rate. The curves
correspond to a best-case scenario, in which only 360p videos are considered. In a more general
case with higher resolution videos (e.g., 1080p HD), the download rate has an even stronger effect
on the user experience.

preferred YouTube videos under changing network conditions, arti icially modi ied through traf ic
shaping at the core of the network. Both curves correspond to a best-case scenario, in which only
360p videos were watched by the users. Using the results of Fig. 2.23, we evaluate the possibility
of using β2 as a metric re lecting QoE degradations. Fig. 2.24 reports (a) the measured number of
stallings events and (b) the QoE user feedbacks as a function of β2. In particular, no stallings are
observed for β > 1.3, and user experience is rather optimal (MOS > 4). As a direct application
of these results, if we consider standard 360p YouTube videos, which have an average VBR = 600
kbps, a DLW= 750 kbpswould result in a rather high user QoE, which is the value recommended by
video providers in case of 360p videos. Fig. 2.24(c) additionally shows how the fractionλ=VPT/VD
(ratio video played time over video duration) of the video time viewed by the end users increases
when β2 increases, specially above the β2 = 1.3 threshold.
As a general conclusion of the two potential QoE-based monitoring approaches (i.e., YOUQMON
or directly computing β2), we can say that YOUQMON is more accurate in the exact estimation of
the number of stallings of a video, which translates in a more precise QoE assessment. Still, β2
represents an easy and very light weightmeans of knowing if throughput degradations are actually
impacting the QoE of the end-users.

2.7.3 Sta s cal Anomaly Detec on

Based on the previously introduced analysis modules, it is possible to identify the traf ic of speci ic
web applications running on top of HTTP/HTTPS, as well as assessing the QoE undergone by the
customers using such services, and in particular YouTube. We now introduce an analysis module
capable of detecting anomalies in the provisioning of such services.
As we explained before, large-scale web services are usually provisioned through CDNs. The in-
trinsic distributed nature of CDNs allows to better cope with the ever-increasing users’ content de-
mand. Popular applications and contents are pushed as close as possible to the end-users to reduce
latency and improve QoE. Load balancing policies are commonly used to limit servers load, handle
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Figure 2.24: Users have a much better experience and watch videos for longer time when β2 > 1.3,
corresponding to a DLW = 750 kbps in 360p videos

internal outages, help during services migration, etc. Unfortunately, all these control policies are
typically very dynamic and the details of their internal mechanisms are not publicly available. If on
the one hand the highly distributed server deployment and adaptive behavior of large CDNs allows
them to achieve high availability and performance, on the other hand they pose important chal-
lenges to the ISPs. The traf ic served by CDNs can shift from one cache location to another in just
minutes, causing large luctuations on the traf ic volume carried through the different ISP network
paths. As a result, the traf ic engineering policies of the ISP might be overruled by the CDN caching
selection policies, potentially resulting in extra transport costs for the former. Finally, there might
be cases in which the strategies in place result non optimal for end-users’ QoE.
To detect such unexpected traf ic shifts andmore in general, in order to detect traf ic anomalies, we
present a novel network Anomaly Detection (AD) approach, specialized on CDN traf ic. The goal
of the AD algorithm is to detect macroscopic anomalies in the aggregate traf ic served by CDNs,
meaning events that involve multiple lows and/or affect multiple users at the same time. For this
purpose, we resort to the temporal analysis of the entire probability distributions of certain traf ic
descriptors or features. In a nutshell, the proposed statistical non-parametric anomaly detection
algorithm works by comparing the current probability distribution of a feature f to a set of refer-
ence distributions describing its “normal” behavior. The speci ic types of features we use capture
both the intrinsic and dynamic CDNs mechanisms (e.g., number of lows and bytes served by each
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CDN server IP address), and end-users experienced performance (e.g., low download throughput,
or the aforementioned β2 QoE-based feature). Features are computed on a temporal basis, consid-
ering time bins of ixed length, referred to as time scale. We describe the algorithm next.

Given a certain traf ic feature f (e.g., low counts), we de ine cτi (t) as a generic counter associated to
f . The i-th counter can be associated to the client IP, to the server IP/network of a CDN, or inally to
the i-th (quantized) throughput value. The symbol τ indicates the size of the time bin, and t is the
time index. For example, cτi (t) could be the number of lows served from IP i at time bin t of length
τ minutes. The length of τ de ines the timescale of the data aggregation, which in turn de ines the
timescale of the observable anomalous events. Given a certain time scale τ , the set of non-zero
counters Cτ (t) = {cτi (t), i = 1, 2, . . . , N τ (t)} can be used to derive the empirical distribution of
the feature f , denoted by Xτ (t), where the cardinality N τ (t) could be for example the number of
IPs serving traf ic in the t-th time bin. As the following analysis can be done independently of the
speci ic selected time scale, we omit the superscript τ from now on.

The anomaly detection algorithm consists in computing the degree of similarity between current
distribution at time t, and a set of references distributions computed from past measurements at
times tj < t. To construct this reference set, we introduce the notion of observation windowW(t),
which is simply a sliding window containing past time bins: W(t) = {tj : a(t) ≤ tj ≤ b(t)}, where
a(t) and b(t) are the oldest and the most recent time bins that can be considered to evaluate the
distributionX(t) at current time t. The reference time bins set is denoted as I(t) ⊆ W(t), and cor-
responds to the set of time bins selected fromW(t) by running the reference set identi ication algo-
rithmbrie ly describednext. This algorithm identi ies the set of past timebinswith themost similar
anomaly-free distributions to the current one. Given two distributionsX(ti) andX(tj), of the same
feature and timescale, at times ti and tj , we de ine L(ti, tj) as a divergence metric accounting for
the degree of similarity between the two of them. The choice of divergencemetric is discussed next.
The comparison between the current distributionX(t) and the associated distributions reference
set {X(tj), tj ∈ I(t)} involves the computation of two compoundmetrics based on the divergence
L(·, ·). The irst one, called internal dispersion and denoted by Φα(t), is a synthetic indicator de-
rived from the set of divergences computed between all the pairs of distributions in the reference
set. Formally, {L(ti, tj), ti, tj ∈ I(t), ti ̸= tj} → Φα(t). We chose Φα(t) to be the α-percentile of
this set of divergence measures. The parameter α must be tuned to adjust the sensitivity of the
detection algorithm: it de ines the maximum distribution deviation that can be accounted to nor-
mal statistical luctuations, therefore an acceptance region for the AD test. Similarly, we de ine the
external dispersion Γ(t) as a synthetic indicator extracted from the set of divergences between the
current distribution X(t) and those in the reference set. Formally, {L(ti, t), ti ∈ I(t)} → Γ(t).
We chose Γ(t) as the mean.

The detection scheme is based on the comparison between the internal and external metrics. If
Γ(t) ≤ Φα(t) then the observation X(t) is marked as normal. In this case, the boundaries of the
observation window are updated by one time bin shift. Conversely, the condition Γ(t) > Φα(t)
triggers an alarm, andX(t) ismarked as abnormal. The corresponding timebin t is then included in
the set of anomalous time binsM(t), and is excluded fromall future reference sets. In this case only
theupperboundof theobservationwindow is shifted, i.e. a(t+1) = a(t) and b(t+1) = b(t)+1. Such
update rule is meant to prevent the reference set from shrinking in case of persistent anomalies. In
fact, only the time bins inW(t) \M(t) are considered for the reference set.

A possible distance metric between two distributions is the Kullback-Leibler (KL) divergence. Let p
and q be two discrete probability distributions de ined over a common discrete probability space
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Ω. The KL divergence is de ined as:

D(p||q) = E
[
log

(
p(ω)

q(ω)

)]
=

∑
ω∈Ω

p(ω) log
(
p(ω)

q(ω)

)
(2.4)

where the expectation is takenonp(ω), and following continuity arguments, 0 log 0
q = 0 andp log p

0 =
∞. The KL divergence provides a non-negativemeasure of the statistical divergence between p and
q. It is zero↔ p = q, and for each ω ∈ Ω it weights the discrepancies between p and q by p(ω). The
KL divergence has several optimality proprieties that make it ideal for representing the difference
between distributions. However, it can not be actually considered as a distance metric, since it is
not symmetric and does not satisfy the triangular inequality. In particular, the lack of symmetry can
be inconvenient in certain scenarios, particularly in the presence of events that take very low prob-
ability values in only one of the two tested distributions. Therefore, we adopted a more elaborated
divergence metric, symmetric by construction:

L(p, q) =
1

2

(
D(p||q)
Hp

+
D(q||p)
Hq

)
(2.5)

whereD(·||·) is de ined according to eq. (2.4), andHp andHq are the entropy of p and q respectively.
The feature distributions p, q in eq. (2.5) are unknown, hence they must be empirically obtained
from the data samples. Some issues may arise in the estimation of the discrete probability distri-
butions. Indeed, when the traf ic distribution is computed for example from per IP counters, an
obvious problem is the cardinality of the probability space Ω. A simple solution in this case is to
consider per sub-network counters. Instead, when the considered traf ic feature is the distribu-
tion of the throughput or the RTT across the users, then the empirical distributions found in real
datasets are often heavy-tailed and span over ranges of a few orders of magnitude. In many cases,
the sample size N(t) is smaller than the range of spanned values. The standard approach in this
case is to apply binning, i.e. to quantize the spanning range of the variable into a reduced number
of bins, and to take the frequency of samples in each bin as the estimate of the distribution. The
choice of the binning is critical because it affects the accuracy of the estimate, and ultimately the
sensitivity of the detector. When this is the case, we adopt a non-uniform lin-log binning where the
lower range is binned linearly and the upper one logarithmically, and the edges are automatically
adapted so as to obtain a ixed number of bins. In some other cases we use our domain knowledge
in de ining meaningful bin edges. For example, in the case of the video download rate, we de ine
bin edges which correspond to changes in the QoE, according to Fig. 2.23.
The design of the algorithm considers the identi ication of a set of distributions, which is used as
the normality reference for the detection step. The identi ication of a suitable reference assumes a
paramount relevance in the context of CDNs’ traf ic AD, due to the highly dynamic way CDNs host
and serve the contents. Most of the AD work considers training once-and-for-ever and tests the
current sample against the most recent ones. In the context of CDN AD, a reference based only on
the most recent samples would not be able to take into account the steep variation in the total traf-
ic counters in the morning and in the late evening, resulting in a series of false alarms. From the
exploration of the real traf ic traces we found that the traf ic served by the analyzed CDNs (Aka-
mai and Google CDN) share some common structural characteristicswhich must be considered for
the choice of the observation window and reference set. For example, the traf ic is non-stationary
due to time-of-day variations, with steep variations occurring at certain speci ic hours like peak-
utilization time, and with very strong 24-hours seasonality. We remark that such variations do
not only apply to the low counts and active server IPs, but also to the distribution of many other
features such as volume, minimum RTT to the servers, download throughput, etc.
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The heuristic used for the construction of the reference set follows a progressive re inement ap-
proach, where thementioned structural characteristics are used at each step for reducing the set of
candidate references in the observationwindowW(t). At each step, the set of candidate references
is incrementally reduced by iltering the elements according to three different criteria. Given a new
sample at time t of sizeN(t), in the irst step the algorithm picks the subset I0(t) of past time bins
with samples of similar size, formally I0(t) = {j|N(t) − s ≤ N(j) < N(t) + s}. Such size-based
criterion avoids comparing distributions with very different statistical signi icance, as the sample
size can vary across two orders of magnitude during the 24 hours (see for example Fig. 2.25(a)).
In a second re inement step, the subset of elements in I0(t)with the smallest divergence from cur-
rent observation are picked. In this way, samples related to different time of day and/or type of
day (working day vs. weekends/festivities) are iltered out. The residual set I1(t)might still con-
tain residual heterogeneous samples. To eliminate these samples, in the third step we resort to
an heuristic in which we apply a graph-based clustering procedure to identify the dominant subset
with the lowest inter-samples divergence: samples aremapped to nodes, with edgesweighted pro-
portionally to the KL divergence among them. The algorithmdivides the nodes in two clusters so as
to minimize the intra-cluster weights, and inally the larger cluster is picked as the inal reference
set I(t).

The overall procedure is designed to minimize the inter-samples divergence within the reference
set, so as to preserve good sensitivity of the detection process. We stress the fact that past ob-
servations (samples) which were previously marked as “anomalous” by the detector are excluded
from the reference identi ication procedure; in other words, only samples marked as “normal” are
taken as candidates. This introduces a feedback loop, as the output of the detector for past samples
impacts the identi ication of the reference set, and therefore in luences the future decisions.

Our experience shows that the proposed heuristic copes well with the time variability of both the
distribution shape and the sample size. It does so by embedding the intrinsic pseudo-cyclical struc-
ture of the real traf ic process into the reference set, resulting in aminimumset of past observations
with the lowest divergence with respect to the current sample. In a nutshell, it leverages pseudo-
seasonality to compensate for non-stationarity. As an example, Fig. 2.25 shows the typical output
of the reference identi ication algorithm. In this speci ic example, we consider the distribution of
the average download rate across the users watching YouTube videos during 11 consecutive days.
Fig. 2.25(a) explains the ideas behind the irst step of the reference set identi ication procedure,
where distributions are selected based on the number of samples – lows in this case – used to
derive them.

Fig. 2.25(b) depicts the output of the reference set identi ication algorithm. The cyan CDF repre-
sents the sample under test. The gray CDFs correspond to those samples in the observationwindow
which are discarded by the identi ication procedure. The red CDFs are the samples in the observa-
tion window which are discarded for being previously marked as anomalous. Finally, the orange
CDFs are those selected as reference. Note that out of all the possible candidate distributions, the
algorithm selects the ones with lowest divergence to the current one, i.e., the orange CDFs. We
remark that the proposed scheme is robust to irregularities in the pseudo-cycles – as introduced
for example by non-weekends festivities, or solar/legal time shifts – since it does not rely on any
external label information (e.g. calendar day or absolute time).

CDN cache selection policies may also have a strong impact on the service quality as experienced
by the end users. This is not only a main issue for the end-users, but also for the ISP providing the
Internet access to the contents, as customers will in most cases directly blame the ISP for the bad
QoE, even if the origin of the problems is located outside its boundaries.
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(b) Output of the reference set identi ication algo-
rithm

Figure 2.25: (a) Total number of lows related to download average rate, and number of users gen-
erating the traf ic. (b) Output of the reference set identi ication algorithm

As an application example of the presented AD algorithm, we report now a real case in which an
unexpected cache selection and load balancing policy employed by Google results in an important
drop on the average download throughput for the end-users watching YouTube videos. Indeed,
conversations with the ISP con irmed that the effect was indeed negatively perceived by the cus-
tomers, which triggered a complete Root Cause Analysis (RCA) procedure to identify the origins of
the problem. As the issue was caused by an unexpected caches selection done by Google, the ISP
internal RCAdid not identify any problems inside its boundaries. This standard procedure followed
by operators should always be complemented with a veri ication of the status of the services being
accessed by the users, which in many cases are the root of the problems.
The dataset corresponds to one month of HTTP video streaming lows collected at the ixed-line
network of a major European ISP, from April the 15th till May the 14th, 2013. The monitored
link aggregates about 30.000 residential customers accessing to the Internet either using ADSL or
Fiber-To-The-Home (FTTH) technologies. Flows are captured using Tstat. Using Tstat iltering and
classi ication modules, we only keep those lows carrying YouTube videos. These lows are inally
imported and analyzed with DBStream.
As reportedby the ISPoperations team, the anomalyoccurs onWednesday the8thofMay. Fig. 2.26(a)
shows the TSP of the video volume served by the different IPs in the dataset, aggregated in /24 sub-
networks, and using a time-scale of 1 hour. Recall that in a TSP plot, each point {i, j} represents the
degree of similarity between the distributions at hours ti and tj . The blue palette represents low
similarity values, while reddish colors correspond to high similarity values. The TSP is symmetric
around the 45◦ diagonal, thus the plot can be read either by column or by row. For a generic value
of the ordinate at tj , the points on the left (right) of the diagonal represent the degree of similarity
between the past (future) distributions w.r.t. the reference distribution at tj . Note the regular “tile-
wise” texture within a period of 24 hours, due to a clear daily periodicity behavior in the selected
servers. Speci ically, there are two subnet sets periodically re-used in the irst and second half of
the day. The TSP clearly reveals that a different subnet set is used during the second half of the day
from the 8th of May on, revealing a different cache selection policy. This change is also visible in
the CDFs of the per subnet volume depicted in Fig. 2.26(b). Indeed, we can see that the same set
of subnets is used between 00:00 and 15:00 before and after the anomaly, whereas the set used
between 15:00 and 00:00 changes after the 8th, when the anomaly occurs.
Despite this detected change in the cache selection policy employed by Google, such a modi ica-
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Figure 2.26: Traf ic volume distributions per CDN /24 subnets. There is a clear shift on the selected
caches serving YouTube before and after the reported anomaly onWednesdayMay, 8th, speci ically
in the afternoon, between 15:00 and 00:00
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Figure 2.27: Distribution of the video lows average download rate across the users: (a) trend over
time for several percentiles, (b) CDFs at peak hours (21:00-23:00), before and during the reported
anomaly

tion does not justify by itself the QoE degradation reported by the ISP. To further investigate this
issue, we analyze the distributions of the average video lows download rate. Figure 2.27(a) de-
picts the temporal trend of several percentiles of the average video lows download rate per user,
starting one day before the anomaly occurs and covering ive consecutive days after it. The low-
est percentiles (i.e., 5% and 25%) show a constant drop on the average download low rate during
peak hours (between 21:00 and 23:00), even before the anomaly actually occurs. However, start-
ing on Wednesday, even the 50% and 75% percentiles present an important drop at peak hours,
explaining the lagged QoE degradations. Figure 2.27(b) analyzes the distribution of the average
video lows download rate, in the hours before and during the anomaly. Interestingly, the only dis-
tributions exhibiting a marked change before and during the anomaly are those corresponding to
the peak hours (21:00-23:00), which are those reported in igure 2.27(b). Indeed, if we focus for
example on the 70% percentile, we observe a drastic reduction on the video lows download rate,
going from about 780 kbps to 470 kbps. Even if this reduction might not look signi icant a priori,
igure 2.23 shows that it is suf icient to drop the perceived quality below the level of acceptance.
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Figure 2.28: Detection of anomalies in YouTube traf ic. Alarms and acceptance region for the dis-
tribution of (a) volume and (b) video lows average download rate. The redmarkers correspond to
the lagged anomalies

Indeed, Fig. 2.23(a) shows that the overall QoE drops from a MOS score close to 4 at 780 kbps to a
MOS score below 3 at 470 kbps. A MOS score of 4 corresponds to good QoE, whereas a MOS score
below 3 already represents poor quality. Fig. 2.23(b) additionally shows how the acceptance rate
(i.e., the proportion of customers accepting to use the YouTube service at the corresponding down-
link rate value) drops from about 90% in normal conditions to nearly 60% during the anomaly,
providing more evidence on the impacts of such downlink rate drop on the users. To conclude the
analysis, we report in Fig. 2.28 the output of the proposed AD system. Fig. 2.28(a) considers the
per /24 subnet served volume as the monitored feature. It shows how Φα(t) (with α = 95-th per-
centile) adapts over time to follow the natural traf ic daily changes. The redmarkers indicate when
the condition Γ(t) < Φα(t) is violated, triggering an anomaly. From Wednesday the 8th of May
onward the algorithm systematically rises alarms from 15:00 to 00:00, which correspond to the
discussed change in the caching policy. Fig. 2.28(b) reports the same information for the average
video lows download rate. In this case, the AD system detects some anomalies only between peak
hours (21:00-23:00) from the 8th onward, coherently with the observations drawn from Fig. 2.27.
Interestingly, it can be noticed that even during peak hours, the anomalies are not detected on Sat-
urday the 11th, whereas they are back on Sunday. This behavior is easily explained by the lower
traf ic served during the peak hours on Saturday, as shown in Fig. 2.25(a). Indeed, the percentiles
depicted in Fig. 2.27(a) do not reveal a clear deviation on Saturday average download rates. Com-
paring the changes on the volume distribution against those on the video lows download rate dis-
tribution, we observe that the cache selection policy used by Google resulted in a QoE degradation
only during the peak hours on the high load days. This suggests that the servers of the selected
caches were not correctly dimensioned to handle traf ic load peaks.

2.7.4 Entropy-based Diagnosis of Device-Specific Anomalies

We present now an approach which aids operators in rapidly diagnosing anomalies as the previ-
ously analyzed. This approach currently targets cellular network scenarios, because of their major
popularity and the dif iculty in diagnosing problems in these networks. Indeed, cellular network
operators have witnessed an amazing increase of heterogeneous mobile devices (smartphones,
tablets, M2M devices such as telemeters, etc.) during the last decade. The applications supported
by these devices introduce new traf ic patterns which are potentially harmful for the network. For
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Figure 2.29: DNS requests count

example, applications that provide continuous online presence (e.g., WhatsApp, Facebook, Skype)
might generate a big burden on the signaling plane, impacting network performance. Speci ic de-
vices and applications might also cause undesirable overloading events due to synchronized com-
munication patterns, typical for M2M applications. In this evolving scenario, detecting and rapidly
diagnosing device-speci ic traf ic misbehaviors becomes crucial for cellular network operators.
The proposed approach is articulated in two steps: (i) Detection: the trigger consists of detecting
an abrupt change in the time series of speci ic traf ic features revealing unexpected and potentially
harmful behaviors. We call these time series symptomatic signals. Fromour operational experience,
application-speci ic anomalies are particularly visible in the DNS traf ic. Indeed, abrupt changes in
the DNS requests count can be considered as a symptom of such anomalies. Therefore, we use the
DNS requests count as the main symptomatic signal of the approach. The abrupt change detection
is performed by a standard auto-adaptive algorithm, based on the mean and the variance of the
DNS requests count.
(ii) Diagnosis: to ind out the root causes of the detected anomalies, we de ine a set of features
related to the class of problemswe target, based on expert knowhow. In particular, we consider the
following set of features, associated to eachDNS request-response transaction: anonymizedMobile
Device Identi ier (ID), contacted DNS server IP, Radio Access Technology (RAT), Access Point Name
(APN), Type Allocation Code (TAC), DNS requested Full Quali ied Domain Name (FQDN), device
manufacturer (obtained from the TAC code through public GSM Association databases), and error
code of the DNS response (DNS rcode).
The irst step of the diagnosis consists of identifying which of these features present a signi icant
change in their probability distribution, simultaneously to the trigger. To this aim, we use the en-
tropy as a means to condense the complete distribution of a feature into a single value for a given
time bin. We refer to the time series of the entropy of these features as the diagnostic signals. The
entropy of a random variableX isH(X) = −

∑n
i=1 p(xi)log(p(xi)), where x1, . . . , xn is the range

of values forX , and p(xi) is the probability thatX takes the value xi. The entropy is normalized to
a scaling factor log(n0), where n0 is the number of distinct xi values in a given time bin. Entropy-
based approaches have been proposed for traf ic analysis in the past, but in a ixed-line network
context, and using only transport-layer features such as IPs and ports. Our analysis speci ically
targets cellular networks, using amuch richer set of features, from network to device speci ic ones.
To detect changes in the diagnostic signals, we apply the same auto-adaptive algorithm used in the
detection step. In the practice, different anomalies cause signi icant changes only in a subset of
the considered diagnostic signals. This subset allows us to build-up a signature for the detected
anomaly. Finally, by further drilling down into the features that correlate the most to the trigger,
the approach permits to narrow down the causes for a certain anomaly: e.g., anomalies linked to a
speci ic device type, a speci ic service failure, and so on.
As an application example, we present a case study based on the detection and diagnosis of a large
scale anomaly occurred in a real cellular network. Fig. 2.29 shows the time series of the total DNS
requests count observed in the network for two consecutive days. Two signi icant and anomalous
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Figure 2.30: Entropy of selected features
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Figure 2.31: DNS requests per FQDN class

spikes are observed on the second day, which are easily spotted by the abrupt-change detection
algorithm.
Fig. 2.30 provides a closer look into the anomaly, comparing the time series of the total DNS re-
quests count and the entropy of 4 selected features: FQDN, manufacturer, APN, and ID. These fea-
tures are extracted for each DNS request-response transaction (to preserve user privacy, any user
related data are removed on-the- ly). The other diagnostic signals are omitted for brevity, as they
show a behavior similar to the reported next. We notice that some of the observed diagnostic sig-
nals are correlated in a minor way to the anomaly. This is the case for ID, TAC, RAT, and DNS rcode,
therefore we can exclude the cases in which the anomaly is caused by few users, a speci ic RAT, etc..
On the contrary, dimensions such as FQDN and manufacturer present a very high correlation with
the spikes in the DNS count, suggesting that the issue might be due to speci ic devices (manufac-
turer) querying for certain services (FQDN). Features such as APN and server IP present a partial
correlation with the anomaly, thus they need to be further cross-checked.
The next step of the diagnosis is to drill down each of the dimensions that are highly correlated
with the anomaly. This can be achieved, e.g., by comparing the heavy hitters before and during the
anomaly. Fig. 2.31 reports the speci ic case for the FQDN. The plot shows the time-series of themost
requested FQDNs during the anomaly. We observe that, while some of the top FQDNs associated to
well-knownservices present a stable behavior (well_known_1/2), the FQDNsanomalous_cdn_1/2
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and anomalous_direct_1 show a signi icant increase. The irst two refer to content of a speci ic
popular OTT service delivered via a major Content Delivery Network (CDN), whereas the third one
points directly to the speci ic OTT service, showing that the problem is actually related to this ser-
vice.
The mapping of the TAC codes to the manufacturer of the devices requesting the FQDNs related
to the anomaly also reveal a speci ic smartphone type involved in the anomaly. In particular, the
speci ic anomalous service runs on all these devices, but not on the other smartphone types. W.r.t.
the dimensions presenting partial correlation, we found that all the different APNs are affected by
the anomaly but in a different manner, suggesting that different APNs are con igured for different
customers. Indeed, different APNs are normally linked to different default DNS servers.
As a main conclusion, the proposed approach is helpful in highly reducing the time spent by the
network operator in the diagnosis of unexpected traf ic behaviors. In particular, this service outage
resulted in an abrupt increase in thenumber of connection attempts froma largenumber of devices,
and its fast diagnosis was paramount to understand the nature of such an anomaly.

2.7.5 Best and Worst Comparison

This section designs and evaluates a data analysis technique to help large scale network administra-
tors to pinpoint the root cause behind QoS/QoE glitches. We employ Tstat to collect measurements
from a PoP (Point of Presence) of an Italian ISP. For each observed TCP connection, Tstat generates
a log, i.e., a line reporting a large variety of statistics (client IP address, server IP address, data-rate,
retransmitted packets, DNS server etc.). Logs are then collected into ileswhich constitute the input
for our analysis.
The rationale behind thismethodology is to analyze the traf icmeasurements, classify clients based
on their perceived QoS and discriminates those experiencing good QoS (named Best) from those
unable to get a satisfactory QoS (named Worst). Thus we compare the traf ic exchanged by these
two sets of clients through different tests in order to highlight differences and correlations thatmay
hide the cause of such poor performance.

2.7.5.1 Methodology

Wecan split themethodology, as depicted in Fig. 2.32, in two phases: 1) identify the connections for
the Best and theWorst clients, i.e., connections generated by client achieving a good QoS (best) and
the connections of clients experiencing bad QoS performance (worst) and 2) make a comparison
between the two connection sets.
First of all, however, we choose a metric of interest, i.e., a primary metric. It determines the feature
according to which Best and Worst connection sets are de ined. The throughput and the server
response time are typical choices. Then, we clean the measurement data: using a multi-stage ap-
proach composed by three ilters: i) the Raw ilter selects the metric(s) of interests to de ine the
Best andWorst sets of connections; ii) Service ilter selects the connections belonging to the service
we are interested in. iii) Pruning ilter removes non signi icant measurements for the selected pri-
mary metric, e.g., we remove lows carrying small amount of data. Then, we obtain the empirical
cumulative distribution for the considered primary metric and we employ it to identify Best and
Worst connection sets. E.g., as depicted in Fig. 2.33, we employ the throughput CDF to de ine the
Best set of connections as the top 90%, and the Worst set as the bottom 10%.
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Figure 2.32: Methodology work low

Figure 2.33: Example of throughput distribution

The next step consists of four different automatic tests to analyze measurements from different
perspectives.

1. The irst test is calledBest vsWorst. The idea is to compareBest andWorst connectionsmetric
by metric (i.e., client IP address, retransmissions, etc.). This test looks for differences among
the two sets of connections. Intuitively, a difference over a given metric may indicate a cor-
relation with the cause behind the performance difference between Best and Worst connec-
tion sets. In detail, we perform the comparison by building the empirical probability density
function for all the metrics that have been iltered for both Best and Worst sets. Then, we
compare the two resulting PDFs through a well known similarity measure called Cosine Sim-
ilarity (which varies between 0 and 1). Intuitively, if the similarity value is below a threshold
Ts, themetricmight be correlated to the poor performance of the primarymetric. Vice-versa,
if the PDFs of the considered metric is similar for both Best and Worst sets, we can exclude
a correlation with the primary metric. Fig. 2.34 show an example in which Best and Worst
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Figure 2.34: PDF comparison for network access delay

Figure 2.35: PDF comparison for client retransmissions

Figure 2.36: Example of signatures

PDFs are very different (notice the Cosine Similarity is really low). Instead, Fig. 2.35 reports
the an example in which the two distributions are very similar (Cosine Similarity close to 1).
Alongside the comparison task, we populate a database with “problem identi ication signa-
tures”, i.e., we associate recognizable rules to known problems, e.g., we associate signature
“bad Round Trip Time (RTT) + bad Time To Live (TTL) + different server IP addresses” to the
problem “far away servers”. Further examples are given in Fig. 2.36. This test has the poten-
tial of spotting the problem that affects the connections in the Worst set and at correlating
metrics among them. However, if fails at detecting anomalies that involve a small number of
connections.

2. The second test is called Slice Approach. Starting from Best and Worst connection sets, we
group them according to a certain value of a metric, e.g., a server IP address or a speci ic TTL
value. The resulting subsets of connection logs are then compared. This test allows us to
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Figure 2.37: PDF comparison for Round Trip Time. The small anomaly affecting connections in the
Worst set is not highlighted by the Cosine Similarity

Figure 2.38: Intra Worst comparison among server IP addresses

detect small anomalies that could not be pinpointed through the Cosine Similarity approach,
e.g., Fig. 2.37 shows how a small number of large Round Trip Time values is not enough to
obtain a lowCosine Similarity. However, this approachhas the limit of introducingunbalances
in the datasets to compare: we can indeed perform the comparison only when a value is
common to both Best and Worst sets and only if the two subsets have similar sizes.

3. The third test is called Intra Worst and performs further analysis within the Worst connec-
tion set only. We group by a particular metric (server IP addresses, client IP addresses, TTL,
etc.) and obtain different subsets of connection logs. A minimum number of observations
is needed to enable fair comparison. Every subset is collapsed into a single record that con-
tains aggregate statistics (for example the average) computed for all the metrics involved in
the analysis (except the one we group by on). We thus look for the outliers, values very far
from the standard and, i.e., representing particularly bad behaviors. For example, we com-
pare server IP addresses to identify those which are affected by congestion or which are far
away from the clients. Fig. 2.38 shows an example in which servers contacted by worst client
are compared among them. One subset is not eligible to comparison due to its smaller size.
One server seems to be farther.

4. The last test is called Metric Comparison. First, two metrics, A and B, are selected. Then,
we form couples a,b, where a ∈ A and b ∈�� B, and create the correspondent subsets of
connection logs. For example, we decide to use client IP subnet as A and server IP address as
B. We aim at inding bad behaviors that take place for a particular client subnet (or server)
independently on the contacted server (or originating client subnet). Also in this case we
detect anomalies by looking for outliers.
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Figure 2.39: Best vs Worst test on Access Network Delay metric

Figure 2.40: Intra Worst dataset for client subnet comparison

2.7.5.2 Preliminary Results

We evaluate our methodology on a collection of Tstat logs we collected at a vantage point located
within the network of country-wide European ISP. Our dataset is 1-day long, in particular the mea-
surements it contains were collected on the 2nd of April 2014. For our analysis we focused on
TCP connections carrying HTTP traf ic only. The dataset is composed of about 38 million connec-
tion logs referring to 9837 distinct clients. For the results we report in this document, we select the
throughput as the primarymetric and focus only on the connections directed to googlevideo.com,
the service responsible for carrying YouTube video content. We start our analysis by running the
Best vsWorst test. Results reported in Fig. 2.39 shows that the Access Network Delaymetric is very
different for connections in Best and Worst sets. This suggests that the Access Network Delay is
strongly correlated to the download throughput.
Wealso observe that a set of connections is affectedby small TTLs and largeRTTs, but the size of this
set is too small to in luence theCosine Similarity. We thus run the Slice approach testwhich con irms
that the Access Network delay still seems to be the most critical metric for performance. Some
values, like a client subnet or a speci ic TTL value, were observed in the Worst set only thus it was
not possible to perform the comparison. We thus run the IntraWorst test to compare the aggregate
statistics of different client subnets. As depicted in Fig. 2.40, it emerges that a client subnet found in
theWorst set shows smaller TTL values and larger RTT values, suggesting the presence of a routing
anomaly. We can con irm this by grouping on TTL. Indeed, we notice that all the connections with
the lowest TTL value came from that particular subnet.
Finally, thanks to the Metric Comparison test, we can con irm this observation, as regardless the
contacted server we notice that the aforementioned subnet shows worse TTL and RTT.
Thanks to these four tests we were able to detect the anomalies affecting the Worst clients. The
biggest factor worsening performance for some clients is a large delay in the Access Network. This
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affects all the clients belonging to the Worst set. Then, we detected a smaller issue involving only
the clients belonging to a particular client subnet. This client subnet seems experience bad perfor-
mance due to a miscon iguration in its routing: clients follow longer paths and take more time to
reach servers.

2.8 Verifica on and Cer fica on of Service Level Agreements

The principal algorithms that are used by the Reasoner for the veri ication and certi ication of ser-
vice level agreements (SLA) are:

1. The UDP speed correction algorithm

2. The irregularity detection algorithm

3. The anomaly detection algorithms, by correlating the active and passive data

Wewill explain here the irst two algorithms, since the third one is still one process and there is no
concrete algorithm yet. The UDP speed correction algorithm it is used almost every time there is
identi ied an packet loss >0.1% on the UDP transfer. The algorithm is explained on Fig. 2.41.

As it can be seen, on every SLA veri ication that is done between server and client, after all the
different test, RTT and TCP throughput, the UDP test is carried out. At the beginning the probe
forces the transmission at the maximum speed, usually nearly 1000Mbps. After the algorithm gets
the data of the irst test and calculates the correct bandwidth Bc. After which it tests a bandwidth
Bc* that has a difference 1/1000*Bc from Bc. If the test reports that the packet loss is < 0.1% than
the reason accepts Bc* as the correct bandwidth if not it will repeat the test until it inds the correct
bandwidth. For more dettail see [87]

The irregularity detection algorithm it is used to ind on the active data irregularities, usually rep-
resented as unexpected drop of the bandwidth. To detect the measurements that are affected by
this kind of ”anomalies” the algorithm applies two rules, Fig. 2.42 and Fig. 2.43. If the rules are true
than the data is processed by the anomaly detection algorithm (which is still in progress, waiting
for lab results).

In Fig. 2.42, representes the irs rule, that can be explained as follows: Being “Mi” the report of the
bandwidth every second, for an measurement we have “n” samples “Mi”. We calculate a threshold
as 70% (this value can differ in dependence of previous results of the bandwidth)of the mean of
all samples. We assume that the data is affected by anomaly if 30% of the samples are below the
threshold.
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Figure 2.41: UDP speed correction algorithm

Figure 2.42: UDP speed correction algorithm

Figure 2.43: UDP speed correction algorithm
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Figure 2.45: Bandwidth on client 1, using UDP

In Fig. 2.43, it is presented the second rule of the anomaly detection. The second rule is more
straight through. The rule says that the measurement has to be tested on a sliding window of 20%
of the total window. First there a threshold Mmin set as 60% of Mmax (the value may differ de-
pending on previous values), where Mmax is the sample with the maximum value among all the
samples. That the rule states that the data is affected by anomaly if 20% of the consecutive samples
is below the Mmin threshold.

2.8.1 Bandwidth Overbooking

There might be some case when the ISP might use bandwidth overbooking. The ISP tends to book
more bandwidth that it has at his disposal. In this cases some services might degrade from time to
time, depending on the bandwidth usage of the other clients. The client in this case can measure a
minimum bandwidth, and in some case also a maximum bandwidth. To test this particular case we
considered the scenario in Fig. 2.44

Figure 2.44: Scenario experimented on overbooking

In the case of Fig. 2.44, we have two client with a tested connection that has gave us a result of
100Mbps each. Conversely the total available bandwidth of the shared channel has been set at
150Mbps. So the singular tests on each user are correct, but in the case both users are active the
results differs as shown in Fig. 2.45 and Fig. 2.46 By making the sum of the result in Fig. 2.45 and
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Figure 2.46: Bandwidth on client 2, using multisession TCP

Figure 2.47: Total throughput on both clients

Fig. 2.46, we can obtain the total available bandwidth, of 150Mbps as shown in Fig. 2.47.
To detect bandwidth overbooking the algorithm in Fig. 2.48 can be used. Although this algorithm
depends verymuchon thenumber of the clients behind at the access network. To get amoreprecise
result all the client should be included in the test.
To detect overbooking, we just make singular test on each client, and then the second step is to
make parallel test on all users at the same time. If the bandwidth for every user on the second
test differs to much from the irst test than we have overbooking and the total bandwidth of the
Internet provider is calculated as the sum of the bandwidth of every user. Other cases of anomaly
were published at mPlane D4.2 [73] and [101].

2.9 Network Proximity Service Based On Neighborhood Models

The knowledge of network proximity is critical to achieve Quality-of-Service (QoS) guarantees for
end users. For example, in Peer-to-Peer (P2P) applications and Content Distribution Networks
(CDNs), it is desired to direct user requests to a peer or a server that is nearby and thus with a
connection of small latencies. In this section, network latency refers only to round-trip time (RTT).
To exploit the proximity information in large distributed systems, a practical challenge is the ef i-
cient acquisition because active probing of network latency for all paths in a large network is infea-
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Figure 2.48: Algorithm for detecting overbooking

sible due to the quadratic complexity. This issues has beenwell studied, resulted in a rich line of re-
search on network proximity inference based on latencymeasurements on a few paths [22,66,75].
In particular, a recent progress is that the inference of network latencies can be cast as a matrix
completion problem whereby a partially observed matrix is to be completed [26, 27, 61, 62]. Here,
the matrix contains latencies between network nodes with some of them known and the others
unknown, shown in Fig. 2.49(a). We then observed a similarity between network inference and the
problemof recommender systemswhich studies the prediction of preferences of users to items [56],
shown in Fig. 2.49(b). If we consider network latency as a preferencemeasure between nodes, then
peer and server selection is just a recommendation task. This observation enables us to leverage
the rapid advances inmachine learning and investigate the applicability of various solutions to rec-
ommender systems for network inference. Our previous studies have shown that a class of matrix
factorization techniques are suitable and achieved good results that are known to be acceptable for
recommendation tasks [26,27].

Alternatively, neighborhood models are also widely used in recommender systems which exploit
the similarities between users and between items [89]. For example, two users are considered
similar if they rate a set of items similarly. Meanwhile, two items are considered similar if they are
given similar ratings by a set of users. Thus, two kinds of recommendations can be made to a user:
liked items by similar users and items that are similar to the liked items by that user. In this sec-
tion, we develop a lightweight network proximity service based on neighborhoodmodels whereby,
if two nodes have similar proximity to a number of common nodes, the two nodes are likely to be
close to each other. Different from previous work, our approach infers proximity without recover-
ing network latencies. A simple proximity measure is computed and can be exploited for ranking
and rating network paths which is useful in e.g. P2P and CDN applications for peer and server se-
lection. The approach is highly scalable and involves only the latency measurement by ping from
each node to a small number of pre-selected landmark nodeswhich can be servers at Google, Yahoo
and Facebook, etc. Simulations on existing datasets and experiments with a deployment on a real
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(a) A matrix completion view of latency inference. In the
matrix, the blue entries contain measured path latencies,
represented by directed edges in the graph, and the green
entries are missing

item1 item2 item3 item4 item5
user1 5 3 4 1 ?
user2 5 3 4 1 5
user3 5 ? 4 1 5
user4 1 3 2 5 1
user5 4 ? 4 4 4

(b) Recommender system with preferences in the scale of
{1, 5}

Figure 2.49: Connection between network inference and recommender systems.-

network, namely PlanetLab, showed that our approach provided accurate proximity services that
are comparable to state-of-the-art latency inference approaches, while being much simpler.

2.9.1 Network Proximity Service

2.9.1.1 Measuring Network Proximity

Insteadofmeasuring latencies betweennetworknodes, we require eachnode toprobe the latencies
to a number of landmark nodes and the latency measurements are put in a feature vector which is
attached to each node, illustrated in Fig. 2.50. Let vi = [vi1, . . . , vik]

T be the feature vector of node
i, where vij is the latency between node i and landmark j and k is the number of landmarks. The
landmark nodes can be any IP addresses on the Internet such as content servers in Google, Yahoo
and Facebook or news and university web servers which stay alive stably and respond to the ping
measurement. Note that anycast IP addresses such as Google public DNS servers at 8.8.8.8 and
8.8.4.4 need to be avoided.
A similarity/dissimilaritymeasure between the feature vectors of two nodes can then be computed
using e.g. the correlation, the L2 or L1 norm and the cosine of the included angle, etc., amongwhich
the L1 norm is chosen due to its robustness to noisy and outlier measurements [45], given by

pij =
1

k

k∑
l=1

|vil − vjl|. (2.6)

pij is a proximity measure, although it does not inform us about the actual latency between i and j.
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Intuitively, when pij is small, i.e. i and j have similar latencies to the landmarks, chances are that
i and j are close to each other. This is exactly the idea in neighborhood models for recommender
systems.
Thus, the proximity measure carries information that can be exploited to rank network nodes. For
example, if pij < pil, thenwe can guess that i is closer to j than to l, i.e. the latency between i and j is
smaller than that between i and l. Obviously, proximity inference based on pij is less accurate than
based on measured latencies. However, a proximity service based on active probing would require
O(n2) measurements for a network of n nodes which does not scale well. In contrast, our new
service reduces themeasurement overhead fromO(n2) toO(kn), with k likely to be independent of
n. In addition, comparing to state-of-the-art latency prediction approaches, our proximity service
is much simpler and requires no computation for learning a prediction model such as Euclidean
embedding for Vivaldi [22] and matrix factorization for DMFSGD [62].
Note that it is possible that a node has a poor connection to all landmarks, i.e. min(vi) is larger than
a threshold. We consider such cases as that the node has a poor connection to the entire Internet,
due probably to a poor Internet access link, and turn the proximity measure between that node
and any other node in the network to a large constant. This prevents nodes with poor Internet
connections from being labeled as close to each other.

2.9.1.2 Landmark Selec on

It is easy to see that the proximity measure depends on both the locations and the numbers of the
landmark nodes. In practice, we can check the suitability of the landmarks by computing statistics
such as variance of the latencies. There are two considerations.

• For node i, vi is more informative about its location if some latencies in vi are small and some
are large, i.e. i is close to some landmarks and far away from some others. Thus, the lack
of variance in vi is generally a good indicator of the poor choice of the landmarks for node
i. If many nodes have small variance in their feature vectors, a likely reason is that many
landmarks are in the same region and close to each other.

• For each landmark,we can also construct a feature vector containing latencies fromeachnode
to the landmark. Let vLi = [v1i, . . . , vni]

T be the feature vector for landmark i. Similarly, the
lack of variance in vLi is also a good indicator that landmark i is not suitable to serve as a
landmark for the nodes in the network, which happens when the landmark has an anycast IP
address4.

4Another possible reason is that most nodes in the network are in the same region and close to each other. This is a

node i

Google server: 173.194.65.104

..
.

Yahoo server: 46.228.47.115

BBC server: 212.58.246.95

...

vij

vi1

vik

Figure 2.50: Network proximity service
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Figure 2.51: Distributions of RTT to an anycast Google public DNS server at 8.8.8.8, a unicast Google
Web server at 173.194.65.104 and a unicast DNS server at 209.210.172.9

Essentially, we can construct a matrix containing latencies between nodes and landmarks, denoted
by V = [v1, . . . , vn], and it is desired that the variance in both the rows and the columns in V are
large. Ifwehave a set of landmarks fromwhichwe choose a few,we candesign a selection algorithm
that maximizes the variances in V . Empirically, we found that if the landmarks are well distributed
all over the world, the variances in V are generally large enough and a good network proximity
service can be achieved using a small number of randomly selected landmarks, shown in Sec. 2.9.2.
We performed a test on PlanetLab on June 2nd, 2014 that from 592 live nodes we pinged an anycast
Google public DNS server at 8.8.8.8, a unicast Google Web server at 173.194.65.104 and a unicast
DNS server at 209.210.172.9 and received latencies to all three servers from 310 nodes, shown
in Fig. 2.51. We can see that both the mean and the variance of the latencies to 8.8.8.8 are much
smaller, which is expected as 8.8.8.8 corresponds to 28 servers at different locations. Note that
among all the latencies to 8.8.8.8, only 12 are larger than 100ms and the latencies from all 11 Chi-
nese nodes are larger than 180ms5. This suggests that even an anycast IP may provide useful prox-
imity information about nodes in particular areas. For example, a node is unlikely to be in China
if its latency to 8.8.8.8 is smaller than 100ms. By choosing the right landmarks, we may design a
location classi ier that pinpoints a network node to a small region.

2.9.1.3 RSD-Based Approach

It is worth to notice that proximity can also be estimated using other metrics/techniques than de-
lay measurements. In this section, we explain how the routing state distance (RSD) [42] recently
introduced can be used. Further work should reveal the relevance or not of this approach.

2.9.1.3.1 Routing State Distance Recently, Gürsun et al. [42] have proposed a metric, called
routing state distance (RSD), to quantify the diversity of BGP routes. In particular, RSD considers all
the collected BGP routes to each pre ix pair to compute and compare the routing states of the two
pre ixes.
More formally, let us consider a universeX of n nodes (i.e., |X| = n). Gürsun et al. de ineN(x1, x2)
as the next-hop on the path from x1 to x3.6 By following recursively nodes onN(·, x2), one inally
reaches x2. Generally,N is seen as aN ×N matrix whereN(x′, x) can be interpreted as a matrix

trivial situation which we rule out in this section.
5Theonlyothernodewith a latency to8.8.8.8 greater than100ms is lim-planetlab-2.univ-reunion.fr. Themean latency

is 213ms and the variance is 4ms. The node is in the University of La Réunion located in an island in the Indian Ocean.
6Note thatN(x, x) = x, i.e., any node x is the next-hop the node x itself.
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element that stores the next hop from x′ to x. Finally, it is worth to notice thatN(x, :) (respectively,
N(:, x)) denotes the x− th row (respectively, column) ofN .
Based on that, the RSD between two nodes x1 and x2 is de ined as follows:

RSD(x1, x2) = |{xi|N(xi, x1) ̸= N(xi, x2)}| (2.7)

In other words, RSD(x1, x2) is the number of positions where the columns N(:, x2) and N(:, x1)
differ. RSD is thus an integer that takes a value in 0, 1, . . . , n.

2.9.1.3.2 Ranking Probes Based on RSD For our problem, we need to apply RSD to BGP data.
As suggested byGürsun et al. when consideringBGPdata, onemight apply implementation changes
in RSD. Now, in the matrix N , a column corresponds to pre ixes and a row corresponds to ASes.
Thus,N(a, p) is de ined as the next hop from AS a to pre ix p.
Gürsun et al. de ine the routing stateRS(p) of a pre ix p as the directed graph obtained bymerging
all AS-paths in BGP routes for p. Then, they de ine the routing state distance between two pre ixes
p1 and p2 as |RS(p1)⊕RS(p2)|, where⊕ denotes the XOR between the two graphs (i.e., their union
minus their intersection).
The RSD-based approach works as follows:

1. For every probe, its RSD distance to the point of interest is calculated.

2. A ranking of probes is produced, which is a list of probes in increasing order of RSD distances
to the PoI.

2.9.2 Simula ons on Exis ng Datasets

We performed simulations on the following datasets:

• Meridian contains staticRTTsbetween2500DNSservers obtained fromtheMeridianproject [107].

• P2PSim contains staticRTTsbetween1740DNSservers obtained fromtheP2PSimproject [41].

• Harvard contains dynamic RTTs between 226 PlanetLab nodes collected in 4 hours [58].

In these datasets, as we only have RTTs between nodes in the networks, we randomly select a num-
ber of nodes as landmarks and the feature vector of each node consists of RTTs to those selected
nodes. For the Harvard dataset, we extracted the static RTTs by computing the mean RTT between
each pair of nodes and used them in the irst two subsections for evaluating the ranking and rat-
ing accuracy. The dynamic RTTs in the Harvard dataset are used to evaluate the stability of the
proximity measure only in the last subsection.

2.9.2.1 Ranking of Network Proximity

We irst evaluate the ranking of network proximity using the Spearman’s rank correlation coef i-
cient which is de ined as the Pearson correlation coef icient between the ranked variables [12]. For
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Table 2.6: Impact of k on ranking accuracy
ρ mean std

k=10 0.784 0.017
k=20 0.802 0.010
k=30 0.809 0.008
k=60 0.819 0.003

ρ mean std
k=10 0.786 0.038
k=20 0.813 0.026
k=30 0.820 0.016
k=60 0.828 0.011

ρ mean std
k=10 0.942 0.020
k=20 0.948 0.008
k=30 0.952 0.006
k=60 0.952 0.003

Meridian P2PSim Harvard

Table 2.7: Comparison of ranking accuracy
ρ mean std

Neighborhood 0.811 0.007
DMFSGD 0.823 0.001
Vivaldi 0.807 0.002

ρ mean std
Neighborhood 0.819 0.020

DMFSGD 0.889 0.002
Vivaldi 0.834 0.002

ρ mean std
Neighborhood 0.952 0.006

DMFSGD 0.910 0.003
Vivaldi 0.868 0.002

Meridian P2PSim Harvard

two sequencesX andY , the rawdataXi andYi are converted to the ranksxi and yi in the sequence,
and the Spearman’s rank correlation coef icient is computed as

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

. (2.8)

ρ is between 1 and−1, and the larger it is, the more the ranks ofX and Y are positively correlated.
Thus, we evaluate the ranking accuracy by calculating the Spearman’s rank correlation coef icient
between the proximity measures by our service and the true latencies between network nodes. In
other words, the two sequences X and Y are our proximity measures and the true latencies, and
we wish a high ρ value so that their rankings match each other.
As the landmarks are randomly selected from all nodes in the network, we are interested in the
impacts of the number of landmarks on the accuracy of proximity inference. We tested k = 10, 20,
30 and 60 respectively, with 10 runs of random landmark selection for each k, and the mean rank
correlation coef icients and the standard deviations for each dataset are shown in Table 2.6. It can
be seen that the rank correlation improves with the increase of the landmark number k and that
the ranking results are stable and not sensitive to the random selection of the landmarks in the
network. Overall, ranking of network proximity is more accurate on the Harvard dataset than on
the other two, due probably to its small size of the network, i.e. 226 nodes.
We then compare our proximity service with two popular latency prediction approaches, namely
Vivaldi [22] andDMFSGD [26,61,62]. The former predicts RTTs based on Euclidean embedding and
the latter does so based onmatrix factorization. Both employ the same architecture that each node
probes and exchanges messages with k randomly selected neighboring nodes in the network. In
contrast, our service based onneighborhoodmodels only probesk landmarks, with no requirement
of message exchanges between nodes. To make the comparison fair, we set k = 32 so that all
methods have the same measurement overhead. Note that k = 32 is the default setting in Vivaldi
and DMFSGD. We ran the simulations for 10 times with random landmark and neighbor selection
for our service, DMFSGD and Vivaldi respectively. The rank correlation for DMFSGD and Vivaldi is
calculated by comparing the ranks of the predicted RTTs and of the true RTTs using eq. 2.8. The
mean rank correlation coef icient and its standard deviation for eachmethod is shown in Table 2.7.
It can be seen that our service achieved comparable results with DMFSGD and Vivaldi.
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Table 2.8: Comparison of rating accuracy
RMSE mean std

Neighborhood 0.943 0.014
DMFSGD 0.860 0.003
Vivaldi 0.945 0.003

RMSE mean std
Neighborhood 0.922 0.058

DMFSGD 0.667 0.004
Vivaldi 0.879 0.003

RMSE mean std
Neighborhood 0.570 0.028

DMFSGD 0.601 0.009
Vivaldi 0.704 0.007

Meridian P2PSim Harvard

2.9.2.2 Ra ng of Network Proximity

We then evaluate the rating of network proximity that turns a proximity measure into an ordinal
number in the range of {1, 5}. Ordinal rating is a loose version of ranking that labels a measure as
rank 1 if it is among the top 20 percent smallest, as rank 2 if between top 20 and top 40 percent, and
so on. While less informative, the advantage of rating over ranking is that ratingmeasures aremore
stable over time. Thus, we compare the ratings of the proximity measures returned by our service
with the ratings of the true latencies, evaluated by using the same criterion, RootMean Square Error
(RMSE), as in [26], given by

RMSE =

√∑n
i=1(xi − x̂i)2

n
. (2.9)

The smaller the RMSE, the better. We also compare our service with DMFSGD and Vivaldi. DMFSGD
can directly predict ratings of RTTs, as described in [26,27]. For Vivaldi, we turn the predicted RTTs
into ratings.
As above, we ran the simulations for 10 timeswith random landmark andneighbor selection for our
service, DMFSGDandVivaldi respectively, and calculated themeanRMSEand its standard deviation
for each method, shown in Table 2.8. It can be seen that on Meridian and P2PSim, DMFSGD is the
best, while onHarvard, our service based onneighborhoodmodels is the best. Overall, on the rating
performance, our service achieved results at least comparable to Vivaldi.
Table 2.9 shows the confusion matrices by our service. In these matrices, each column represents
the predicted ratings, while each row represents the actual ratings. Thus, the diagonal entries rep-
resent the percentage of the correct prediction, and the off-diagonal entries represent the percent-
age of “confusions” or mis-ratings. For example, the entry at (2, 2) represents the percentage of
the rating-2 paths which are correctly predicted as rating-2, and the entry at (2, 3) represents the
percentage of the rating-2 paths which are wrongly predicted as rating-3, i.e. the confusions from
rating-2 to rating-3. It can be seen that while there aremis-ratings, most of them have a small error
of |xij − x̂ij | = 1, marked as shaded entries in the confusion matrices. This means that the mis-
ratings are under control. For example, a rating-5 path may be wrongly predicted as 4, but seldom
as 3, 2 or 1, since the entries at (5, 3), (5, 2) and (5, 1) in all confusion matrices are small.

2.9.2.3 Stability over Latency Dynamics

We further evaluate the impact of the latency dynamics on the stability of our service using the
Harvarddatasetwhich contains2, 492, 546dynamicRTTswith timestamps collected in4hours from
PlanetLab [58]. In the dataset, about 94.0% of the paths between pairs of nodes are measured
between 40 and 60 times.
In the experiment, we assume that eachnodeprobes the landmarks once and the irst RTTmeasure-
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Table 2.9: Confusion matrices
1 2 3 4 5

1 81% 14% 4% 1% 0%
2 13% 58% 20% 7% 2%
3 3% 21% 38% 26% 12%
4 1% 5% 27% 39% 27%
5 1% 2% 12% 27% 58%

1 2 3 4 5
1 54% 26% 10% 10% 0%
2 40% 37% 16% 6% 1%
3 6% 34% 49% 10% 1%
4 0% 3% 24% 54% 18%
5 0% 0% 0% 20% 79%

Meridian P2PSim
1 2 3 4 5

1 77% 21% 2% 0% 0%
2 23% 57% 19% 1% 0%
3 0% 21% 64% 13% 2%
4 0% 3% 15% 70% 15%
5 0% 0% 0% 17% 83%

Harvard

ment from each node to each landmark is put in the feature vector of the node. Thus, the proximity
measures between nodes are computed using the latency information acquired in the beginning
of the simulation which are not updated over time. We then evaluate how the ranking and rating
accuracy is affected by the dynamics of the true RTTs in the dataset. To this end, we ran the simu-
lations with the RTTs between nodes updated using the timestamps in the dataset and computed
the Spearman’s rank correlation coef icient ρ and the RMSE over time (in every three minutes) be-
tween the proximity measures and the true, updated RTTs (turned into rating when computing the
RMSE), shown as the curve of ρ for Neighborhood and of RMSE for Neighborhood respectively in
Fig. 2.52. In addition, we also calculated the ranking correlation ρ over time between the RTTs in
the beginning of the simulation (the irst measurement between each pair of nodes) and the true,
updated RTTs. This measure re lects the dynamics of the RTTmeasurements in the dataset, shown
as the ρ for dynamic RTT curve in Fig. 2.52. It can be seen that the RTTs in the dataset are fairly
stable, with the rank correlation over time never smaller than 0.95. In such cases, our service is
able to provide accurate proximity inference, i.e. a rank correlation around 0.9 and a RMSE around
0.7, without updating the feature vector of each node for 4 hours. Note that if we do update the
latencies in the feature vector of each node by a running mean, i.e. the mean of 10 most recent
measurements, we only improve the accuracy slightly by less than 5%, at the cost of more probes
to the landmarks.

2.9.3 Deployment on PlanetLab

Wedeployed our network proximity service on PlanetLab to test the performancewhen using land-
marks other than those in the network.

2.9.3.1 Experimental Setup

We irst identi ied the IPs that can be used as landmarks. The irst landmark set, so called the DNS
set, contains the DNS servers in the P2PSim dataset in which we found 792 out of 1740 alive and
reachable. The second landmark set, so called the WEB set, contains the web servers at Google,
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Figure 2.52: Impact of latency dynamics on proximity inference. The curve of ρ for dynamic RTT
represents the rank correlation over time between the RTTs in the beginning of the simulation and
the updated RTTs. The curve of ρ for Neighborhood represents the rank correlation between the
non-updated proximity measures and the true, updated RTTs, and that of RMSE for Neighborhood
represents the RMSE between the ratings of the non-updated proximity measures and of the true,
updated RTTs

Yahoo and Facebook. To extract the IPs, we pinged from each PlanetLab node to www.google.com,
www.yahoo.comandwww.facebook.com. As these service providers direct user requests to nearby
servers, the ping returned us the IPs of 147 Google, 11 Yahoo, 69 Facebookweb servers. Unlike the
DNS set the IPs in which are largely distinct from each other, the WEB set contains similar IPs such
as 74.125.237.17 and 74.125.237.18. Thus, we clustered the IPs in the WEB set by their irst 24
bits, resulted in 58 Google, 11 Yahoo and 31 Facebook IP clusters. In the experiments on the DNS
set, the k landmarks are randomly selected from all 792 DNS servers, whereas on the WEB set, we
irst select randomly k IP clusters and each node then selects randomly an IP from each selected IP
cluster.
The deployment of our service is simple and involves only the RTT measurement by ping from
PlanetLab nodes to landmark nodes. For the purpose of evaluation, we also collected RTTs between
PlanetLab nodes. During our experiment period between June 8th and June 12th, 2014, we were
able to reach between 306 and 327 PlanetLab nodes. We con irm that the RTTs on PlanetLab are
fairly stable, as shown in Sec. 2.9.2.3.

2.9.3.2 Comparison with DMFSGD and Vivaldi

As above, we compared our service based on neighborhoodmodels with DMFSGD and Vivaldi, with
k = 32 for all methods. For our service, we tested random landmark selection from the DNS and
WEB set as well as from the PlanetLab nodes, called Neighborhood DNS, Neighborhood WEB and
Neighborhood respectively. For each method, 10 runs of random landmark/neighbor selection
were carried out using measurements collected at some time in our experiment period. We calcu-
lated themeans and the standard deviations of the ranking correlation and the RMSE by comparing
the results of eachmethodwith the true RTTs, shown in Table 2.10. Note that the experimentswere
repeated using measurements at different times and the results were found consistent due to the
stability of the RTTs on PlanetLab. It can be seen that, while worse than DMFSGD and Vivaldi, our
service still achieved decent accuracies on ranking and rating of network proximity. It is worth not-
ing that the accurate RTT prediction by DMFSGD and Vivaldi comes at the cost of 10 to 20 message
exchanges between each pair of neighboring nodes. In contrast, our service is themost lightweight,
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Table 2.10: Comparison of ranking and rating accuracy on PlanetLab
ρ mean std

Neighborhood DNS 0.894 0.027
NeighborhoodWEB 0.886 0.029

Neighborhood 0.903 0.021
DMFSGD 0.936 0.013
Vivaldi 0.939 0.014

RMSE mean std
Neighborhood DNS 0.709 0.034
NeighborhoodWEB 0.722 0.038

Neighborhood 0.701 0.044
DMFSGD 0.622 0.020
Vivaldi 0.641 0.022

with each node probing a few pre-selected landmarks only once in the beginning of the service and
with no computation required.
Note that the small standarddeviations inTable 2.10 show the insensitivity of our service to random
landmark selection when deployed on real networks such as PlanetLab. Thus, our experiments
in this and previous section suggest that empirically, random landmark selection is suf icient as
long as the landmark nodes are well distributed all over the world. In such situations, each latency
measurement fromanode to a landmarkprovides useful information about the locationof thenode.

2.9.4 Conclusion

This section presents a lightweight network proximity service that labels nodes with similar prox-
imity to landmark nodes as being close to each other. The service allows the ranking and rating of
network proximity which can be exploited for peer and server selection in P2P and CDN applica-
tions. Comparing to state-of-the-art latency prediction approaches such as DMFSGD and Vivaldi,
the biggest advantage of our service is its simplicity. The only overhead in our service is a small
number of ping measurements, and there is neither computation nor message exchange between
network nodes required. Extensive simulations and real deployments show that our service can
achieve accurate and stable proximity inference with a few randomly selected landmarks. Unlike
many other landmark-based systems such as GNP and IDES, the landmarks in our service can be
any Internet servers over which we have no experimental control.

2.10 Topology

2.10.1 MPLS Tunnel Diversity

One of the cornerstones of the Internet is the way data is forwarded through routing paths. Up to
now, most of the IP lows have been treated the same way whatever their Quality of Service needs,
their destinations, or their origins. This absence of privileges and low distinction is called best
effort routing or Internet neutrality. One of the tools allowing operators for easily differentiating
classes of service and, so, performing Traf ic Engineering (TE) mechanisms is Multiprotocol Label
Switching (MPLS [86]). Historically, MPLS has been designed to reduce the time required to make
forwarding decision thanks to the insertion of labels before the IP header. Nowadays, it is com-
monly believed that MPLS is mainly used for providing additional virtual private networks (VPN)
services [74] and TE capabilities [95,105,108]. Few studies have focused onMPLS, studying essen-
tially its deployment level [25, 92, 93] or its impact on topology discovery tools [34]. However, to
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Figure 2.53: General overview of an MPLS tunnel

the best of our knowledge, none of them has focused on its actual usage in today’s Internet.
Based on an extensive measurement campaign, we notice that, in a large proportion of the cases,
a pair <ingress; egress> of an MPLS tunnel is made of multiple MPLS branches, both in terms of
labels and IP level paths. However, without using additional probing, such as Paris Traceroute [7]
in MDAmode [8], it is not straightforward to distinguish equal-cost multiple (ECMP) load balanced
paths frommultiple TE classes usage.
On one hand, ECMP load-balanced paths within MPLS tunnels correspond to the standard usage
of the Label Distribution Protocol (LDP) [6] on top of IGP in order to enable inter-domain routing
stability and extensibility (and preserving ECMP features of the underlying IGP, if any). On the other
hand, allowing TE for MPLS refers to the use of Resource Reservation Protocol TE (RSVP-TE) [9] or
VPN to enable service differentiation through the use ofmultiple forwarding equivalent classes (FEC
- i.e., a set of packets a single router forwards to the same next hop, via the same interface with the
same treatment).
In order tomake this distinction possible at a lowest overheadpossible for the network, wepropose
a passive method, the Label Pattern Recognition (LPR) algorithm, to differentiate standard IP equal
cost paths (that LDP allows) from tunnels built with RSVP for actual TE purpose. From the analysis
we performed on our dataset, we conclude that the usage of LDP is clearly the rule, while the use of
RSVP-TE or VPN remains mainly the exception for transit traf ic. To re ine our study, we also apply
LPR on a per AS basis to identify distinct TE behavior across the set of ASes we collected.

2.10.1.1 MPLS Background

TheMultiprotocol Label Switching (MPLS) [86] was originally introduced to speed up the forward-
ing process. In practice, this was done with one or more 32 bits label stack entries (LSE) inserted
between the frame header (Data-link layer) and the IP packet (Network layer). MPLS routers, i.e.,
Label Switching Routers (LSRs), exchange labelled packets over Label Switched Paths (LSPs). Each
packet contains a stack of LSE, each being made of a 20 bits label, a Time-To-Live ield and a type-
of-service ield.
The irstMPLS router (Ingress Label EdgeRouter – Ingress LER– router, at the tunnel entry) adds the
label stack, while the lastMPLS router (Egress Label Edge Router – Egress LER – router, at the tunnel
exit) removes the label stack. In most cases, the label stack may be removed by the penultimate
MPLS router (penultimate hop popping, PHP). In that case, the tunnel exit is one hop before the
Egress. Fig. 2.53 illustrates the main concepts associated to MPLS tunnels.
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In an MPLS network, packets are forwarded on the basis of their label based on an exact match
lookup instead of a longest pre ix match lookup on the IP destination. At each MPLS hop, the label
of the incoming packet is replaced by the corresponding outgoing label found in the switching table.

MPLS has twomain usages: (i) a basic encapsulation technique allowing to transparently transmit
packets through an MPLS domain using best effort IP routes computed by an IGP, and (ii) a TE tool
allowing to better control routing and resources used by some lows. Here, we consider only point-
to-point usage since, with traceroute, we measure only point-to-point routes (see Sec. 2.10.1.2.1
for details about our measurements).

The basic encapsulation method is used in two common scenarios. First, in the BGP transit sce-
nario, a transit network using BGP as an inter-domain routing protocol and an IGP (e.g., IS-IS or
OSPF) as an intra-domain routing protocol may use MPLS tunnels between its border routers to
transparently carry packets between them. This way intermediate routers do not need to know
about external destinations, only the incoming border routers need to know the outgoing one (by
the BGP decision process, it is the BGP next hop) and the corresponding LSP. Another similar usage
is for basic BGP MPLS VPN (Virtual Private Networks [85]). Again LSPs are constructed between
the provider equipment (PE) of the VPN, and packets pertaining to a VPN may transparently cross
the MPLS domain.

For this basic encapsulation method, labels are allocated through the Label Distribution Protocol
(LDP) [6]. A router announces to its MPLS neighbors the association between a pre ix in its routing
table and a label it has chosen. Therefore, labels are allocated from downstream and, for a given
pre ix, a router advertises the same label to all its neighbors. Depending on the implementation,
LDP may advertise a label for all pre ixes in its IGP routing table (default case for Cisco routers)
or only for loopback addresses (default case for Juniper routers). For transit traf ic, LSPs are con-
structed by LDP towards loopback addresses of the exit router. The IP route followed by the LSP is
the best effort IP route(s) computed by the IGP. If load balancing is not used, there is only one route
between two endpoints (for instance, only LSP1 in Fig. 2.53 between the Ingress and the Egress
LERs). On the other hand, if load balancing is used there may be several routes (usually with equal
cost: ECMP Equal Cost Multipath – for instance LSP1 and LSP2 on Fig. 2.53 between the Ingress
and the Egress LERs). Note that LDP builds an LSP-tree towards the destination pre ix. Note also
that, while the pre ix used to build this tree may be very speci ic (i.e., a single IP loopback address),
the Forwarding Equivalence Class (FEC – i.e., a set of packets a single router forwards to the same
next hop, via the same interface with the same treatment) may be very large, i.e., all traf ic exiting
a Tier1 AS from the same border router.

Another quite different usage ofMPLS is TE, where the goal is to tune the routes used by some lows
either to give themsome requested quality of service, or to optimize the network usage. In this case,
it is expected that different lows entering theMPLS domain at the same Ingress LER and leaving at
the sameEgress LERmayusedifferent routes (for instance, LSP1andLSP2onFig. 2.53). In this case,
an IGP adapted for TE [52,60] is in charge of computing routes satisfying the TE constraints, while
the Resource Reservation Protocol TE (RSVP-TE) [9] is the signaling protocol in charge of reserving
resources and allocating labels along the route. Note that it is expected that several LSPs can be
build between the same pair of MPLS routers. Their label sequences are completely different while
their IP path may or may not be distinct (for instance, LSP2 and LSP3).
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Figure 2.55: Proportion of traceroute, per measurement cycle, traversing at least one MPLS tunnel

2.10.1.2 Label Pa ern Recogni on Algorithm

Our main objective is to reveal the use of actual TE practice. More formally, for each<Ingress LER,
Egress LER> pair, we aim at distinguishing the use of multi-FEC from standard IP load balancing
with ECMP. Instead of running additional extensive active probing such as using Paris Traceroute
with the MDA algorithm [8], we target a passive classi ication method. Eventually and in the same
fashion, with MPLS labels, we are able to transparently perform some alias resolution and so dis-
tinguish router disjoint sub-paths from parallel links.
To this end, we develop the Label Pattern Recognition (LPR) algorithm, that analyses the MPLS la-
bels on IP addresses that are common to several LSPs (or that are likely to belong to the same
router). Our algorithm classi ies each couple <Ingress LER, Egress LER> into three main classes
according to the recognition of the standard behaviors of RSVP-TE versus LDP in terms of label dis-
tribution. All the processing of LPR are done off-line. The whole process is illustrated at Fig. 2.54.
Sec. 2.10.1.2.1 explains how we performed measurement in order to build our raw dataset. Next,
LPR works in two stages: irst, it ilters the dataset (Sec. 2.10.1.2.2) before performing the classi i-
cation itself (Sec. 2.10.1.2.3).

2.10.1.2.1 Data CollectionMethodology In order to collect data for evaluating transit tunnels
diversity, we deploy scamper [63] on the PlanetLab network. We con igure scamper so that itworks
in Paris Traceroute [7] mode with ICMP-echo packets. As targets for our measurements campaign,
we randomly pick up 106 IP addresses from the Archipelago [20] destination list. We evenly divided
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ASN 3356 7018 2914 6453 6461 286 6830 15412 1273 7843 2828 4436 10026 292 7473

#MPLS IPs 647 294 252 242 180 117 111 120 110 103 92 82 78 201 65
#IPs 5,039 7,700 1,712 1240 1,006 377 2150 311 504 386 1488 425 466 10,424 472
Ratio MPLS 0.128 0.038 0.147 0.195 0.179 0.310 0.052 0.386 0.218 0.267 0.062 0.193 0.167 0.019 0.138
#<I,E> 9,577 1,032 1,393 922 634 260 59 118 258 272 503 141 241 107 111
#LSPs 132,607 31,569 22,425 17,475 18,059 3,018 290 2,342 4,434 7,485 5,237 722 9,113 4,559 965

Table 2.11: Statistics about the Top 15 ASes after some iltering

this list between 200 PlanetLab monitors, scattered in North America, Europe, Asia, and Oceania.
We performed several measurements cycles. For each cycle (one per week), we kept the same
destinations list and the same PlanetLab monitors7. Measurements cycles started on August 23rd,
2013 and stopped on June 13th, 2014. Each measurement cycle was run on Friday, noon (Belgium
time). This leads to a dataset made of 43 snapshots from our set of 200 PlanetLab vantage points.
In particular, it measures explicit MPLS tunnels, the ones that show IP tagged with MPLS labels in
their return answer [25]. Moreover, we perform an IP to AS mapping using the BGP routing data
available from the Route Views project (http://www.routeviews.org/).
We irst measure the proportion of traceroute that traverses at least one MPLS tunnel in each of
the 43measurement cycles. We observe that this proportion is roughly stable and really important,
i.e. 45% of the paths (see Fig. 2.55), although we notice a slight decrease over time of the path
proportion encountering at least one MPLS tunnel. On a per unique IP grain, we measure that 7%
of IP addresses can be directly tagged as MPLS interfaces. Compared to previous works [25, 93],
MPLS seems now more present than in the past. In this study, we focus on IP paths with MPLS
labels because we need to interpret their similarity to classify their use into multi- or mono-FEC.

2.10.1.2.2 Filters In our study, we do not consider inter-domain MPLS tunnels as its usage
seems really negligible. This means that IP addresses involved in a tunnel must belong to the same
AS. This irst iltering step is done by the IntraAS ilter (see Fig. 2.54). It removes 0.5% of LSP in
the raw dataset.
If the destination of the traceroute belongs to the same AS than the MPLS tunnel, we are in a case
where the tunnel is not used for transit traf ic (and so is unlikely to be used for TE purpose). We
therefore remove, from our dataset, all MPLS tunnels that do not fall within this transit traf ic sce-
nario. This is the objective of the TargetAS. It removes≈10% of LSP in the raw dataset.
To have a better view of the routing diversity, we next want to keep only <Ingress LER, Egress
LER> pairs that are used to reach at least two destinations belonging to different ASes (Transit
Diversity ilter). The idea here is to capture multi-FEC scenario based on IP destination pre ixes
that, by de inition of IP routing, represent the more usual practice of TE. It removes up to ≈15%
of LSP in the raw dataset. Note that, even with that ilter, we may underestimate the transit tunnel
diversity.
After those three ilters, our dataset contains a set of MPLS tunnels identi ied by a <Ingress LER,
Egress LER> pair, both LERs being connected through one or several LSPs. In order to limit the
study to relevant cases, we select the ASes (and tunnels belonging to those ASes) having the largest
set of IP addresses lagged as MPLS (in the traceroute output). We limit those ASes to the Top 15,
representing almost 75% of the LSPs in the cleaned dataset. Table 2.11 presents various statistics
related to this Top15ASes after the irst three ilters. It shows, for eachAS, the number IP addresses

7It is worth to notice that, in case a given PlanetLab monitor is down for a cycle, a new PlanetLab monitor is selected
to replace it.
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Algorithm 4 LPR algorithm
/* Data cleaning and formatting */
for l in allLSP () do

cLSP ← Apply intra-AS ilter
cLSP ← Apply target-AS ilter

for c in coupleIE (cLSP ) do
ccoupleIE ← Apply AS-diversity ilter

top20AS ← AS_top20 (ccoupleIE)
for as in top20AS do

for cc in as_ccoupleIE do
for l in as_ccoupleIE_LSP do

ctop20AS ← Apply persitent ilter
/* Main Classi ication Step */
for as in ctop20AS do

for cc in as_ccoupleIE do
if #Diff_LSP(cc) = 1 then /*→mono LSP: mono FEC, no LB (class 1)*/
⇒move cc in pattern class 1 for as and continue

else /*→multi LSP */
m,n, k, p← 0
Lip← Common_IP_set(cc) // no class 4 if extended
for ip in Lip do

p← p+ #Diff_Labels(ip)
if #Diff_Labels(ip) > 1 then

n← n+ #Diff_Labels(ip)
if #Diff_Labels(ip) > #Diff_Labels(∀pred(ip)) then

k ← 1
else if #Diff_Labels(ip) = 1 or #Diff_Labels(∀pred(ip)) = 1 then

m← m+ 1

if n > 0 then /*→multi FEC (class 2) */
r = 0
if #Diff_IP_LSP(cc) = 1 then

r ← 1 + n
p

else
r ← n

p

if r = 1 then /*→multi IP LSP, no LB */
⇒move cc in pattern class 2 for as

else if r = 2 then /*→mono IP LSP, no LB */
⇒move cc in pattern class 2.1 for as

else if r < 1 & k = 0 then /*→multi IP LSP and LB */
⇒move cc in pattern class 2.2 for as

else if r < 1 & k = 1 then /*→ inconsistent multi IP LSP */
⇒move cc in pattern class 2.3 for as

else /*→ inconsistent mono IP LSP */
⇒move cc in pattern class 2.4 for as

else if m = |Lip| then /*→mono FEC and LB (class 3) */
if #Diff_Label_LSP(cc) > 1 then /*→ LB multi-routers */
⇒move cc in pattern class 3 for as

else /*→ LB multi-links */
⇒move cc in pattern class 3.1 for as

else /*→ not enough info to conclude... (class 4) */
⇒move cc in pattern class 4 for as
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Ingress LSR Egress LSR
... ...

(a) Class Mono-LSP

Ingress LSR
Egress LSR...

L2

(b) Unclassi ied

Ingress LSR Egress LSR
... ...

(c) Multi-FEC

Ingress LSR Egress LSR
... ...

(d) ECMP Mono-FEC, Router Disjoint

Ingress LSR Egress LSR
... ...

(e) ECMP Mono-FEC, Parallel Links

Figure 2.56: Typical MPLS Label Based Patterns

tagged as MPLS (“#MPLS IPs”), the number of IP addresses collected (“#IPs”), as well as the ratio
between both. It also provides the number of<Ingress LER, Egress LER> pairs and LSPs. Note that
our top 15 ranking has been computed on several snapshots while Table 2 reports values extracted
from a single snapshot.
Finally, we verify the persistence in time of the LSPs to remove noise due to routing changes. We
keep LSPs encountered in measurement cycle X only if they are also seen in measurement cycle
X+1 orX+2. Otherwise, they are removed from our set (Persistence ilter). This ilter removes
about 20% of LSPs in the raw dataset. Note that we keep track of dynamics as it can represent in
itself a TE usage rather than routing changes. In practice, if 100% of LSP disappear for a given AS,
we reinject the whole set of its LSP to perform a static classi ication on them. Moreover, since this
ilter may bias our analysis, we perform it with and without this ilter to understand its implication
on the classi ication.
The resulting set ofMPLS tunnels can then be statically classi ied. Those subsets of LSPs are robust,
i.e., they are persistent in time, possibly diverse in targets, and focus on transit traf ic within a sin-
gle ISP. At this stage, the dataset is now structured, i.e., we can sort each remaining LSP within its
<Ingress LER, Egress LER> pair and its AS. In the following, for each LSP fallingwithin the same AS
and the same couple of border edge routers<Ingress LER, Egress LER>, we compare their content
both in terms of IP addresses and labels.

2.10.1.2.3 Classi ication The irst class, not illustrated in Fig. 2.56, is calledMono-LSP. That is,
for a given <Ingress LER, Egress LER> pair, there exists only a single LSP (same IP addresses and
same labels) for different destination ASes (thanks to the iltering process, we know that remaining
pairs concern at least two ASes). This means we do not observe transit tunnel diversity, the same
LSP being always used whatever the destination. As a consequence, for this subset of LSPs, there
is neither ECMP load balancing (by de inition of the class) nor several FECs used to reach different
ASes with different constraints.
The second class, illustrated in Fig. 2.56(c), is called Multi-FEC. That is, for a given <Ingress LER,
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Egress LER>pair, there exists at least one IP convergence point, i.e., a common routerwhere at least
two LSPs converge, where we observe multiple LSPs using different labels. Indeed, on Fig. 2.56(c),
the irst LSP (in red) considers labels (L3, L1), while the second (in blue) considers labels (L4, L2).
LabelsL1 andL2 being used on the same IP address, thus on the same router, this case suggests the
use of multiple FEC for that edge routers pair. On the contrary to the use of standard LDP where,
by default, labels have a router scope (that is, a given router proposes the same label for a given
destination to all its upstream routers – destinations being here loopback of BGP edges routers for
scalability) and so do not distinguish FEC for a given edge router. Here each LSP corresponds to a
distinct FEC since the labels are distinct. As there are multiple LSPs (that differ in term of label or
IP) between the Ingress LER and the Egress LER, this use of multi FEC suggests TE practice.
The last interesting class, shown in Fig. 2.56(d) and Fig. 2.56(e), depicts several distinct LSPs that
differ on at least one IP address for a given<Ingress LER, Egress LER> pair. More speci ically, this
class implies that for all LSPs traversing a common router, labels are identical (on contrary to the
previous class where there exists at least one difference). The subset of LSPs belonging to a given
<Ingress LER, Egress LER> pair may thus only differ in terms of IP addresses on common router
(while being distinct in terms of both IP addresses and labels on non common routers). Therefore,
this class refers to the simple use of a single FEC between the Ingress and the Egress LER. Various
LSPs being present at the IP level, it typically corresponds to the use of ECMP load balancing. This
class thatwe callECMPMono-FEC (orMono-FEC onFig. 2.54 for readability reasons)maybe divided
into two subclasses: if labels are the same along all the LSPs, we can use this information as a simple
alias resolution technique to state that IP addresses sharing those labels belong to the same router.
Then, when it is the case, we conclude that the <Ingress LER, Egress LER> pair only uses parallel
links to perform ECMP load balancing (Fig. 2.56(e)), while we can state that there is at least one
router disjoint LSP otherwise (Fig. 2.56(e)). This distinction is of the highest interest: we do not
require the use of an active resolution probing to show that a large share of ECMP load balanced
paths relies actually only on parallel links.
It is worth to notice that the Egress LER generally does not exhibit labels due to the use of PHP (i.e.,
the label stack is removed by the penultimateMPLS router). In such a case, LSPs of a given<Ingress
LER, EgressLER>pairmaynever intersect eachother ona common IPaddressproviding labels (the
Egress LER is a convergence point by de inition while other intermediate LER are not necessarily
traversed by multiple LSP). If we are unable to classify such a pair of edges routers because there
does not exist common IP in the set of LSPs, we arbitrarily tag it as unclassi ied. To avoid such a
limitation (no more unclassi ied pairs) and also improve our classi ication in general, we can rely
on a simple passive alias resolution mechanism: in a standard situation, on a traceroute path,
all previous IP level interfaces of a given common IP address should belong to the same router.
Indeed, if we assume that a router answers to traceroute probes using the incoming interface of
the probe and there is no layer-two device connected to this interface (as illustrated in Fig. 2.56(b)),
then such IP addresses are aliases of the same router (since to enter a router through the same IP, it
is necessary to use the same link on the same upstream router). In the case ofmono-FEC, we should
thus observe the same label on previous IP addresseswhile we should observe distinct ones in case
of multi-FEC case (as usual). This simplemechanism reenforces the analysis by augmenting the set
of common routers as illustrated in Fig. 2.56 at the price of provoking some false positives (we
evaluate both approaches in the next section).
Eventually, we also divide the multi-FEC class into three subclasses (although this is not shown on
Fig. 2.54 and thatwedonot provide any results due to space limitations): without ECMP,with ECMP,
and inconsistent. The irst two cases refer to thepossibility of havingbothECMPandmulti-FEC (LDP
and RSVP-TE can be both enabled), while the last case reveals cases where the label distribution
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(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3

Figure 2.57: MPLS tunnels classi ication for three measurement snapshots with respect to the top
15 ASes

does not map to a usage we expect (no conservation of labels diversity between subsequent IP
hops). On the contrary to other classes, themulti-FEC onemay track several combinations of MPLS
behaviors because the LPR algorithm is asymmetric, i.e., an<Ingress LER, Egress LER> pair falls in
this class if ∃ one common router with distinct labels while other classes aremore restrictive. They
require a ∀ check on the whole common router set. Algorithm 4 presents a formal version of LPR.

2.10.1.3 Tunnel Diversity and TE Analysis

In this section,weuse theLPRoutput (i.e., the tunnel classi ication) tounderstandhowandwhether
IP network operators perform TEwithMPLS. Fig. 2.57 provides an overview ofmost popular MPLS
usages revealed with the LPR algorithm on three snapshots dated the beginning, the middle, and
the end of our temporal dataset. We represent here only the results for the top 15 ASes (see ilters,
Sec. 2.10.1.2.2).
First, we notice that only three ISPs (ASN 6461, 1273, and 4436, i.e., the ones tagged in red in
the xticks labels of the igure) exhibit an highly dynamic LSP pro ile: all their LSPs change from
one snapshot to the next. Note that we correlate this analysis with speci ic measurements and we
observe that such changes are actually on the order of iveminutes and seem to be associated to the
brand of underlying routers (e.g., with Juniper routing devices). Moreover, apart from this dynamic
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Figure 2.58: Impact of the processing mode and iltering on the classi ication (4 worst cases)

and fast evolution, one may observe that most <Ingress LER, Egress LER> pairs of such ASes fall
into the multi-FEC category. De initively, those three ASes perform some kind of dynamic TE with
RSVP-TE.
Second, except on those four ASes, we do not observe a large use of multi-FEC for most <Ingress
LER, Egress LER> pairs. AS10026 seems to be the only exception in non-highly dynamic ASes. The
deployment and the use ofmulti-FECTE seem limited to speci ic operatorswhilemost of them (ASN
3356, 6453, 286, 6830, 15412, and 8359 in particular) seem to use ECMP load balancing at a large
scale. Only AS2828 exhibits mono-LSP for all<Ingress LER, Egress LER> pairs we collect. We also
observe that this high ECMP deployment actually mainly relies on parallel links (detailed results
are not given here due to space limitations). For most ASes, more than half of load balanced paths
between MPLS edge pairs are actually only made of parallels links (as shown on Fig. 2.56(e)).
Third, we can observe that results are quite similar in time (at least on the three snapshot we se-
lected) meaning that we do not observe signi icant MPLS changes in use cases across our temporal
dataset. The only changes we collect concern too few data to be really conclusive (on AS7473). In
summary, TE usage seems limited to speci ic operators and it does not evolve quickly over time.
To understand the potential bias and so the error margin resulting from our iltering process and
due to the way we compute the common router set, we select the four ASes where classi ication
results differ the most (the remaining eleven ASes are almost completely insensitive to our clas-
si ication calibration). Fig. 2.58 shows the four possible combinations of our two features: with
our without the temporal iltering (“F” and “NF” respectively on Fig. 2.58), and with or without the
common router extension discussed in Sec. 2.56 (“M1” and “M2” respectively on Fig. 2.58). We can
observe that most changes seem to concern the prevalence of the multi-FEC class that is more rep-
resented than before (in Fig. 2.57, we perform the temporal iltering and do not extend the common
router set). This side effect is natural by design since, as stated before, dynamics is correlated to the
multi-FEC usage and extending the common router set increases the quantity of comparable labels
and so cases where multi-FEC can be visible (recall that one proof of existence is suf icient for this
class). Therefore, this igure allows for providing an interval that describe the lower bound and
the upper bound of multi-FEC prevalence. In all situations except for AS7473 (and 7018 in a much
lower extent), such intervals are really reasonablemeaning that our classi ication is fortunately not
too sensitive to its calibration. On AS7473 (the penultimate smallest network and the only one that
evolves in our top 15), one can deduce that the extension of the common router set allows for clas-
sifying all unclassi ied edge pairs into the multi-FEC class and that the temporal iltering should be
carefully used to classify ASes enabling partial dynamic TE.
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2.10.2 Middleboxes Taxonomy

Nowadays, the standard and well-known description of the TCP/IP architecture (i.e., the end-to-
end principle) is not anymore applicable in a wide range of network situations. Indeed, enterprise
networks, WiFi hotspots, and cellular networks usually see the presence ofmiddleboxes being part
of the network architecture in addition to traditional network hardware [91].
Recent papers have shed the light on the deployment of those middleboxes. For instance, Sherry
et al. [91] obtained con igurations from 57 enterprise networks and revealed that they can con-
tain as many middleboxes as routers. Wang et al. [106] surveyed 107 cellular networks and found
that 82 of them used NATs. D’Acunto et al. [23] analyzed P2P applications and found that 88% of
the participants in the studied P2P network where behind NATs. Further, it has been shown that
middleboxes have a negative impact on the TCP protocol (and its extensions) evolution [46,47].
There is a wide range of middleboxes, going from “simple” NAT to complex system that can poten-
tially modify the whole packet header. There is thus a wide variety of middleboxes, as the wildlife
and plant life are diversi ied. However, on the contrary to the biology, there is no rigorous behav-
ioral taxonomy of themiddleboxes, classifying them according to their effects on packets, on traf ic,
or on the network quality experienced by users. Furthermore, as middleboxes increasingly impact
the Internet, protocol designers have to cope with a middlebox-full Internet. Each mechanism has
to be certi ied as middlebox-proof [35,46]. For those researchers, a summary of the potential mid-
dlebox network interferences would be a valuable asset.
This is exactly whatwewant to tackle here. In this section, we propose a path-impairment oriented
middlebox policy taxonomy, that aims at categorizing the initial purpose of a middlebox policy as
well as its potential unexpected complications. We choose to classify middlebox policies (i.e., “Def-
inite methods of action to guide and determine present and future decisions” [5]) rather than mid-
dleboxes themselves because the latter often combine multiple policies. Our taxonomy is based on
threemain policies: Action (i.e., the fate of a packet crossing amiddlebox implementing this policy),
Function (i.e., the policy purpose), and Complication (i.e., the potential path connectivity deteriora-
tion).
Based on a tracebox [24] (a traceroute extension that is able to reveal the presence of middle-
boxes along a path)measurement campaign on IPv4 and IPv6 networks, we confront our taxonomy
to the reality on the ground. We establish a large-scale dual-stack survey of middleboxes that im-
plement rewrite, drop, and proxy policies that may harm the performance of regular traf ic and
affect protocol deployability. Then, we discuss our results in light of our taxonomy.

2.10.2.1 Taxonomy

In this section, we propose a path-impairment oriented middlebox policy taxonomy, that aims at
categorizing the initial purpose of a middlebox policy as well as its potential unexpected compli-
cations. We chose to classify middlebox policies (i.e., “A de inite method of action to guide and de-
termine present and future decisions” [5]) rather than middleboxes themselves because the latter
often combine multiple policies. Our taxonomy focuses on packet mangling middleboxes aspects,
the initial purpose of such an action and the network interferences that may involuntarily result.
We describe each policy implemented in a single (not multi-hop) middlebox in three ways, each
including several taxa (i.e., categories); (i) Action, the fate of a packet crossing a middlebox that
implements this policy; (ii) Function, what the policy is intending to achieve, its purpose; (iii)
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Figure 2.59: A path-impairment oriented middlebox policy taxonomy

Complication, the possible resulting path connectivity deterioration. Fig. 2.59 illustrates our path-
impairment oriented middleboxes policy taxonomy. Each middlebox policy has to fall in at least
one taxon for each of the three angles in order to be consistent with the taxonomy. Furthermore,
each category essentially describes path characteristics, deliberately avoiding a larger focus.
A middlebox policy can be classi ied differently if we consider the policy in itself or the functional
entity it is part of. For instance, the purpose of a tunnel endpoint policy is to provide cross-protocol
interoperability but, if we consider thewhole tunnel, itmay be security (e.g, VPNs), traf ic engineer-
ing (e.g., MPLS), or another. As we aim at characterizing middlebox-related network interferences
rather than establishing an exhaustive middlebox taxonomy [17], we focus on single-hop modi-
ications and ignore composition aspects. Moreover, we intentionally leave aside the middlebox
state-related features (e.g., statefull, stateless), robustness to failure, and its implicit or explicit na-
ture.
While examining the possible complications involved by middlebox policies, we deliberately nar-
row our horizon to performanceworsening and feature’s inability of use, omitting themultiple and
various reported security laws created by middlebox policy implementations [51,82,83].
Fig. 2.59 displays the taxonomy and shows its three facets: Actions, Functions, and Complications.
These families are described in the subsequent sections.

2.10.2.1.1 Actions TheAction category describes the actual action of amiddlebox on amatched
packet, de ined bymiddlebox policies. We consider three basic kinds of middleboxes policy action:
Drop, Rewrite, and Proxy. This aspect is decisive becausemiddlebox policies that applying different
actions will more likely cause different types of network dysfunctions.
Drop policies are common features whose purposes vary from security to performance optimiza-
tion concerns. Depending on how both ends react to this type of failure, the outcome may also
vary from minor traf ic disruptions, such as bandwidth reduction or the inability to use speci ic
TCP options, to the inability to establish a TCP connection. An example of an ordinary middlebox
policy that may apply dropping policies are TCP sequence number sanity checks for dropping out-
of-window packets and invalid ACKs [46,47].
Rewrite policies are also common among middleboxes. Their initial purposes are covering the en-
tire Sec. 2.10.2.1.2. As they break the TCP/IP end-to-end principles [59], they may cause various
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problems to protocol end-to-end functions which assume unmodi ied layers over the third. An ag-
ing but still relevant example is the TCP Initial Sequence Number (ISN) re-randomization policy
which aimed at mitigating ISN prediction attacks [24], but which may fail to ensure consistencies
with TCP absolute sequence related numbers other than the TCP sequence number and the TCP
acknowledgment number (e.g., Selective Acknowledgement) and cause traf ic disruption [46,70].
Proxy policies middleboxes are relay agents between clients and servers of an application. They
vary from the rewritten policies middleboxes by not simply rewriting the forwarded packets but
rather by receiving client data from a connection, then establishing a second connection to send
data to the server and vice versa.

2.10.2.1.2 Functions The Function category describes the purpose of a middlebox policy (e.g.,
what it is intending to achieve). As we already noticed earlier in this section, a policy can be clas-
si ied differently if we consider the policy in itself or the middlebox set it is part of (e.g., a tunnel
endpoint with respect to the whole tunnel). We consider ive kinds of Functions middleboxes: Se-
curity, Performance, Cross-Protocol Interoperability, External, and Packet Marking.
Security-motivated middlebox policies are implemented in Security-oriented middleboxes, dedi-
cated hardware deployed in enterprise, and home network for improving network security. They
may serve purposes like providing an authentication mechanism (e.g., ALGs), defending against at-
tacks such as DDoS, attacks on IP (e.g., IP spoo ing, fragmentation attacks) or attacks on TCP (e.g.,
sequence number related attacks, TCP reset attacks), providing access control, normalizing the TCP
features to prevent the use of features considered unknown and/or unsafe or separating similar
networks into different security zones.
It has been shown that such a type of middleboxes is becoming more and more popular [91]. This
increasing popularity raises concerns regarding overly restrictive middlebox policies which may
either block benign traf ic matched as unsafe, causing blackholes, or apply modi ications to trans-
port and network header ields, precluding the use of protocol features or hampering their proper
functioning, indirectly reducing networks performance and/or functionalities (e.g., forbidding ECN
or MultiPathTCP). Security-oriented middleboxes involves IP and application irewalls, IDS/IPSes,
certain Application-Level Gateways (ALGs) and NATs.
Performance-enhancing middlebox policies middleboxes goal is the improvement of the network
performance regarding a link along the path, a connection between both path’s ends or themiddle-
box itself. It may aim at improving pure effective bandwidth performance through transport layer
engineering as well as solving box-relative performance issues.
This category ofmiddlebox policiesmay apply semantically wrong legacymodi icationswhichmay
cause traf ic disruption and protocol inconsistencies. They might as well introduce TCP errors and
unforeseen changes in TCP adaptive behavior, leading to various network interferences. TCP per-
formance enhancing proxies, caches, and packet schedulers are examples of middleboxes imple-
menting Performance policies.
Cross-protocol interoperability middlebox policies are performing protocol translation. They aim
either at connecting dissimilar networks or at translating protocols over the network layer. The
mainproblemwith this kindof policies is to be consistentwith everyprotocol versions and features.
Indeed, the input protocol languagemay evolve, andmiddleboxesmay then apply outdated transla-
tions to it ormay fail to ensure completeness of itsmodi ications. This can lead either to the inability
to use certain features or to network performance degradation. Example of cross-protocol inter-
operability middleboxes policies are NAT 6to4, NAT-Protocol Translation (NAT-PT [102]), Stateless
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IP/ICMP Translation (SIIT [76]), tunnels endpoints and transcoders.
Packet markingmiddleboxes classify packets according to policies and select or mark them for dif-
ferentiated services (via IP DSCP’s ield). Their action is limited to network layer modi ications.
They are packet classi iers, or ECN-capable routers. Their policies are not likely to degrade net-
work performance.
Externalmiddlebox policies have purposes that are external to the paths to which they belong (e.g.,
IPv4 address exhaustion) or not related to the Internet at all (e.g., economic purposes). External
middlebox policies are heterogeneous and have to be analyzed independently.

2.10.2.1.3 Complications Wedescribehere thepotentialComplications causedbymiddleboxes
policies by examining them under two points of view: (i), their technical causes, which are directly
related to their initial purposes and, (ii), the associated actions (respectively Sec. 2.10.2.1.2 and
Sec. 2.10.2.1.1), and their unfortunate consequences, i.e., causes and consequences.
The Causes of the network interferences created by middleboxes aims at classifying the technical
problems origin. It regroups manufacturers/policy designers fundamental errors or deliberated
choices that, from a path-impairment perspective, lead to network interferences.
Over-normalization refers to amiddleboxpolicy that limits protocol features andoptions, as a black-
list or whitelist ilter, to a restricted subset of the protocol. The problem of this type of middlebox
behavior constraining the design of new extensions have been addressed [47]. Itmay limit protocol
performance as well by preventing the usage of the entire protocols capabilities, or simply by tak-
ing drop decisions. The Cisco ASA irewall family includes a TCP normalizer feature [36] that limits
TCP to a subset of the protocol considered safer either by removing and rewriting bytes related to
unwanted features or by dropping packets containing those features.
Incompletemodi ications refers tomiddleboxpolicies that fail to ensure completeness of theirmodi-
ication(s). This type of network inconveniences is caused bymiddleboxesmodifying a speci ic pro-
tocol ield and not modifying semantically related ields, allowing translated/modi ied data along-
side untranslated/unmodi ied data. They may fail to identify all related ields for legacy reasons
or simply neglecting it for performance concerns (e.g., refusing to parse TCP options). Examples
of such middlebox policies are TCP ISN shuf ling boxes and NATs regarding respectively TCP SACK
and FTP.
A Paradigm shift (2-way to n-way) happens when both ends running a protocol are assuming 2-
way peering relationships. Middleboxes, by applying modi ications in the middle of the path, are
breaking the TCP/IP end-to-end principles, and thus, are causing both ends to undergo a paradigm
shift de facto to n-way peering relationships [59]. As manymechanisms are not designed to handle
this new paradigm, errors may occurs. When both ends are trying to share state related data or
to negotiate capabilities this phenomenon may, in certain scenarios, put both ends in inconsistent
states or, combined with an unfortunate load balancing, distort protocol negotiations [46]. This
paradigm shift also raises security concerns. We know that NATs are limiting the use of IPSEC [4],
but it also invalidate most transport layer security solutions. Moreover, the trust models and key
distribution models have to be de initively rethought as n-way relationships [17].
The Consequences are the network complications inal outcome, what both ends actually experi-
ence. We focus exclusively on path performance related issues, leaving aside security and process-
ing performance considerations.
Traf ic disruption policies produce unwanted consequences such as interferences with control data
rendering it useless, bandwidth reductions or others path performance impairments.
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Middleboxpoliciesmay causeBlocked traf ic either explicitly (sendingTCPRSTpacket) or implicitly
(dropping packets). It may not be the inal outcome of a connection. If a speci ic option/feature is
blocked by amiddlebox, the client could be con igured to retry establishing the connectionwithout
the undesirable options/features, but if it is not, no connection at all is possible.
Middlebox policies may aims at preventing the use of features considered unknown and/or unsafe
by modifying, nopping them or by preventing them from being negotiated. If it is achieve symmet-
rically, the consequences are limited to the inability to use the restricted features; It is a Feature-
disabling policy. If the modi ications are done asymmetrically and the negotiation is not resilient
enough, the policy may fail to disable the feature and lead to inconsistent protocol states [46]. Poli-
cies resulting in the latter consequences are categorized as Negotiation disruption policies.

2.10.2.2 Middleboxes Detec on

Algorithm 5 Proxy detection algorithm
1: function P ( )
2: tcp:
3: probeTCP← de ineProbe(dst=destination, transport=TCP)
4: resultTCP← doTraceroute(probeTCP)
5: lenTCP← number of hops of resultTCP
6: if lenTCP < 1 OR resultTCP is a timeout then
7: return
8: udp:
9: probeUDP← de ineProbe(dst=destination, transport=UDP)

10: resultUDP← doTraceroute(probeUDP)
11: lenUDP← number of hops of resultUDP
12: result:
13: if lenUDP > lenTCP then
14: There is a proxy on the path to destination
15: return

Algorithms 5 and 6 are respectively the proxy detection algorithm and the statefull box detection
algorithm. The proxy detection algorithm performs a irst traceroute round over TCP, a second
over UDP and compares the number of hops. The statefull box detection algorithm is more com-
plex and relies onmultiple TCP traceroute-like probingwith decreasing Initial Sequence Number
values. It assumes that a statefull box will perform in-window sanity tests and expects speci ically
wrong packets to be dropped.

2.10.3 IGP Weight Inference

2.10.3.1 Inference Overview

Routing simulations, as well as theoretical Internet graph understanding [43], need ground truth
data to provide realistic and signi icant results. However, lots of such studies lack of recent and
reliable routing topologies. In worst cases, concerned authors only consider small toy topologies
while, in best ones, they use data sources coming with strong limitations. For instance, for more
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Algorithm 6 Statefull box detection algorithm
1: function S ( )
2: seqNum← random(0, 232 − 1)
3: round1:
4: probe1← de ineProbe(dst=destination, transport=TCP,sequence_num=seqNum)
5: result1← doTraceroute(probe1)
6: server_TTL← number of hops of result1
7: round2:
8: probe2← de ineProbe(dst=destination, transport=TCP,sequence_num=seqNum - 10)
9: result2← doTraceroute(probe2, MAX_TTL=server_TTL - 1)

10: round3:
11: probe3← de ineProbe(dst=destination, transport=TCP,sequence_num=seqNum - 20)
12: result3← doTraceroute(probe3)
13: len3← number of hops of result3
14: if len3 = server_TTL then
15: There are no statefull middlebox between you and the destination.
16: return
17: round4:
18: result4← doTraceroute(probe2)
19: len4← number of hops of result4
20: if len4 ̸= server_TTL then
21: return
22: round5:
23: result5← doTraceroute(probe3)
24: len5← number of hops of result5
25: if len5 ̸= server_TTL then
26: return
27: else
28: There is a statefull middlebox between you and the destination (probably the len3-th hop).
29: return
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Figure 2.60: IGP weight inference whole system

than ten years now, routing authors make use of weighted ISP topologies [65] collected with Rock-
etfuel [94]. Based on traceroute data collected from several vantage points, Mahajan et al. build a
linear constraint-based model to approximate IGP link weights. However, it is known that Rock-
etfuel suffers from several limitations (see, for instance, Teixeira et al. [99] and Coyle et al. [21]).
Since the seminal paper by Mahajan et al., little efforts have been made in improving the quality of
weighted ISP maps. Even the very recent Internet Topology Zoo does not contain any link weight
information [55].
We basically rely on the M platform [67] for collecting topology information of the targeted
AS. M is based on IGMP probing. It basically sends multicast management requests that are
able to retrieve, within a single probe, all multicast interfaces and links of a targeted router. It is
worth tonotice that purely unicast information canalsobe revealed [71]. IGMPprobing cannatively
discover multicast topologies at the router level with a low probing cost, avoiding so the use of any
alias resolution techniques [53].
The M platform is centralized, i.e., each vantage point is commanded by a central server. The
central server is located in the University of Napoli. For this data collection, we use four M
vantage points located in New-Zealand, USA, France, and Italy.
Unfortunately, some routers do not reply to IGMP probes sent byM , leading to an anonymous
behavior that is similar to the one observed with traceroute. This phenomenon is called IGMP il-
tering [68] and is due to routers refusing to respond to IGMP probes (i.e., local iltering) and routers
refusing to forward IGMPmessages (i.e., transit forwarding). As a consequence, topologies collected
with M might be fragmented.
The relevance of this phenomenon depends on the AS under investigation. Although there exist
techniques for glueing together isolated components [68]. If iltering becomes an issue, we replace
M by exploreNET [100], a new active probing tool that aims at revealing subnetworks of tar-
geted ASes.
Once thedatahasbeen collected,we launcha large-scaleParisTraceroute [7] campaign frommPlane
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probes targeting one (or more) destination(s) for each subnet /24 included in each collected AS.
Those destination are selected among the addresses reported by M within largest connected
components.

We use the scamper Paris Traceroute implementation [63]. In addition, we enable the MDA algo-
rithm [8] (this corresponds to the tracelb option in scamper) to trace all per- low load-balanced
paths between each PlanetLab node and destination.

Note that the collected traces are successively manipulated such that the addresses belonging to
the same router of the largest component are substituted with a unique identi ier.

This Paris Traceroute campaign may discover additional links between routers, but also interfaces
belonging to already reported routers and not yet reported ones. This is due to the fact that IGMP
probingmainly focus onmulticast portion of the network. All these newly elicited links and routers
are added to the largest component of the AS of interest. The largest component of each AS and the
set of traceroute traces collected from the Planetlab nodes represent the input for the IGP weights
process.

2.10.3.2 Constrained System

At this point, we have M topologies with injected traf ic. Basically, the classical weight in-
ference method relies on inequality constraints based on sums of IGP weights [65]. This forms a
constrained system that is solvable using Linear Programming and a given objective function (we
decide to minimize the sum of weights in the graph, for example). It is also possible to encode ad-
ditional constraints such as the weight symmetry or the fact that a direct edge between nodes is
always the best.

One of the key point of using the MDA algorithm is that it provides a directed acyclic graph (DAG)
vision of the network instead of the classical tree provided by standard traceroute. With a DAG,
equality weight constraints are easier to retrieve.

2.10.3.3 Simulator

We evaluate our capacity to infer IGP weight through simulations. Fig. 2.60 illustrates our home-
made simulator. The core of the simulator is fakeroute [14], a tool that simulates network topologies
by intercepting traceroute probes towards a set of addresses. One of the interesting aspect of
fakeroute is that topologies are made of text iles describing the successive links, allowing for the
presence of load balancers.

Our simulator works as follows: as input, it takes a static topology (it might be previously collected
M topology, synthetic topology, …) and transforms it into a topology graph that will be used
to feed fakeroute. Fakeroute builds the successive links and closely works with iptables in order
to intercept probes sent and simulate routers replies. A set of vantage points is then selected and
each of them launches Paris Traceroute instances with the MDA algorithm.

Constraints are then built based on the static topology and traces collected by the vantage points
during the simulation. Finally, the constraints are used to feed the solver which, in turns, output
weight for the initial topology.
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2.11 Accurate and Lightweight Anycast Enumera on and Geolo-
ca on

Geolocation of hosts according to their IP addresses is widely performed, both commercially (e.g.,
MaxMind [69]) and for researchpurposes. However there is a class of IP addresses onwhich today’s
geolocation methods fail: anycast addresses. IP-layer anycast [79] allows a group of replicas, or
distributed servers that offer the same service, to share a single unicast IP address. Traf ic directed
to that address gets routed to just one replica, as determined by BGP routing. Geolocation services
incorrectly assume that each unicast IP address corresponds to a host or set of hosts at a single
location, and are unable to lag instances where this is not the case, not to mention being able to
respond to a geolocation query with a set of hosts and locations.
One explanation for this de icit in anycast IP geolocation is that current services are oriented to-
wards geolocation of client machines, not servers. Content distributors might geolocate clients in
order to respect contractual constraints that limit them to sending certain content to certain coun-
tries; banksmight geolocate clients for security purposes and as part of their due diligence concern-
ing knowledge of their customers; advertisers might geolocate clients in order to pro ile popula-
tions and deliver targetedmessages. However, more andmore services are being delivered through
anycast. DNS root and .ORG top level domain services [2, 44] have been anycast pioneers, using
the technique to optimize availability and response time. The AS112 project [1], which reduces
the load on DNS root servers caused by reverse DNS lookups for private network and link-local
addresses, uses anycast. Multicast groups implement anycast mechanisms for rendez-vous point
discovery [54]. To connect IPv6 networks across an IPv4 infrastructure, 6-to-4 relay routers [48]
advertise an anycast IP pre ix. Sinkholes [39] use anycast to detect, contain, and analyze worm
activity. And now we are seeing commercial services such as content delivery networks (CDNs)
increasingly being offered through anycast. For example, the EdgeCast CDN [30], which supports
such major services as Pinterest and Twitter, is entirely anycast. With this rise of anycast, there is
a concomitant need to understand anycast services. Internet service providers have a large com-
mercial stake in managing over-the-top content lows, for example, and want to knowwhere these
lows are coming from and why. Businesses that rely upon services that are delivered via anycast
need adequate troubleshooting tools. The locations from which services are provided are of inter-
est to scientists ranging from security researchers to economists and social scientists, and of course
network researchers.
Prior work on identifying, enumerating, and geolocating anycast services [33, 64] has focused en-
tirely uponDNS. The techniques used are speci ic toDNSand arenot generalizable to other services,
as they rely upon DNS CHAOS [33] or EDNS [15]. The contribution of this work is that it provides
a general technique for determining whether services are being offered via anycast on any unicast
address. Further, it shows how to enumerate the replicas that are behind an anycast address and
how to geolocate those replicas.
The geolocation methodology described in this section also differs signi icantly from prior IP ad-
dress geolocationwork [31,32,40,81,90]. Like [40], it is based upon speed-of-light constraints. But
the technique that consists in using multilateration to infer the location of a single host is designed
for single-host unicast and fails with anycast. We put an original twist on the technique, to adapt it
to the situation where there may be multiple hosts. A simple image conveys the difference of our
approach: that of discs that cover areas on amap. Single-host unicastmultilateration employs discs
centered aroundmultiple vantage points, and locates the target host somewhere in the area formed
by the intersection of the discs. In our technique, we recognize anycast in caseswhere such discs do
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not overlap, and we position each host at a large population center within a disc. Our methodology
consists in (i) framing the enumeration task as amaximum independent set optimization problem,
that we optimally solve, (ii) framing the geolocation task as a classi ication problem, where we ex-
ploit side information such as population density, and (iii) solving both problems iteratively, with
output of the geolocation task fed back to the enumeration task, which provides sizeable bene its.
The remainder of this section is organized as follows. We irst state our objectives in Sec. 2.11.1,
and then explain both our overall work low as well as the enumeration and geolocation techniques
in Sec. 2.11.2. Validation and calibration of these techniques over a dataset gathered in PlanetLab
is the object of Sec. 2.11.3. We then run our algorithm on a fully ledged measurement campaign
frommultiple measurement infrastructures in Sec. 2.11.4, comparing our results to state of the art
techniques.

2.11.1 Problem Statement

The problem that we are trying to solve is: given a target unicast IP address, t, determine if there
is an anycast service being offered via this address, enumerate the replicas that are offering this
service, and geolocate those replicas. Themeans at our disposal are a relatively low number (in the
hundreds) of measurement agents situated atm different locations around the world.
We assume that we can launch latency measurements from the vantage points and that we have
accurate knowledge of their positions, expressed as latitude and longitude (lat, lon). Such infras-
tructures are realistic to obtain, as evidenced by PlanetLab and RIPE Atlas, among others. The
geolocation of each vantage point in such services is typically reported by the personwho hosts the
measurement agent, and these reports can be veri ied through unicast geolocation services [31,
32, 40, 81, 90], to check for initial accuracy and to catch cases when an agent is moved to another
location.
We use latency measurements to identify discs (circles centered around the vantage points) where
anycast replicas lay. While constraint-based geolocation is not a new technique as far as single-
host unicast geolocation is concerned, we face a very different problem, as we need to identify and
geolocate an unknown number of replicas as opposed to locating a single host. The identi ication
problem is an optimization problem, in which an optimal solution consists in identifying all of the
replicas. The geolocation problem is a classi ication problem, in which we try to select, from a set
of discrete locations within each disc, the most likely position of the anycast replica in that disc.
Our design goals are:

• completeness: to fully enumerate anycast replicas

• accuracy: to geolocate replicas with city-level precision

• reliability: to avoid false positive by design

• lexibility: to avoid relying upon or exploiting service- or protocol-speci ic information

• low overhead: to use the smallest possible number of vantage points

Completeness and accuracy are obvious goals, necessary to achieve sound results. Sec. 2.11.4 com-
pares the results of our technique to the most recent state of the art [15,33].
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Reliability bydesign (i.e., absence of false positive detection) is a desirable property that contributes
to lexibility of use. For instance, an accurate and lightweight anycast identi ication technique could
be applied to the detection of IP pre ix hijacking: it could monitor IP addresses within an address
pre ix that are expected to be single-host unicast addresses, raising an alarm if anycast behavior is
detected. Avoiding false alarms by design would be a necessary condition for such a service.
Flexibility allows the technique to adjust to recent trends in anycast deployment, such as its in-
creasing use for CDNs, and to continue working in the face of new and unprecedented trends. As
anycast deployment has until very recently been limited to DNS, it is understandable that that most
available techniques are bound to this speci ic protocol [10,33,88] or exploit new developments in
DNS [15]. This is in contrast to our protocol- and service- agnostic technique.
Low overhead makes it easier to design and operate continuously running services. Most of the
initial studies on DNS anycast characterization [10, 88] relied on a comparable number of vantage
points to ours (e.g., about 200 PlanetLab nodes), howevermore recent studies have employed from
20k vantage points [11] up to 200k recursive DNS resolvers [15] plus 60k Netalyzr datapoints [33].
Our results show this increased overhead to be unjusti ied, as we achieve similar completeness and
accuracy to the most recent state of the art [15,33] with less than 1/1000th of the vantage points.

2.11.2 Methodology

We illustrate our work low with the help of Fig. 2.61. From a high level viewpoint, starting from a
dataset of latency measurements D, that we gather from controlled vantage points (Sec. 2.11.2.1),
we illustrate the anycast detection condition (Sec. 2.11.2.2). Our enumeration approach consists in
identifying areason theglobe (the setE) forwhichweare con ident they contain at least oneanycast
instance (Sec. 2.11.2.3). For each such area, we then perform a geolocation step by identifying the
most probable city hosting the instance in a setG (Sec. 2.11.2.4). To enhance our coverage, we adopt
an iterative approach, by feeding the solution to the geolocalization G(k) at step k back to modify
the selection of vantage points in the input dataset D(k + 1) at step k + 1 (Sec. 2.11.2.5). We now
describe each step in more details.

2.11.2.1 Latency measurement

For any given target t, we conduct latency measurements from PlanetLab [80] and from the RIPE
infrastructure [84]. For each vantage point p, the measurement infrastructure yields a delay mea-
surement δ(p, t) representing the round trip propagation delay required for a packet to travel from
p to the closest instance of t and back to p.
As an individual latencymeasurement δi(p, t) canbeaffectedbyqueuingdelay,weestimate δ(p, t) =
miniδi(p, t)/2byhalving theminimumvalue of successive round trip time (RTT)measurements (10
in this work). Since network operators generally keep their links to a low load, it is highly probable
that at least one of those probes traverses the network without facing congestion in router queues.
Although forward and backward paths are not necessarily symmetric, by halving the RTT wemake
the worst case assumption of maximal distance from the vantage point.
Despite ourmeasurement campaign (Sec. 2.11.4) includesmultiple kind of RTTsmeasurement (e.g.,
ICMP, DNS), without loss of generality we focus our attention on ICMPmeasurements (i.e., themost
general) for the remainder of this section.
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Figure 2.61: Methodology work low

2.11.2.2 Anycast Detec on

Prior to enumerating anycast instances, we must detect whether there are indeed anycast replicas
behind a given unicast IP address. We do so by detecting speed-of-light violations in our dataset by
comparing latencymeasurements δ to the expected propagation time due to speed-of-light consid-
erations.
First, we map individual latency measurements δ(p, t) to geographic areas. Let cf = c0/rf be the
speed of light in an optical iber, with c0 ≈ 3 · 106m/s the speed of light in a vacuum, and rf ≈
1.52 the optical iber index of refraction. A speed cf is clearly optimistic, as it ignores time spent
by equipment to process and forward packets. Given latency measurement δ(p, t), it follows that
d+(p, t) = cfδ(p, t) is an upper bound on the actual distance d(p, t) that the packet has possibly
traveled. As we know the vantage point’s latitude and longitude (latp, lonp), we identify the area
in which we are con ident the target t seen by p is located: as shown in Fig. 2.62, this is a a disc of
radius d+(p, t) centered at p, thatwe denoteDp. We further denote the set of all discs for all vantage
points in our dataset asD (we drop the step k notation unless strictly necessary).
Next, we consider pairs of latencymeasurements δ(p, t) and δ(q, t) for the same target. Speci ically,
given two vantage points p, q we compute their geodesic distance dg(p, q) according to Vincenty’s
formulæ. Since packets cannot travel faster than light, if

dg(p, q) > d+(p, t) + d+(q, t) ≥ d(p, t) + d(q, t) (2.10)

then our measurements indicate that p and q are in contact with two separate anycast replicas.
Some remarks are in order. First, (2.10) compares distances with homogeneous dimensions, that
arehowever gatheredwithdifferent techniques. Note that considering the geodesic distancedg(p, q)
between vantage points yields a conservative lower bound to the expected propagation time be-
tween p and q, as a packet will not travel along a geodesic path but will follow a path shaped by
physical and economic constraints (i.e., the geography of iber deployment, optoelectronic conver-
sion, BGP routing, etc.). Conversely, d+(p, t) = cfδ(p, t) optimistically upper bounds the distance
that a packet may have traveled during δ(p, t).
As the the inequality is violated onlywhen the conservative lower bound exceeds the optimistic up-
per bound, it follows (2.10) is conservative in detecting anycast instances, and by de inition avoids
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Figure 2.62: Synoptic of anycast instance detection via latency measurements

raising false positive anycast instances (i.e., lagging as anycast a single-host unicast target).

2.11.2.3 Anycast Enumera on

From a geometric viewpoint, a suf icient condition for (2.10) to be violated is that the two discs
Dp and Dq do not overlap. Any time this condition is encountered, we can be certain that there
are anycast replicas corresponding to the target unicast IP address t. While this observation is not
per se particularly novel [64], we are the irst to leverage a full set of distributed measurements
in the study of anycast deployment and its geographical properties. Notice that this is extremely
important since, while false negatives are possible on a single inequality (i.e., lagging as single-
host unicast an anycast target), the chances of a false negative drop with the use of multiple pairs
of vantage points.
It is possible thatmultiple anycast instancesmay be locatedwithin a given disc. Although the aim of
anycast is to offer services from distinct locations, the locations may be distinct from an IP routing
point of view but not distant geographically from each other. Therefore, our technique can only
provide a lower bound of the number of anycast instances that correspond to our observations.
To achieve our joint goals of enumeration and geolocation, we model the problem as a Maximum
Independent Set (MIS) problem. Our aim is to ind a maximum number of vantage points (and cor-
responding discs) for which we are con ident they contact distinct anycast instances (an instance
being included in the disc). To do so, we select a maximum subset of discs E ⊂ D such that:

∀Dp,Dq ∈ E , Dp ∩ Dq = ∅ (2.11)

The enumeration problem is thus solved by the subset E , whose cardinality |E| corresponds to the
minimum number of instances that avoid latency violations, and which represents thus a plausi-
ble explanation to our observations. Notice that |E| is a lower bound on the number of anycast
instances, since due to the conservative de inition of (2.10)wemight have removed discs that over-
lap due to noisymeasurements. Additionally, a coarse location of anycast replicas is represented by
each disc of E , that constitutes the starting point for the iner grained geolocation of Sec. 2.11.2.4.
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Although the MIS problem is NP-hard, it can be solved in inite time for small number of van-
tage points with a brute force approach. This allows us to compare the solution of known greedy
approximate solutions: while a simple greedy strategy has poor performance in general ((n −
1)−approximation) the situation improves by simply sorting discs in increasing radius size (5-
approximation) as shown in Algorithm 1. We point out that, even thoughmore re ined solutions do
exist [50] that achieve (1− 2

k )−OPT performance, they are however computationally very costly
nO(k4) – and aswewill show later in Sec. 2.11.3, the greedy solution often performswell in practice.

2.11.2.4 Anycast Geoloca on

Our aim being to provide geographic locations at city granularity, we need to re ine the preliminary
location that is output by the enumeration algorithm. We opt for city granularity for two reasons.
First, note that a 1ms difference in latency measurement corresponds to a 100 km disc in geodesic
distance terms. It follows that great trust should be put in latency measurements to achieve iner-
grained geolocation. Second, notice that ISPs and system administrators often use machine names
that map to the city they are serving, which allows us to assess the correctness of our geolocation
technique.
As opposed to classical approaches that operate in the geodesic (or Euclidean) space by construct-
ing density maps of likely positions (see references in [32]), or assessing target location to be the
center of mass of multiple vantage points [15], we transform the geolocation task into a classi ica-
tion problem as in [31]. Speci ically, since our output is a geolocation at city level granularity, we
shift the focus from identifying a geographical locus (lat, lon) ∈ Dp ⊂ R2 to identifying which city
C ∈ N contained in the disk (latC , lonC) ∈ Dp is most likely hosting the anycast instance.
This focus shift greatly simpli ies the problem in two ways: irst, it signi icantly reduces the space
cardinality, and, second, it allows us to further leverage additional informationwith respect to delay
or distance measurements, namely the city population. Our reasoning extends previous work [31],
which argues that IPs are likely to be located where humans are located: in other words, due to
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the distribution of population density, large cities represent the likely geolocation of single-host
unicast IP addresses. We further argue that, since anycast replicas are speci ically engineered to
reduce service latency, they ultimately have to be located close to where users live: hence the bias
toward large cities is again likely to hold for server side anycast IPs as well.
Our geolocation step outputs IATA airport codes as shorthand for cities. For each of the discs that
is output by the enumeration phase, some of the over 7,000 airport codes available worldwidemay
be contained in the disc. Aside from the trivial case where a single airport is contained in the disc,
in the general case multiple airports {Ai} ∈ Dp are contained in any given disc (represented as
a cross in Fig. 2.62). The output of the geolocation phase can thus be expressed with disc-airport
pairs G = {(Di, Ai)} according to the notation of Fig. 2.61.
To guide our selection of the most likely location of a site, we employ two metrics, namely: (i) the
population of the main city ci that the airport Ai serves, for the reasons described above, and (ii)
the distance between the airport and the disc border d(p, t)− d(p,Ai), using geographic proximity
as a proxy for topological proximity in the routing space.
For a given discDp we compute the likelihood of each airport {Ai} ∈ Dp for all airports in the disc,
as:

pi = α
ci∑
j cj

+ (1− α)
d(p, t)− d(p,Ai)∑
j d(p, t)− d(p,Aj)

(2.12)

where pi ∈ [0, 1] follows from the normalization over all airports {Ai} ∈ Dp of the ci (population
of themain city served by airportAi) and of the d(p, t)−d(p,Ai) (the distance of the airport i from
the disc border) contributions. A parameter α ∈ [0, 1] tunes the relative importance of population
vs. distance in the decision, in between the distance only (α = 0) vs. city only (α = 1) extremes.
Based on the pi values, we devise two maximum likelihood policies that return either (i) a single
Ai = argmaxipi or (ii) all locations (Ai, pi) annotated with their respective likelihoods. These
policies involve a trade off, as returning all locations increases the average error (since in case
argmaxipi is correct, it pays the price of incorrect answers for 1 − pi), whereas returning a single
location possibly involves a bigger risk.

2.11.2.5 Itera on

Recall that the enumeration step lower bounds the number of instances, due to the possibility of
overlapping discs. Now, consider that the geolocation decision in effect transforms a discDp, irre-
spective of its original radius, into a disc D′

p centered around the selected airport with arbitrarily
small radius.
Hence,weargue that, provided the geolocation technique is accurate, itwouldbebene icial to trans-
form the original set of discsD by (i) remappingDp toD′

p and (ii) excluding fromD those discs that
contain any of the geolocated citiesD′

p.
Consider for the sake of the example the situation depicted in Fig. 2.63, where three discs centered
around vantage points a, b and c overlap. Let the solution to the enumeration problem at step k
select vantage point b (hence the smallest discDb), and let furthermore the solution to the geoloca-
tion problem select city c1. By coalescingDb around c1 (with arbitrarily small radius), it follows that
at step k + 1 disk Da no longer overlaps with any other disc, meaning that it would be possible to
discover another anycast instance (i.e., c3 in the example) that was previously precluded (whereas
diskDc still overlap and discovery of c0 is still precluded).
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Figure 2.63: Synoptic of iterative work low

Denoting withA(k) the subset of airports geolocated up to step k, and with G(k) the geolocation at
step k (considering a single airport selected per disk for the sake of simplicity):

G(k) = {(Di, Ai) ∈ E(k)×A(k))} (2.13)

we have that the datasetD(k + 1) as input to the numeration problem at step k + 1would be:

D(k + 1) = D(k)\{Di : ∃(Di, Ai) ∈ ∪ki=1G(i)} (2.14)

This work low can be iterated until no further disc can be added that does not overlap. At each iter-
ation, the set of geolocalized cities grows, so that the set of discs that no longer overlap diminishes,
which keep the running time reasonably bounded. Note that iterative operations can be employed
irrespectively of the underlying solver (i.e., brute force, greedy, etc.).

2.11.3 Valida on

We validate our methodology against publicly available ground truth. For the sake of simplicity,
this subsection considers just 200 PlanetLab vantage points, and defers to Sec. 2.11.4 a more com-
prehensive study with multiple measurement infrastructures. We irst explain our ground truth
dataset (Sec. 2.11.3.1), then perform a calibration of the enumeration (Sec. 2.11.3.2), and the ge-
olocation (Sec. 2.11.3.3) tasks.

2.11.3.1 Ground truth

Our technique is not bound to a particular service. However, we are limited in our validation to
the availability of reliable ground truth: we thus focus on DNS root servers, 12 of 13 of which use
anycast. Indeed, while in general it is challenging to enumerate the sites of an anycast group and
associate each site with its geographic location, we are able to build a reliable ground truth for
enumeration and geolocation of root servers F, I, K, and L that are operated by ISC, Netnod, RIPE
NCC, and ICANN respectively.
Operators of the root servers maintain an of icial website [2] with maps annotated with the num-
ber and geographic distribution of deployed sites around the world. Additionally we use existing
techniques to reliably disambiguate between different instances of the same DNS root server, that
exploit queries of the DNS CHAOS class. We stress that CHAOS measurements are only required
to assess the enumeration recall and the geolocation accuracy of our proposed methodology (that
only relies on distributed delay measurements and is thus not bound to the speci ic DNS use-case),
but are otherwise not used for enumeration and geolocation.
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Table 2.12: Recall of anycast enumeration algorithms with 200 PlanetLab nodes. Gain [%] with
respect to the greedy baseline is reported.

Root server
Algorithm F I K L
Greedy 17 13 9 20
BruteForce 18 +6% 13 - 9 - 20 -
iGreedy 18 +6% 15 +15% 10 +11% 22 +10%
iBruteForce 21 +23% 15 +15% 10 +11% 22 +10%
Dataset CHAOS
UB

22 23 11 33

Published GT 55 46 17 128

To build a reliable ground truth, we issue distributed IPv4 DNS queries of class CHAOS, type TXT,
and name hostname.bind to DNS root servers. Despite the fact that CHAOS replies do not follow
a standard format, some operators use IATA airport codes (e.g., AMS, PRG in root severs F and L
respectively) and IXPs short names (e.g., AMS-IX, BIX, MIX in root server K) to name their infras-
tructure servers. In other few cases (e.g., root server I), operators use arbitrary codes, but make
publicly available a list that maps site codes to locations. In sporadic cases, multiple CHAOS names
are located in the same city: as we are interested in locating geographically distinct anycast repli-
cas, as opposite to enumerating the number of physical or virtual servers operating on a site, we
coalesce all replicas located in the same site.

2.11.3.2 Anycast Enumera on

We irst benchmark the performance of the anycast enumeration technique. We point out that our
aim in this section is not to show the absolute performance (that will be the object of Sec. 2.11.4),
but rather to relatively compare theperformanceof thedifferent solvers (i.e., greedyvs. brute force),
and to additionally gauge the impact of the iterative work low.8

Under this perspective, Table 2.12 reports the number of anycast replicas found by solving themax-
imum independent set problem |E| for different solvers. Solvers are sorted top to bottom in increas-
ing performance, and the percentage gain with respect to the greedy baseline is also tabulated. For
completeness, the table reports the dataset upper bound (UB) and the published ground truth (GT),
which represent the number of distinct CHAOS names we were able to observe in our dataset, and
the number of distinct servers that are publicly reported on the web sites of root servers, respec-
tively. From the table, we gather that the greedy solver achieves in practice performance that is,
in most of the cases, as good as that of the brute force solution (I, K, L) or anyway comparable (F).
More interestingly, the iterativework low produces bene its that are sizeable and consistent across
datasets and solvers.
Given the strikingly similar recall performance, and considering that the running time of iGreedy
(hundreds of milliseconds) is orders of magnitude smaller with respect to that of the brute force
approach (hundreds to thousands of seconds), it seems reasonable to limitedly consider the itera-
tive greedy (iGreedy) solution in what follows. Notice indeed that while we were able to run the
brute force solution on the PlanetLab dataset, its cost is prohibitive for larger datasets considered
in Sec. 2.11.4. It also follows that, while re ined solutions do exist [50], they are not appealing due

8The performance of the iterative work low also depends on the geolocation policy: we ix for the time being the
argmax policy with α = 0.5 and justify this choice in Sec. 2.11.3.3.
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to the good recall and short running time of the greedy solver.
Before evaluating the accuracy of our anycast geolocation technique, we proceed with a careful
manual validation of the iGreedy enumeration of servers around the world against the published
ground truth, and encounter only three spurious cases: one case related to a manifestly wrong
location of a PlanetLab node, as well as two cases where airports are located few kilometers away
fromthediscs border (which, as servers areunlikelyphysically hosted in the airports, is intrinsically
tied to imprecision due to the naming convention).

2.11.3.3 Anycast Geoloca on

We then precisely assess the impact of the geolocation parameters, i.e., the distance vs. population
weighting factor α and the selection policy argmax vs. proportional, by measuring (i) the percent-
age of correct classi ication (i.e., geolocation) and (ii) the mean geolocation error in kilometers.
For any given disk Dp, let us denote with A⋆ the airport code given by the ground truth, and fur-
ther denote with Ai the different airports that are located in Dp. In case no airport falls in Dp,
then we remove the disk, which allows to include further disks at the next iteration. Considering
the argmax policy, in case A⋆ = Ai (with i such that argmaxi pi), the classi ication is accounted
as correct and the error for this instance is Errp = 0Km. In case A⋆ ̸= Ai, then the classi i-
cation is erroneous, and off by a distance Errp = d(Ai, A

⋆). In the proportional policy instead,
the classi ication is accounted as correct only for pi (i.e., proportionally to the percentage of time
the correct instance would be selected). The geolocation error for this instance is then computed
over all airports inside the disc, and weighted according to the respective likelihood of each airport
Errp =

∑
j d(Aj , A

⋆)pj .
Fig. 2.64 shows the percentage of correct geolocation (left y-axis) and the mean geolocation error
(right y-axis) in kilometers for the different policies (argmax vs. proportional) andweighting factor
(α) under study. Again, in this subsection we are more interested in the relative comparison and
the calibration of the technique, rather than absolute performance: under this light, it appears that
argmax is preferable to proportional policy. While this does not hold in general, in the iGreedy solu-
tion disks having small size aremore represented: it follows that distance-based criterion is already
fairly accurate, and can be additionally improved by properly taking into account knowledge about
city population. Hence, in the remainder of this work we consider an argmax policy that equally
weighs distance and population (α = 0.5), which leads to jointly high geolocation correctness and
low error.

2.11.4 Measurement campaign

We now report results of our measurement campaign, that include multiple datasets gathered at
different times, and using different measurement infrastructure (Sec. 2.11.4.1). Speci ically, our
main aim is to critically compare our results to the state of the art (Sec. 2.11.4.2) and to further
assess the robustness of our methodology to vantage point location (Sec. 2.11.4.3).

2.11.4.1 Datasets

We collect datasets from multiple measurement infrastructures (PlanetLab, RIPE) and protocols
(ICMP ping, DNS CHAOS application layer measurements). In this section, we consider ICMPmea-
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Figure2.64: Geolocationperformancewith200PlanetLabnodes: Percentageof correct geolocation
and mean geolocation error for different policies (argmax vs. proportional) and weighting factor
(α).

surements overbothPlanetLabandRIPE, andbuild our ground truth as early explained in Sec. 2.11.3.1.
In the case of PlanetLab [80], we performmeasurements from about 200 nodes located in 26 coun-
tries. Node geolocation is provided by PlanetLab, and the PlanetLab Europe nodes position is vali-
dated with unicast geolocation techniques.
In the case of RIPE [84], we performmeasurements from over 6000 nodes located in 350 ASes and
122 countries. GeolocationofRIPEnodes is providedby theusers hosting anode. If this information
is missing, RIPE inds the location using MaxMind [69] over the IP address of the node.
Since the full RIPE infrastructure comprises 30 timesmore nodes than PlanetLab, we also consider
a subset having approximately the same size, where we select nodes in a strati ied sampling as a
function of the distance (to ensure geographic vantage points diversity). Unless otherwise stated,
results reported in the following are gathered with this dataset, that we denote RIPE200.

2.11.4.2 Comparison Against State of the Art

Eye candy. For the sake of illustration, Fig. 2.65 reports an example of results for root server L
(iGreedy, argmax, α = 0.5). The map reports vantage points (black dots) and the results of iGreedy
as shaded disks that contain either correct✓ or erroneous× geolocation markers (and in the last
case the location of the ground truth P as well). The map additionally reports instances that are
missedM , either because they are not observed in ourmeasurement, or because they are observed
in disks that overlap (represented as circles with no shading).
Several interesting observations are worth making. First, note that despite the very large discs
around some vantage points, the MIS formulation factors them out so that no false positives are
raised. Second, notice an example of vantage points that our iterative work low allows to include
(i.e., discs of the Bruxelles and Paris vantage points intersect). Third, population bias yields to mis-
classi ication for the point located in Porto, Portugal: this vantage point exhibits a relatively large
latency (6ms) to hit a target also located in Porto, so that the disk is large enough to includeMadrid
(population of 3.3M) which is an order of magnitude more populated than Porto (population of
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Figure 2.65: Enumeration and geolocation of sites for root server L with iGreedy
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Figure 2.66: Performance of iGreedy: Comparison of probing overhead, recall, geolocation accu-
racy, and geolocation error for misclassi ied instances with the state of the art [15,33]

250K). Re inement of the classi ication technique is part of our future work (e.g., using logarithmic
instead of linear weighting of city population, including distance in the AS space [42], etc.).
Comparison at a glance. Fig. 2.66 summarizes the results discussed in this section. As references
for comparison, we take [15, 33]. Notice that the enumeration results of [33] are directly quanti-
tatively comparable, as [33] employs F and other root servers as a case study. Geolocation results
of the Client-Centric Geolocation (CCG) technique recently proposed in [15] are instead only quali-
tatively comparable, as they target the Google infrastructure. Yet, qualitative comparison allows to
gain some interesting methodological insights, that are worth illustrating.
At a glance, Fig. 2.66 shows that iGreedy (a) reduces the measurement overhead by several orders
of magnitude with respect to [15, 33], (b) has comparable yet lower enumeration recall than [33],
(c) is able to correctly guess instance location 3/4 of the time unlike [15,33], (d) has a comparable
geolocation error to [15] for the misclassi ied anycast instances. Not shown in the picture, our
methodology is protocol agnostic, unlike [15,33] that both rely on DNS.
Enumeration. Enumeration results are directly comparable, as [33] employs root servers as a
case study. We therefore dig further the comparison in Fig. 2.67. Interestingly, while [33] achieves
100% recall for root servers F and I and 94% and 73% recall for root servers K and L, it does so
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Figure 2.67: Enumeration of anycast servers: Comparison of recall with iGreedy over 200 RIPE
nodes vs. method in [33] from 62k Netalyzr vantage points.

by issuing DNS CHAOS queries from 62K vantage points (the Netalyzr dataset). In contrast, using
only 200 RIPE nodes and the same type of queries, we achieve close recall values for root servers I,
K and L (93%, 88%, and 63% respectively). Intuitively, anycast detection relies on the availability
of geographically dispersed vantage points. Intrinsically, this means that the datasets used in [33]
are highly redundant. Speci ically, while the Netalyzr [57] dataset contains over 62k data points,
these include possiblemultiple trials from the same users; similarly, if Netalyzr is popular in a given
region, the availability of several points is not useful to increase the overall recall. The same goes
for the 200k recursive DNS resolvers exploited by [15,33] – a clear overkill.
As expected, iGreedy enumerates then only a subset of the CHAOS upper bound (UB) with a recall
that remains above 55% (except for root server L). While these results are already satisfactory as
they are performed from only a handful of vantage points, and additionally allow precise geolo-
cation of the anycast instances, as future work, we aim at increasing iGreedy recall. A promising
direction is to merge multiple iGreedy solutions (which is possible due to the very low running
time of iGreedy), performed over several selections of fewer vantage points from the same dataset
(as chances of overlap reduce, each selection hopefully yields to discovery of some new instances;
and since selections are independent, the expected overall recall would increase as well).
Geolocation. We inally qualitatively compare geolocation accuracy against CCG [15] in Fig. 2.68,
where it is worth stressing once more that [15] focuses on the geolocation of Google front-end
servers, so that the results are not directly comparable in quantitative terms. Yet, as our study is
the irst to propose anycast geolocation, [15] is the closest technique we can compare with.
First, CCG [15] leverages 200k recursive DNS resolvers to issue over 4M special EDNS-client-subnet
queries including IPv4 ranges that would be typical of real Internet clients – hence the Client-
Centric Geolocation (CCG) name. Depending on the IPv4 range, the Google DNS server returns a
speci ic replica to be contacted: CCG geolocates such replica in the center of mass of all client IPs
directed to this replica, where each client IP is geolocated via MaxMind. As it can be seen from
Fig. 2.68, the CCG has a non negligible error that is intrinsically tied to the accuracy of the Max-
Mind database [81]. In contrast, in expressing the geolocation task as a classi ication problem, our
technique yields 0 km error for 78% of the enumerated servers and 271 km median error for the
misclassi ied instances.
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Figure 2.68: Geolocation: Comparison of distance error with iGreedy over 200 RIPE nodes vs.
CCG [15] methodology issuing 4M requests over 200k open recursive DNS resolvers.

Additionally, to get rid of noise, CCG proposes to ilter out from the cluster vantage points having a
distance that exceeds the average by one standard deviation (over each cluster). While this iltering
step improves signi icantly the accuracy of the geolocation, as it can be seen from Fig. 2.68, iGreedy
is still better for the majority of the cases (notice the crossover of the two curves), despite the tail
of the error distribution is higher (that could be upper-boundedwith iltering, say all circles whose
radius exceeds the average by one standard deviation – which we prefer to avoid).

Additionally, CCG iltering also leads to squander of networking and processing resources. In other
words, not only are a huge number of vantage points used (200k, which is 1000x more than in our
approach), but also quite a signi icant number of the results from these points (e.g., about 20%
or 44k in case delays were normally distributed) are discarded a posteriori. In contrast, our ge-
olocation technique starts from a parsimonious number of vantage points. It then selects only a
single reliable vantage point as output of the enumeration phase (i.e., likely among the closest to
the instance), after which it performs an informed decision (biased on the city population and the
distance from the border).

2.11.4.3 Robustness with Respect to Vantage Point Selec on

Finally, we assess the robustness of the methodology to changes in the vantage points selected.
Table 2.13 summarizes the performance of iGreedy across 4 datasets of different cardinality. Inter-
estingly, we observe that the number of vantage points has little effect on the recall. By applying
a naive selection policy on the 6000 RIPE vantage points which consists in selecting 200 vantage
points that are at least 100 kmdistant from each other, we are able to enumerate 127 servers out of
the 149 discovered by the full set of vantage points (with amean geolocation error of 361 km). The
recall declines with the PlanetLab dataset which hints that the 200 vantage points selected there
do no have good geographical coverage. Clearly, since the number of anycast instances does not
exceed 246 for the selected root servers, it is enough to choose hundreds of vantage points that
cover the top ASes and the highly populated areas for the enumeration task. A systematic study of
vantage point selection is on our research agenda.
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Table 2.13: Robustness with respect to vantage point selection

RIPE PlanetLab
Subset full rand strat full
Dataset cardinality 6000 500 200 200
iGreedy / CHAOS UB 76% 52% 73% 73%
iGreedy / GT 61% 28% 53% 26%
CHAOS UB / GT 80% 54% 72% 36%
Geolocated 76% 63% 78% 74%
Mean geolocation error (km) 333 569 361 162
iGreedy 149 68 127 65
Dataset CHAOS UB 196 132 174 89
Published GT [F,I,K,L] 246 246 246 246

2.12 Distributed Monitoring

This section aims at showing the computational limits of ”centralized” computation at the root of
any decision process asmPlane envisions them. For this purpose, we consider the task of joint traf-
ic sampling by means of monitoring agents distributed along traf ic paths; further referred to as
cooperative monitoring problem. This example is nevertheless representative of a larger class of
problems that can be formulated as generalization of the capacitated facility location problem and
that inds broad applicability in the networking space. On the other hand, solving this problem is
already of intrinsic value for mPlane as the dynamic placement and con iguration of passive moni-
toring agents following the spatio-temporal dynamics of traf ic paths remains largely unaddressed
since so far. Consider a network graph as depicted in Fig. 2.69, the problem consists knowing the
traf ic demands to place and con igure passive monitoring points such that exactly k% of the traf-
ic lowing along each path is monitored. This general problem differs from the one consisting in
extracting at least k% of the total amount of traf ic. Indeed, in the present case, each traf ic low
is monitored whereas in the second case the problem is unbalanced (some path can remain un-
monitored k = 0%while for others the entire traf ic they carry can be sampled). This situation is
illustrated in Fig. 2.69. Assume that each traf ic low shall be monitored with k = 80%. Along, the
path from source node s = 1 to destination t = 5, a monitoring point is installed at the head-end
of arc (1,6) sampling 10% of the traf ic, at the head end of arc (6,4) sampling 20% of the traf ic and
at the head end of arc (7,5) sampling 50% of the traf ic, leading to a total of k = 80%. Observe also
from this igure that along arc (4,7) the sampled traf ic remains at 0% implying (if no other low is
monitored along that arc) that no monitor would be installed along that arc.
In turn, this motivates the introduction of collective solving of decision problems formulated as
mixed integer programs. Collective solving implies very often to the master problem (using, e.g.,
Benders decompositionmethod) into subproblem solving per-node/agent in order to it the nodal-
decision process (local traf ic capture/sampling, per-hop routing decision, etc.). When the opti-
mizationproblem involvesnon-linear objective/constraints, its decompositionbecomesevenharder
(e.g., using generalized Benders decomposition method). On the other hand, when the problem in-
volves uncertainty in input data for instance (which is often the case in the networking domain due
to the spatio-temporal variability of traf ic, client demands/requests, etc.), domain-knowledge is
still required to specify uncertainty sets to formulate their robust counterparts. Data-driven statis-
tical learning methods can be customized or extended for this purpose.
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Figure 2.69: Traf ic low monitoring - Example

The cooperative monitoring problem consists, given a network topology represented by the graph
G = (V,A)with vertex set V and arc setA, in determining a set of arcs (i, j) ∈ Awhere to place a
set of monitoring points together with their optimal con iguration in order to cooperatively realize
a joint task of monitoring traf ic lows. Monitoring a total fraction k of the traf ic lowing along a
given path involves the cooperation betweenmonitoring points since the traf ic sampled at a given
monitoring point is not sampled again at another point along the samepath. The corresponding op-
timization problem consists, knowing the traf ic demands, in minimizing the total monitoring cost
such that a given traf ic monitoring task can be jointly realized. The monitoring cost includes the
cost associated to the installation of amonitoring point along arc (i, j) and the cost associated to its
con iguration. The latter translates the capacity required at each monitoring point proportionally
to the fraction of traf ic captured at that point.
As the monitoring cost depends on the spatial distribution and the temporal properties of the traf-
ic lows established across the network, as determined by the routing strategy, the resulting op-
timization problem formulates as a mixed-integer non-linear program (MINLP) where the contin-
uous monitoring fraction variables are multiplied by the continuous low variables. The latter can
be derived by resolving themin-cost low (MCF), themin-costmulticommodity low (MMCF) or the
multicommodity capacitated network design (MCND) problem depending on the routing strategy
adopted. The formulation can also be dualized to determine the monitoring utility gain obtained
when varying the budget constraint imposed on the total monitoring cost. The corresponding op-
timization problem consists in maximizing the monitoring utility given budget constraints on the
monitoring installation and con iguration cost.
The proposed formulation differs from the one developed in [19] translating the task ofmonitoring
imperceptibly a fraction k out of the total amount of traf ic. In the present case, for each low part
of a (preselected) set of demands, a total fraction k of the traf ic is sampled per- low instead of
assuming that some lows can remain unmonitored (k = 0) while for others the entire traf ic can
be sampled (k = 1). Following the formulation documented in [96], the sampling rate for each low
at each monitoring point can only be adjusted independently from the others along the same path.
A global sampling strategy is adopted in [16] where the sampling rate is multiplied by the traf ic
load of each arc instead of individual lows as proposed in this section.
This section is structured as follows. Sec. 2.12.1 details themonitoring costminimization andmon-
itoring utility maximization problems together with their respective formulation. The results of
their execution on representative topologies are reported in Sec. 2.12.2 and comparedwith respect
to the low routing strategy. Finally, Sec. 4 concludes this section and provides for the main direc-
tions in terms of future work.
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2.12.1 Op miza on Models

2.12.1.1 Monitoring Cost Minimiza on

We are given a network topology modeled by a directed graphG = (V,A)where V represents the
inite set of nodes andA the inite set of arcs denoted by (i, j), idenoting the head-end and j the tail-
endof arc (i, j). Each arc (i, j) installed fromnode i to node j provides a nominalmaximumcapacity
κij and an installation cost aij . We also have at our disposal a demand matrix D where D(s, t) is
the total amount of traf ic sent from source node s to destination t, for any pair s, t ∈ V, s ̸= t.
The total fraction of traf ic k to be monitored along each routing path is also provided as input
parameter. When the formulation is capacitive, additional constraining capacities bij are associated
to the monitoring points.
The following variables are de ined. The binary variables vij indicate whether or not arc (i, j) is
installed between head-end i and tail-end node j. The binary variables xij designate if a monitor-
ing point should be installed at the head end along arc (i, j). The continuous variables represent
the fraction of traf ic low ystij sampled on the monitoring point installed along arc (i, j) out of the
amount of traf ic lowing on arc (i, j) from source s to destination t as indicated by the continuous
variable fst

ij .
Themonitoring cost includes the installation cost cij for installing amonitoringpoint along arc (i, j)
and the con iguration cost. The con iguration cost of eachmonitoring point installed along arc (i, j)
is de ined proportionally to its load as ℓij =

∑
s,t∈V fst

ij y
st
ij , i.e., the sum over all source-destination

pairs of the fractions ystij of the traf ic lows f st
ij routed along arc (i, j) that are sampled at that point.

Let mij denote the associated unit cost, the total con iguration cost over all installed monitors is
de ined as∑(i,j)∈Amijℓij . We also de ine the cost functions related to the link capacity installation
when the MCND routing strategy is enforced and the routing cost function when either of the MCF,
MMCF or MCND strategies is considered. The link capacity installation cost aij incurs each time
an arc (i, j) of nominal capacity κij is activated between node i and j. The routing cost ϕ(κij , lij)
depends on how close the load lij =

∑
s,t∈V fst

ij of each arc (i, j) ∈ A is to κij . Any increasing
convex cost functionϕ(κij , lij) can be considered to account for a routing cost per arc that increases
proportionally to its utilization; here, we assume that this function is piecewise linear.
The problem of minimizing the total cost of monitoring traf ic lows routed following a given strat-
egy can be formulated by means of the MINLP described in Fig. 2.70 (and similarly for the MCND
and MCF routing strategies). The irst term of the objective function (2.15) corresponds to the
routing cost and the second to the monitoring cost (i.e., the sum of the monitoring point instal-
lation and con iguration cost). The low conservation and demand satisfaction constraints (2.16)
ensure that the demand low requirements of each node as given by the matrix D(s, t) are met.
Constraints (2.17) impose that lows are sent only if the capacity of the arcs are not exceeded
as min(κij ,

∑
s,t∈V D(s, t)) de ines a tight upper bound on the total load on each arc (i, j). Con-

straints (2.18) ensure that monitoring can be performed along arc (i, j) only when amonitor is be-
ing installed at the head end of that arc. Constraints (2.19) impose that for each monitoring point
installed at the head end of arc (i, j), the fraction of the monitored traf ic on all lows routed along
that arc does not exceed the corresponding monitoring point capacity. Constraints (2.20) guaran-
tee that the sum of the fractions k of the traf ic sampled along each lowmeets the monitoring task
objective. Finally, to prevent dispersion, we impose with the constraints (2.21) that a monitoring
point is installed only if a low is to be monitored at a sampling rate of at least 1%.
For the formulation involving theMCND problem, the objective function includes as part of its term
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min w1

 ∑
(i,j)∈A

ϕ (κij , lij)

+ w2

 ∑
(i,j)∈A

cijxij +mij

∑
s,t∈V

f st
ij y

st
ij

 (2.15)

subject to:
∑

j:(i,j)∈A

f st
ij −

∑
j:(j,i)∈A

f st
ji =


D(s, t) if i = s
−D(s, t) if i = t

0 otherwise
i, s, t ∈ V (2.16)

∑
s,t∈V

fst
ij ≤ min(κij ,

∑
s,t∈V

D(s, t)) (i, j) ∈ A (2.17)

ystij ≤ xij (i, j) ∈ A, s, t ∈ V (2.18)∑
s,t∈V

fst
ij y

st
ij ≤ bijxij (i, j) ∈ A (2.19)

∑
(i,j)∈A

ystij = k s, t ∈ V (2.20)

ystij ≥ 0.01 (i, j) ∈ A, s, t ∈ V (2.21)
xij ∈ {0, 1} (i, j) ∈ A (2.22)
fst
ij ≥ 0 (i, j) ∈ A, s, t ∈ V (2.23)

Figure 2.70: Mixed integer programming formulation (with MMCF)

the link installation cost ∑(i,j)∈A(aijvij) in addition to the routing cost; the second term remains
unchanged compared to (2.15). The RHS of the capacity constraints (2.17) is multiplied by the
binary variable vij such that the installed link capacities are not exceeded by the sum of the lows
routed along arc (i, j). Additional constraints f st

ij ≤ min(κij , D(s, t))vij are imposed to ensure that
the low sent along each arc (i, j) is null when the corresponding link is not installed. The other
constraints are identical.
The complexity of these formulations comes from the multiplication of the continuous low vari-
ables f st

ij with the continuous traf ic monitoring fraction variables ystij . The problem can neverthe-
less be resolved by generating the low variables out of the low routing model and by projecting
them in themonitoring cost minimization problem. Amore elaboratedmethod involves composite
objectives, i.e., by generating a irst model using an unlimited monitoring cost or an approximated
monitoring cost function and resolve the problem under these conditions. For instance, by consid-
ering that the monitoring load would be proportional to the fraction k multiplied by the capacity
of each arc (i, j) or the projected load of each arc (i, j). We can then generate a second model
but now by using the exact monitoring function where traf ic lows are parametrized and solve
the minimum monitoring cost problem given the minimum routing cost obtained from the previ-
ous iteration. On the other hand, we can also generate the model by replacing in the second term
of (2.15) the low variables f st

ij by a binary low variable bstij ∈ {0, 1}multiplied by the actual value
of the traf ic demand provided that network low routing decision is limited to a single next-hop
(no load balancing of traf ic lows). To meet this condition, the formulation of Fig. 2.70 needs to
be extended with additional routing variables rtij ∈ {0, 1} ∀(i, j) ∈ A, t ∈ V verifying the ad-
ditional constraints ∑j:(i,j)∈A rtij = 1 ∀i, t ∈ V, i ̸= t. For the MCND formulation, the capacity
constraints f st

ij ≤ min(κij , D(s, t))vij have also to be adapted by replacing the binary installation
variables vij with the routing variables rtij such that the lows directed to destination t are routed
along arc (i, j) only if this arc is included in node i routing table for that destination. This modi ica-
tion comes together with the addition of the constraints rtij ≤ vij ∀(i, j) ∈ A, t ∈ V . For the MMCF
formulation, an auxiliary binary variable is introduced to perform the equivalent transformation
for the constraints (2.17) as the routing decision binary variables rtij are de ined per destination
t. Following these changes, one can then replace in (2.15) the resulting product bstijystij by a single
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max
∑
s,t∈V

ust(
∑

(i,j)∈A

ystij ) (2.24)

subject to:∑
(i,j)∈A

cijxij ≤M (2.25)

∑
(i,j)∈A

mij

∑
s,t∈V

φst
ijy

st
ij ≤ N (2.26)

ystij ≤ xij (i, j) ∈ A, s, t ∈ V (2.27)∑
s,t∈V

φst
ijy

st
ij ≤ bijxij (i, j) ∈ A (2.28)

∑
(i,j)∈A

ystij = k s, t ∈ V (2.29)

ystij ≥ 0.01 (i, j) ∈ A, s, t ∈ V (2.30)
xij ∈ {0, 1} (i, j) ∈ A (2.31)

Figure 2.71: Mixed integer programming formulation for utility maximization problem

continuous variable γstij ≥ 0 (since the bounds of the continuous monitoring fraction variables are
known: 0 ≤ ystij ≤ k) together with the additional constraints γstij ≤ k bstij , γstij ≥ 0, γstij ≤ ystij , and
γstij ≥ ystij − k (1 − bstij). The same transformation can be applied to the monitoring capacity con-
straints (2.19) when solving the capacitive version of the monitoring placement and con iguration
problem.

2.12.1.2 U lity Maximiza on

The problem consists in placing and con iguring a set of monitoring points such as tomaximize the
utility ofmonitoring traf ic lowswithout violating the budget constraint imposed on the totalmon-
itoring cost. In addition to the input considered for the cost minimization problem documented in
Sec. 2.12.1.1, we assume that a ixed monitoring installation budgetM and a con iguration bud-
get N are known. The modeling of this problem involves the binary variables xij and continuous
variables ystij . The objective is to maximize the sum of the utilities of monitoring individual traf-
ic lows without violating the budget constraints on the installation and con iguration cost. For
this purpose, we assume that the utility function u associated to each low is non-decreasing (in-
creasing the monitoring fraction improves utility) and of the form α− exp(−β∑

(i,j)∈A ystij )where,
α, β ∈ R+

0 . Thus, after reaching a certain threshold, increasing the monitored fraction of traf ic
yields relatively less bene it. For computational purposes, we approximate this concave continuous
function by means of piecewise-linear continuous it (see [37]). Assuming that the low variables
have been obtained by resolving the low routing problem, we can then formulate the utility maxi-
mization problem as described in Fig. 2.71 where the traf ic lows appear as parameters φst

ij in the
constraints.
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2.12.2 Numerical Experiments

2.12.2.1 Implementa on and Problem Instances

The formulations developed in Sections 2.12.1.1 and 2.12.1.2 have been implemented using IBM
ILOG OPL modeling language and solved with CPLEX 12.6. Their execution has been performed
on a computer equipped with 8 Intel Xeon quad-core processors and 512GB of DDR3 RAM. The
evaluation of the formulations has been realized on a set of topologies documented in the SNDlib
library [77] including links capacity, links installation cost and traf ic demands. Table 2.14 sum-
marizes the properties of the topologies considered. We set the derivative of the cost function
ϕ(κij , lij) associated with each arc (i, j) ∈ A such that ϕ(κij , 0) = 0 similarly to [78].

Table 2.14: Network Topologies and Properties
Topology Nodes Links Min, Max, Avg Degree Diameter
france 25 45 2;10;3.60 8
geant 22 36 2;8;3.27 5

germany50 50 88 2;5;3.52 9
india35 35 80 2;9;4.57 7
norway 27 51 2;6;3.78 7

2.12.2.2 Simula on Results and Analysis

Table 2.15 summarizes the results obtained for the monitoring cost minimization problem formu-
lated in Fig. 2.70 applied to the topologies listed in Table 2.14. We set the fraction k from 0,1 to 0,9
with steps of 0,1. For each routing strategy (MCF, MMCF or MCND), the irst column (CI) lists the
monitoring point installation cost, the second (CC) the monitoring point con iguration cost, the
third (CTot) the total monitoring cost, the fourth (Nm) the number of monitoring points and the
ifth column (Lavg) the cumulative monitored fraction of traf ic averaged per monitor. From these
results we can observe that the MCND strategy leads to the fewer number of installed monitoring
points. The gain ranges from a factor 2 for germany50 to 40% for india35 compared to the MCF
strategy. It is also interesting to observe that monitoring traf ic lows individually with the objec-
tive of obtaining a given fraction k leads to higher cost than monitoring the corresponding fraction
of traf ic imperceptibly (out of the total amount of traf ic or load per arc).
Table 2.16 summarizes the results obtained for the monitoring utility maximization problem for-
mulated in Fig. 2.71 applied to the topology listed in Table 2.14. For each execution running up to
3600s, we increase the total monitoring cost and determine the reward obtained while maximiz-
ing the total fraction of monitored traf ic implying an inequality in constraints (2.30) instead of an
equality. For this purpose, we add the following constraints in the formulationM+N ≤ Tcost and
give the total cost as input to the execution. Hence, the fraction k does not apply equally anymore
to each traf ic low; otherwise, the results would be less informative. In the utility function, we set
the parametersα = 1 and β = 6.3. In addition to the installation cost (CI), con iguration cost (CC)
and total cost (CTot) reported in Table 2.16 for each routing strategy, the column k lists the average
monitoring fraction for each traf ic low and the column u the monitoring utility. Following these
results, we can observe that CPLEX ef iciency decreases as the size of the instances increases. For
the smaller instances, i.e., france, geant and norway, CPLEX provides a solution with an optimality
gap of about 15% for the higher values of the total monitoring cost. For the larger instances, i.e.,
germany50, and india35 this gap increases up to reaching the situation where CPLEX does not pro-
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vide any acceptable solution for some of the input cost values (as indicated by the entries marked
with−). Obviously, one could increase the computation time to lower this gap though these results
are indicative of the computational behavior trend. For norway, we observe an interesting phenom-
ena where the con iguration cost may be decreasing as the installation cost increases, providing an
instancewhere installation vs. con iguration cost tradeoff is observable. Froma computational per-
spective, our formulation involves a number of constraints which grows cubically with the number
of network nodes; their resolution reaches the limits of state-of-the-art MIP solvers such as CPLEX.
More ef icient resolutionmethodswould be thus required to copewith the combinatorial explosion
of the monitoring utility maximization problem.

2.12.3 Conclusion

In this section, we propose a irst model the combined (capacitated) monitoring point placement
and con iguration - multicommodity network low optimization problem and present a mixed in-
teger programming formulation. Simulation results obtained by transforming the original nonlin-
ear formulation shows that mixed-integer programming software, such as CPLEX allows to solve
medium-scale instances but as the size of the instances increases, their ef iciency decreases. The
proposed formulation can also be dualized to determine the monitoring utility gain when varying
the total budget constraint on themonitoring cost. As part of our future work in determining limits
of centralized problem solving, we will extend the proposed formulation to multiple time period
problems (instead of a single period), resolve its robust counterpart to account for the uncertainty
in the traf ic demands (whichmay compromise feasibility and optimality of the solution), and spec-
ify uncertainty sets by means of data-driven statistical learning methods.
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Table 2.15: Numerical Results
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Table 2.16: Numerical Results
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Figure 3.1: ThemPlane architecture. The Reasoner coordinates themeasurements and the analysis
performed by probes and repositories, actuating through the Supervisor

3 Use-Case Workflow

In this chapter, we provide a description of the mPlane work low for each use case described in
Chapter 2. In particular, we describe how each mPlane component acts with the use case.
Fig. 3.1 recalls the architecture of the mPlane. The Reasoner coordinates the measurements and
the analysis performed by Probes and Repositories, actuating through the Supervisor. It is respon-
sible for the orchestration of the iterative analysis and the correlation of the results exposed by the
analysis modules. Such a reasoning-based system is capable of generating conclusions and trigger-
ing further measurements to provide more accurate and detailed insights regarding the supported
traf icmonitoring and analysis applications. As such, the reasoner offers the necessary adaptability
and smartness of themPlane to ind the proper high-level yet accurate explanations to the problems
under analysis in the different use cases.
The Reasoner has different speci ic roles, depending on the use case to tackle (Table 3.1 maps each
analysis module to the corresponding use case). In the case of troubleshooting support-based use
cases, the main role of the Reasoner is to drill down the measurements and interpret the analysis
results provided by the analysis modules to ind the most probable root causes of the associated
problems. In the case of generic measurements analysis, the main role of the Reasoner is to auto-
mate the iterative measurements analysis process. In both cases, the main requirement of the Rea-
soner is to be able to iteratively perform different analysis tasks, taking additional analysis steps
based on the results of the previous observed results.

3.1 Suppor ng DaaS Troubleshoo ng

Fig. 3.2 outlines the completework lowrelated to the SupportingDaaS troubleshooting theuse-case.
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CA
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Analysis Module

HTTP traf ic classi ication * * *
YouTube QoE * *
Web QoE * *
DaaS QoE *
Statistical Anomaly Detection * *
Entropy-based Analysis *
Statistical Traf ic Classi ication *
Content Classi ication * *
URL-based Analyser * * *
Forecasting Algorithms *
Decision Trees * * *
Rule Mining *
Sub-Space Clustering * * *
Probe Geolocation * * *
Prediction of Unmeasured Paths * * * *
Topology Discovery * *
Anycast Detection * * *

Table 3.1: Analysis modules mapped to use cases

At irst, Probes continuouslymonitor thin-client connections andpassively collects IP-level features
that can be accessed from the thin-client connection while it is running, such as packet size, rate,
inter-arrival time, and TCP-level features such as payload length and number of observed packets,
whether they carry data or acknowledge only, TCP lags, etc. These features are collected on a per-
connection basis, i.e., on a per-thin client basis, and within sliding observation time-window.
Periodically, the Probe sends the features extracted from a given thin-client connection to the cen-
tral Repository, which stores them for theAnalysismodule to use. Based on these features, theAnal-
ysis module is responsible for classifying the connection, that is, inferring the application running
on top of the thin-client connection during a time-window through statistical traf ic classi ication
techniques, e.g., Support Vector Machine (SVM).
By combining the information from the Analysis module with the network conditions along the
path between the thin-client and the remote server, the Reasoner can eventually infer the temporal
evolution of users’ QoE. Note that those network conditions are collected in the irst place by active
(traceroute-like) mPlane probes, which periodically send them to the central repository.
Given the class of application run by the thin-client user, the Reasoner compares the average Round
Trip Time of the connectionwithin an observationwindow (RTT ) against a set of threshold values,
and returns a QoE category. Threshold values are set for each class of applications, i.e., Data, Audio,
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Figure 3.2: Desktop-as-a-Service troubleshooting: work low. Probes monitor thin-client connec-
tions and passively collects IP-level features, which are stored at the Repository (step 1). The Anal-
ysis module is responsible for classifying the connection (step 2) and the Reasoner combines the
information from the Analysis module with the network conditions along the path (step 3). In case
of a poor QoE, the Reasoner, through the Supervisor, instruments probes to run further analysis,
and get historical data from the Repository (step 4). Once detected the issue, the Supervisor solves
it by triggering the migration of the service or the change of path for the low (step 5)

Video, and are based on latency values. To set the threshold values, we run subjective tests for
quality assessment by following the Absolute Category Rating method as formalized in ITU-T Rec.
P.910 with the help of fourteen people. As a result, for each class of applications we were able to
identify requirements in terms of Round Trip Time (RTT) values that make the users experience a
good, suf icient or bad quality of the thin-client connections.
Whenever the Reasoner detects a poor QoE for a user running a thin-client connection, it irst tries
to identify which is the node causing the bottleneck along the path (included the two end nodes
of the connection). To do that, it interacts with the mPlane Supervisor to instrument probes for
running latency measurements on the path between the thin-client user and the remote server. At
the same time, the Reasoner can interact with the Repository to look for the same information, in
case the measurements are already running on the Probes.
In case the result of the measurements returns that the bottleneck is due to a node along the path,
the Reasoner tries to circumvent the responsible node by migrating the remote server to another
datacenter. Alternatively, if the bottleneck is due to the remote server, the Reasoner triggers the
migration of such server within the same datacenter, to of load the machine where the service is
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Figure 3.3: The analysis and reasoning modules composing theWP4 layer for the “Estimating Con-
tent and Service Popularity for Network Optimization”. Given a set of users’ request for videos, the
Reasoner observes as input the evolution of the popularity of videos over time, and triggers actions
based on how the popularity is predicted to evolve

currently running. While doing that, the Reasoner keeps a history of when such events occur, to
ind patterns and be preemptive in the future – e.g., a given connection runs into the same issue
with a known temporal periodicity.

3.2 Es ma ng Content and Service Popularity for Network Op-
miza on

We present in this section an updated version of the complete work low for this use-case that we
described in the private deliverable D4.2 [73].
Fig. 3.3 outlines the role of each mPlane’s component, and more speci ically, the WP4 Analysis
modules and their interactions with the Repository and the Reasoner. At irst, Probes located in
different points of the network continuously collect information about the requests of the users,
and stream requests to the central Repository. For each request we store the associated timestamp
and the network location of the Probe (Step 1). Based on these features, the Analysis modules
are responsible for predicting the future popularity of each requested contents at each part of the
network (i.e., the probe location). This task is accomplished by employing two different modules:
the irst one, named Popularity Classi ier, takes as input the popularity history for a content (Step
2), it generates a signature for its request arrival process using the Heterogeneous Mixture Mod-
elling technique, and classify such content in a Hierarchical Clustering Structure, that is stored at
the repository (Step 3).
In parallel, the Online Predictor, for each observed content explores the Hierarchical Clustering
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Structure (Step 4) to ind the popularity pattern which maximizes a likelihood function (Step 5).
Once the popularity pattern has been found, we use it to predict its future popularity. Thus, if the
number of future views overcomes a static thresholdN , an event is triggered to the Reasoner (Step
6) to notify which contents are becoming popular and where they are. Then, the Reasoner may
query the repository to obtain the IDs of mobile devices, base stations and caches that are located
within the same area of the probe, and may be interested at prefetching popular contents (Step 7).
Then, for each popular content, its ID, together with the location of the probe and, possibly, a list of
devices are forwarded to the supervisor of the ISP (Step 8). The ISP supervisor will exchange such
informationwith other supervisors, e.g., the supervisor of a CDN, to let it knowwhich contentsmay
be worthful to proactively push to its caches (Step 9).

3.3 Passive Content Cura on

Figure 3.4: The analysis and reasoning modules composing the WP4 layer for the “Passive Content
Curation” use-case, and the work low involving them.

We depict thework low for this use case in Fig. 3.4. The probes extract HTTP logs from the network
and stream them to the repositories (Step 1) where online scalable data analysis algorithms run
continuously to extract user clicks (Step 2), infer interesting clicks (clicks that are likely to attract
other users’ attention). The portal vs Contents analysis module of the reasoner continuously pulls
interesting URLs to infer clicks that pertain to single content items (as opposed to portals that ag-
gregate multiple content items) (Step 3). As explained above, the reasoner leverages the history of
the URLs timeseries to build a knowledge database containing known portals (with very high con-
idence). This knowledge database is continuously updated as new unknownURLs join the system.
Content-URLs are then noti ied to the Reasoner through events (Step 4). The Reasoner then ap-
pends them to the Track rising content module which updates the popularity evolution of each
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content-URL (Step 4). The detection of a promotable URL creates an event noti ied to the reasoner,
and calls for the content classi ication analysis module which group contents by categories, e.g., to
distinguish videos from news (Step 5). Promoted and classi ied content-URLs are then pushed for
publication.
Note that some of our analysis modules (and scalable WP3 data analysis algorithms) might incor-
porate in the future some of the reasoning tasks done by the reasoner. This is the case for the
interesting URLs module as well as the “content versus portal” module. The irst module takes as
an input user URL visits (user clicks) as elected by the user URLs iltering module. Upon the event
of the election of a user URL, we use an active probe (a web scraper to query the page looking for
social meta data, in order to understandwhether this page is potentially interesting for other users
or not. The content versus portal module could be in charge of analyzing the interesting URLs as
well as their timeseries (Step 3.b and learn in order to detect which URLs pertain to content aggre-
gation URLs (e.g. the front page of an online news website that compiles a lot of news) and which
ones relate to a single content item (e.g., a particular news).

3.4 Service ProviderDecision Tree for troubleshoo ngUseCases

The work low represented in Fig. 3.5 highlights the interaction between the Analysis module and
the Reasoner for the SP decision tree case.

Figure 3.5: Work low
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After the registration phase is completed, the passive Probes start measuring and the results are
stored in the Repository. Measured data include the average throughput and Round Trip Time
for each low. The Analysis module periodically reads the measurement results from the Reposi-
tory and performs an aggregation per-DSLAM. The aggregated QoE value is then compared to some
pre-de ined thresholds. This is done PoP by PoP, where each PoP has a separate passive probe in-
stance to perform the measurements. After the single PoP has been evaluated, data are sent to the
Reasoner process via the Supervisor. Speci ically, an ”OK” or ”NOT OK” is sent, together with all
the measured values aggregated per-DSLAM. If the Reasoner receives a ”NOT OK”, this triggers the
start of the diagnosis algorithm, described in deliverable D4.2 [73]. Therefore, the analysis module
is responsible for estimating if the perceived quality is over or below the chosen threshold, while
the Reasoner is focused on the root cause process to pinpoint the origin of the problem.

3.4.1 Coopera on between different mPlane instancies

The mPlane architecture offers the possibility to envision some forms of cooperation between dif-
ferent mPlane instances. One form of cooperation implies the possibility to ask a different Supervi-
sor formeasurement data. For example, anmPlane instancemanaged by a Service Provider A could
run a Reasoner algorithm, as described in Sec. 2.4.2, to pinpoint the root cause of a QoE degradation
for traf ic from Content Provider X. In case the algorithm suggests that the problem lies outside the
SP’s network, the Reasoner (through its Supervisor) could ask the Upstream Provider’s Supervi-
sor if there’s any issue between the Upstream Provider’s network and Content Provider X. From
a business point, of view this kind of interworking is essentially based on a customer-provider
relationship. On the other hand, SP A could also have in place an mPlane relationship with Con-
tent Provider X and directly interact with CP’s Supervisor. A third kind of mPlane cooperation is
between two Service Providers in competition with each other. From a business perspective this
could seem unlikely to happen, but it could be igured out a sort of relationship similar to a private
peering agreement for BGP route exchange: a sort of ”do ut des” relationship where both players
have bene itswithout revealing business sensitive information. Considering the example described
above, the Reasoner managed by SP A could bene it from knowing if other ”peer” SPs are also ex-
periencing the same problem, given that it has an ”external” cause. In any of the previous cases,
the relationship between two Supervisors is exactly the same that exists between a probe and a
Supervisor. Supervisor B will advertise one or more capabilities to Supervisor A: those capabilities
correspond to measurements that Supervisor A can ask for to Supervisor B. These measurements
could be ”real” measurements triggered on speci ic probes or they could result from aggregation
of data in the Repository. In any case, Supervisor B can mask all sensitive details to Supervisor
A and just expose the result it can deliver to the peer. Considering the QoE degradation problem,
the capability exposed by Supervisor B to Supervisor A could be the average RTT to the Content
Provider, measured every 5 minutes for the last 30 minutes. This could help (the Reasoner linked
to) Supervisor A understand if the problem affects also other SPs or not. Fig. 3.6 shows how the
cooperation with different Supervisors could it in the low chart of Fig. 2.7.

3.5 Quality of Experience for Web browsing

Starting from the work low described in deliverable D4.2 [73], we depict in another perspective in
Fig. 3.7.
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Figure 3.6: Cooperation between different Supervisors to enhance the troubleshooting algorithm
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Figure 3.7: The modules for the “Web browsing QOE” use case

From the passive data collected by the instrumented browser on the Probes, equipped with amod-
i ied version of Tstat, we extract the involved IP addresses and perform active probing on them by
means of ping and traceroute. Data are collected in a database on the Probe, preprocessed and
sent to the Repository (Steps 1-2).
The Flume sink stores data in HDFS, where batch processingmodules are carried by Spark, extract-
ing and storing statistical andhistorical values anddistributions of variousmeasurements collected
at the Probe side (e.g., time series, RTTs to IP address ’X.X.X.X’) (Step 3).
The Repository’s capabilities are presented to the Reasoner as tools to perform diagnosis over a
poor quality of experience in a web browsing session. When diagnosing a URL (Step 4), the Rea-
soner can exploit the data provided by the analysis module, or submit further jobs to the Spark
engine. The result of the diagnosis is sent both to the client and stored in the Repository (Step 5),
for further statistical classi ication and analysis (e.g, the most common problem when browsing
site ’Y’).

3.6 Mobile network performance issue cause analysis

In our platform each entity is running an instance of the reasoner, however, each of these instances
are considered as a black box.

• Data is collected and owned separately by each involved entity (e.g., the users’ device, the
mobile ISP, etc.).

• Each entity runs its own instance of a troubleshooting agent that can only access the internal
data to identify any possible causes within the organization.
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Figure 3.8: The iterative process of consulting with with reasoners across different entities

• Finally, the agents across different organizations are using the proposed architecture to col-
laborate in order to identify the exact cause of a problem. In that process only the abstracted
information is revealed between the involved parties.

• A query to identify an issue is only forwarded to the next entity along the path of the data only
when the local data indicate that there is no local problem.

Troubleshooting is usually initiated by the user’s device.
For instance, Fig. 3.8 shows an example of a user reported connectivity problem. In this example:

• The user reports an issue with connectivity or quality of experience (notice that the request
to troubleshoot an issue can also be automatically generated).

• The application and device probes use the collected data to identify if the reason is within
the device (e.g., poor signal strength, missing codecs, not enoughmemory, other applications
are using the bandwidth). Only information that is collected and owned by the user’s device
is used. If the reason is identi ied the issue is considered solved and the user and/or the
service provider are noti ied. If the reason is not identi ied then the local troubleshooting
probe generates a request for further investigation is forwarded to the instance running at
the ISP (mobile or ixed) that provides the connectivity. Only the required information such
as the timestamp, the objects that caused the issue is shared to help the ISP identify the low
within its own network.

• Similarly, when the probe of the ISP receives a request from a mobile user, it uses its own
repository to identify if the problem lies within its own network. Information owned by the
ISP such as base station load is used to identify any problems at the speci ic time/location of
the user. Similarly, collected information from the backbone and middleboxes are also used
to identify any causes there. As with the device probe, if no issue is detected within the ISP
a request if forwarded further towards the core network that served this request. Notice
that the troubleshooting engine of the ISP can also detect a problem (even when initiated
by a user’s device). As before a request is forwarded to the corresponding probes to further
investigate the root cause of the issue.

• In a similar manner, if the issue is not identi ied, further requests can be further forwarded
all the way to the service provider (e.g., web host or video provider). Therefore, in our ar-
chitecture this sand-boxed iterative process addresses all the aforementioned data sharing
issues while providing the ability to track problems across different entities.

In terms of organization of data. The probes store the data in amongoDB database (WP3). The data
are then extracted throught mPlane’s Reference Implementation (RI) to the reasoners.
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Figure 3.9: Diagnosis graph associated to the detection and troubleshooting support of large-scale
QoE-based anomalies in YouTube

3.7 Anomaly Detec on and Root Cause Analysis in Large-Scale
Networks

As an example of the complete work low of mPlane in this use case, we present a detection and
diagnosis scenario of major anomalies in the delivery of YouTube videos impacting the Quality of
Experience (QoE) of a large number of users. This work low builds on themore detailed analysis of
the mPlane reasoner presented in D4.2. For the sake of completeness, Fig. 3.9 depicts the decision
graph which guides the complete analysis work low.
The iterative analysis performed by the Reasoner through this speci ic use-case-based decision
graph assumes that a series of different continuous monitoring streams are being processed by
the mPlane, which generate a series of logged diagnosis events. Also recall that the anomaly detec-
tion algorithm applied in this use case relies on the analysis of the complete empirical distribution
of the monitored KPIs, and not on the analysis of a single percentile time-series. The following list
enumerates the different streams which are processed to generate the diagnosis events that are
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analyzed in the iterative process:

• For all the iltered YouTube lows (with Tstat classi ication capabilities) observed at the van-
tage point, and exported to the DBStream repository:

1. time-series are continuously updated and analyzed for abruptmodi ications for the following
features: # lows, # bytes, # users, low throughput, β2 QoE KPI, empirical entropy of QoE
classes (bad, average, excellent), fraction of lows in the lowest QoE class, min RTT, average
RTT, server elaboration time, fraction of retransmitted bytes per low, empirical entropy

2. empirical distribution of average low throughput per server IP is computed, and analyzed by
the anomaly detection algorithm.

3. empirical distributions of number of lows and bytes served per server IP or group of servers
sharing the same network pre ix (e.g., /24) are computed, and analyzed by the anomaly de-
tection algorithm.

• For all the identi ied YouTube server IPs, the following time-series and events are tracked:

1. time-series of inter-AS paths (paths are tracked as ASes vectors), from the ASes where the
server IPs are registered to till the vantage point.

2. for the aforementioned server IPs, path-change events are tracked (i.e., changes in the inter-
AS path vectors).

3. for the aforementioned server IPs, the usage of IP-anycast is also registered.

Note that other events have to be similarly tracked at the different components of the end-to-end
service, for example, at the access ISP, both at the access and at the core (related to the internal
routing tables, the routers, the aggregation network, the mobile stations, etc.), at the end-devices
which are downloading the monitored YouTube lows, etc..
Assuming that the aforementioned measurements are available, the work low of the anomaly de-
tection use case goes as follows:

1. all traf ic lows are analyzed by Tstat at the vantage point, and those belonging to YouTube
are exported into DBStream.

2. the anomaly detection algorithm runs continuously on the YouTube lows within DBStream,
considering as KPIs the per- low average download throughput (to detect performance is-
sues) and the number of lows served per /24 CDN subnetwork (to detect Google cache se-
lection changes).

3. when an anomaly is detected as a major shift in the distribution of lows throughput towards
lower throughput values, the diagnosis analysis is triggered (part (1) in Fig. 3.9).

4. the irst step is to verify if the detected anomaly is statistically consistent, i.e., that it is not
caused because of a big drop in the number of samples considered in the empirical distribu-
tion computation.
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5. then the analysis veri ies if this detected anomaly is actually impacting the QoE of the users,
by analyzing the β2 QoE-based KPI. The analysis is not done on the distribution of β2, but on
the average andmedian values for all the downloaded lows. This is to better spot major QoE
anomalies in YouTube.

6. the irst diagnosis event to verify is a main drop on the time-series related to the empirical
entropy of the operative system type of the devices downloading the captured lows. A drop
in the empirical entropy would lag a major concentration on the distribution of the OS type
of the devices, indicating a possible relation to the OS type (part (2) in Fig. 3.9).

7. the second diagnosis event to verify corresponds actually to a set of events related to the
access ISP (part (3) in Fig. 3.9). We do not detail the speci ic events to evaluate at the ISP
level.

8. the third event to verify is the occurrence of performance degradation in the corresponding
end-to-end paths carrying the impaired YouTube lows (part (4) in Fig. 3.9). Events tracked
on the time series related to packet re-transmissions, queuing delay, etc. are checked in order
to identify path congestion.

9. if path congestion is identi ied, then the Reasoner instructs active measurements from geo-
distributed probes (e.g., using RIPE Atlas) to identify the speci ic AS or sub-path causing the
performance degradation.

10. if no path performance degradation is observed, the analysis checks for events related to load
balancing and cache selection modi ications in the Google CDN serving the YouTube lows.

11. if no cache selectionmodi ication events are present in the logged events at the speci ic times
of the detected YouTube QoE-based anomalies, the drilling-down checks for the occurrence
of inter-AS routing changes which might be linked to the detected anomalies.

12. if cache selectionmodi ications are present, then the analysis focuses on understanding if the
new selected servers are the origin of the problems. For doing so, different application-level
KPIs are veri ied on top of the monitored traf ic, such as server elaboration times, TCP lags,
etc..

Thiswork low is bynomeans complete, andmoredomain-based rules could be added tobetter drill
down the targeted anomalies. Still, as we show next, such an iterative drill-down process allows to
partially automate the detection and diagnosis of these so relevant anomalies in a complex service
likeYouTube. Inparticular, the followingexampledescribes the analysis process of amajorYouTube
QoE anomaly, probably caused by Google’s cache selection policies, which chose servers that were
not able to handle the load during the peak-traf ic hours.
Let us now consider a simpli ied version of the complete analysis to exemplify the functioning of
the detection and diagnosis processes. The example consists of the detection and diagnosis of
a Google’s CDN server selection policy negatively impacting the watching experience of YouTube
users during several days at peak-load times. Conversations with the ISP con irmed that the effect
was indeed negatively perceived by the customers, which triggered a complete Root Cause Analysis
(RCA) procedure to identify the origins of the problem. As the issue was caused by an unexpected
caches selection done by Google (at least according tomPlane’s diagnosis analysis), the ISP internal
RCA did not identify any problems inside its boundaries.
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(a) Anomalies in traf ic volume served by CDN /24 subnets.
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(b) Anomalies in the video lows average download rate across the YouTube users.

Figure 3.10: Detection of anomalies in YouTube traf ic. Alarms and acceptance region for the dis-
tribution of (a) volume and (b) video lows average download rate. The redmarkers correspond to
the lagged anomalies

Traf ic lows are collected with Tstat at a link of a European ixed-line ISP aggregating 20,000 res-
idential customers who access the Internet through ADSL connections. The complete data spans
more than 10M YouTube video lows, served frommore than 3,600 Google servers. Using Tstat il-
tering and classi icationmodules, we only keep those lows carrying YouTube videos. The captured
lows are periodically exported into the DBStream repository, where the analysis takes place. As re-
ported by the ISP operations team, the anomaly occurs onWednesday the 8th of May. We therefore
focus the analysis on the week spanning the anomaly, from Monday the 6th till Sunday the 12th.
In the following analysis, we generally use 50% percentile values instead of averages, to ilter out
outlying values.
Fig. 3.10 depicts the output of the Anomaly Detection algorithm. Fig. 3.10(a) considers the per
Google CDN /24 subnet served volume as the monitored feature. The red markers indicate when
an anomaly is detected. FromWednesday the 8th of May onward the algorithm systematically rises
alarms from 15:00 to 00:00, which correspond to a change in the cache selection policy, as we
shall see next. In addition, Fig. 3.10(b) reports the same information for the average video lows
download rate. In this case, the analysis module detects some anomalies only between peak hours
(21:00-23:00) from the 8th onward, suggesting that the throughput degradation are linked to high
utilization of resources. Let us begin by understanding if the detected drop in the YouTube low
throughput has an impact on the QoE of the end users.
Fig. 3.11 plots the time series of three different performance indicators related to the YouTube
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(b) Entropy of QoE classes per hour for all YouTube lows.
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Figure 3.11: Detecting the QoE-based anomaly. There is a clear drop in the download low through-
put fromWednesday till Friday at peak-load hours, between 20hs and 23hs. The combined drop in
the entropy of the QoE classes and in the KPI β2 reveal a signi icant QoE degradation

download performance and to the end-user QoE. Fig. 3.11(a) depicts themedian across all YouTube
lows of the download low throughput during the complete week. There is a normal reduction
of the throughput on Monday and Tuesday at peak-load time, between 20hs and 23hs. However,
from Wednesday on, this drop is signi icantly higher, and drops way below the bad QoE thresh-
old Th1 = 400 kbps, lagging a potential QoE impact to the users. Fig. 3.11(b) plots the entropy of
the QoE classes built from thresholds Th1 = 400 kbps and Th2 = 800 kbps, consisting of bad QoE
for lows with average download throughput below Th1 , fair QoE for lows with average download
throughput betweenTh1 andTh2 , and goodQoE for lowswith average download throughput above
Th2 . Recall that these thresholds correspond to theQoEmappings presented in Fig. 2.23, which only
cover 360p videos. The drop in the throughput combined with the marked drop in the time series
of the QoE classes entropy actually reveals that a major share of the YouTube videos are falling into
the bad QoE class. Finally, Fig. 3.11(c) actually con irms that these drops are heavily affecting the
users experience, as the time series of the KPI β2 falls well into the video stalling region, depicted
in Fig. 2.24.
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(b) Bytes down count (normalized).

Figure3.12: Users andbytesdownduring theweekof the anomaly. There areno signi icant changes
during the speci ic times of the lagged anomaly

3.7.1 Anomaly Diagnosis

The root causes of the detected anomalies can be multiple: the Google CDN server selection strate-
giesmight be choosingwrong servers, the YouTube serversmight be overloaded, path changeswith
much higher RTT from servers to the customers might have occurred, paths might be congested,
or there might be problems at the access network. Diagnosing problems at the access network is
straightforward for the ISP, as this network belongs to itself. However, diagnosing the problem
outside its boundaries is a much more complex task. As we said before, the ISP internal RCA did
not identify any problems inside its boundaries, so we focus on the YouTube servers and on the
download paths.
Fig. 3.12 depicts the time series of the per hour users and bytes down normalized counts during the
analyzed week. While there is a drop in the number of bytes down fromWednesday afternoon on,
there are no signi icant variations on the number of users during the working week (i.e., Monday
till Friday), so we can be sure that the throughput and QoE strong variations observed in Fig. 3.11
are not tied to statistical variations of the sample size. Using the results in Fig. 2.24(c), we can say
that the drop in the bytes down suggests that the bad QoE affected the users engagement with the
video playing, resulting in users dropping the watched videos when multiple stalling occur (i.e.,
when β < 1.25).
WestudynowtheYouTube servers selection strategyand the serversproviding thevideos. Fig. 3.13(a)
depicts the number of server IPs providing YouTube lows per hour. As depicted in Fig. 3.13(b),
where the entropy of the AS number of the monitored server IPs is presented, there is a sharp shift
of servers from AS 15169 to AS 43515 around peak-loud hours. In addition, there is an important
reduction on the number of servers selected from AS 43515 on the days of the anomaly. This sug-
gests that a different server selection policy is set up exactly on the same days when the anomalies
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Figure 3.13: IPs hosting YouTube during the week of the anomaly.

occur.
To further investigate this CDN server selection policy change, Fig. 2.26(a) in Sec. 2.7 shows the TSP
of the video volume served by the different IPs in the dataset per hour, aggregated in /24 subnet-
works, for 11 consecutive days. The TSP clearly reveals that a different subnet set is used during
the second half of the day from the 8th of May on, revealing a different cache selection policy. This
change is also visible in the CDFs of the per subnet volume depicted in Fig. 2.26(b). Indeed, we can
see that the same set of subnets is used between 00:00 and 15:00 before and after the anomaly,
whereas the set used between 15:00 and 00:00 changes after the 8th, when the anomaly occurs.
Given this change in the server selection policy, we try to ind out if the problem arises from the
newly selected servers, or if the problem is located in the path connecting these servers to the
users. Fig. 3.14 studies the latency from users to servers during the complete week. Fig. 3.14(a)
depicts the median of the min RTT per hour as measured on top of all the YouTube lows. The
marked increase in the RTT evidences that the servers selected during the anomaly are much far-
ther than those used before the anomaly. This increase impacts directly on the HTTP elaboration
time (i.e., time betweenHTTP request and reply), as depicted in Fig. 3.14(b). To understand if these
latency increases are additionally caused by path congestion, Fig. 3.14(c) plots the time series of
the difference between the min RTT and the average RTT values; in a nutshell, in case of strong
path congestion, the average RTT shall increase (queuing delay), whereas the min RTT normally
keeps constant, as it is directly mapped to the geo-propagation delay. The differences before and
during the anomalies do not present signi icant changes, suggesting that the paths between servers
and clients are not suffering from congestion. This is also con irmed by the analysis of the packet
retransmissions, which do not present signi icant variations.
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(b) 50%-p of HTTP elaboration time per hour for all YouTube lows.
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(c) 50%-p of avg RTT - min RTT per hour for all YouTube lows.

Figure 3.14: The servers selected during the anomaly are much farther than those used before.
While there is a marked increase in the server elaboration time, the difference between avg. and
min. RTT remains bounded during the anomaly, so we discard the hypothesis of path congestion

The last part of the diagnosis focuses on the YouTube servers. Fig. 3.15 depicts the average (a) min
RTT and (b) download low throughput per server IP in a heatmap like plot. Each row in the plots
corresponds to a single server IP. The previously lagged min RTT increase is clearly visible for the
new set of IPs which become active from 15:00 to 00:00 fromWednesday on. For those server IPs,
Fig. 3.15(b) shows the important throughput drop during peak-load hours. Note however that large
minRTTvalues do not necessary result in lower throughput, asmany of the servers used before and
during the anomaly are far located but provide high throughput. Fig. 3.16 further studies this drop,
comparing the relationbetweenminRTTand averagedownload low throughput before andduring
the anomaly. The increase of the min RTT is not the root cause of the anomaly. However, there is a
clear cluster of low throughput lows coming from far servers during the peak-load hours.
The conclusion we draw from the diagnosis analysis is that the origin of the anomaly is the cache
selection policy applied by Google fromWednesday on, and more speci ically, that the additionally
selected servers between15:00 and00:00were not correctly dimensioned to handle the traf ic load
during peaks-hours, between 20:00 and 23:00. This shows that the dynamics of Google’s server
selection policies might result in poor end-user experience, on the one hand by choosing servers
which might not be able to handle the load at speci ic times, or even by selecting servers without
considering the underlying end-to-end path performance.
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Figure 3.15: There is a new set of server IPs providing YouTube videos from Wednesday on from
farther locations. As visible in (b), the average download low throughput for each of these new
server IPs is much lower than the one obtained from other servers

3.8 Verifica on and Cer fica on of Service Level Agreements

This section presents the work low of the veri ication and certi ication of service level agreement,
in short SLA. We determine SLA in terms of:

1. RTT measured using ping

2. TCP bandwidth measured by continue packet generation with the objective to saturate the
link

3. UDP bandwidth and jitter, measured in the same way as TCP, but with UDP packets.

To describe the work low of the whole procedure of SLA certi ication we could refer to Fig. 3.17.
In detail the work low of SLA is as follows, based on numbers form [1-12] on Fig. 3.17:

1. On the irst step, are the measurements that are done by the Probes, 10 ping samples, more
than 10 seconds of measurements for TCP and UDP bandwidth.

2. The Probe does the measurements for the irst time and transfers the data to the Repository,
on the data measured are, RTT (10 ping samples), TCP throughput and UDP throughput.

3. After the Repository has received the data does simple elaboration to identify if there are any
errors, like UDP error, or if there is any anomaly on the data, if it inds one it generates an
alarm to alert the Reasoner.
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Figure 3.16: The increase of themin RTT is not the root cause of the anomaly, as there are nomajor
issues previous to the anomaly. However, there is a clear cluster of servers offering low throughput
during the peak-load hours on an anomalous day

4. The Reasoner gets the data that generated the lag and does a check to see if it has to de-
ploy the algorithm for UDP error checking of the one for anomaly detection, or if it has to
notify the Supervisor to release the certi icate with the required data since the measurement
is complete.

5. In case it identi ies that there is an error generated by UDP, packet loss bigger than 0.1%, it
starts the algorithm for identifying the correct speed that UDP test should be started. After
the calculation of the correct UDP speed, the Reasoner tells to the measurement plane that
it has to repeat the test at the calculated speed, after which the procedure from 2-5 repeats
until the reasoner accepts the speed measured.

6. If the module of the calculation for the correct speed accepts the speed measured on the se-
quent test, it noti ies the Supervisor to prepare a certi icate with the min, mean, and max
value of RTT, TCP throughput, and UDP speed.

7. If Reasoner after analyzes thedatadetermines that ananomalyhasbeenencountered, if starts
the anomaly detection procedure

8. The module will determine if this is a temporal problem/ from the active probe, to be sure it
will ask the measurement layer to make other measurements.

9. If the same problem is encountered, the procedure will go from 1-2-3-7 to step 9 in Fig. 3.17,
to start the passivemonitoring to analyze and correlate the active and passive data to ind the
root cause of the problem.
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Figure 3.17: Work low of SLA use case for WP4

10. The algorithm for the correlation of the active and passive data will ask on its own to the
measurement layer to make other measurements.

11. If after retrying the anomaly is not detected, or is not repeatedanymore, themoduleof anomaly
detection will communicate with the Repository to tell that that measurement should be
lagged as unusable.

12. If there is no packet loss on the UDP test and there is no anomaly identi ied, the last noti ica-
tion is the one of terminating the measures, in this case the Reasoner identi ies directly the
Supervisor to release the certi icate.

3.8.1 Probe Loca on

The SLA probe is composed of two parts:

1. The Agent: The part of the software that has to be on the clients PC
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Figure 3.18: Work low of SLA use case for WP4

2. The Server: The part of the software that has to be located on a server with a high speed
connection

The agent is located at the client PC, always. The client is considered to be located usually at the
terminal network. The agent can also be located anywhere, but with the concept in mind that the
probe will always give the maximum bandwidth seen by client on the connection server client.
The server can be located anywhere, as long that his connection is higher than the one of the user.
For example in Fig. 3.18, we have three links (1,2 and 3), the server probe should be located on a
point of the network that allows the sequent conditions:

1. Link one has a higher capacity than link three.

2. In ideal condition link two has the highest capacity among all the links. It can also be allowed
that link two has a smaller capacity than link one but a higher capacity than link three.

3. Minimum condition is that link three has to have the smallest capacity among all the links.

3.9 Loca ng probes for troubleshoo ng thepath from the server
to the user

Several mPlane use cases based on troubleshooting need some way of monitoring the paths from
the servers hosting the monitored applications (YouTube, Web Browsing, Cloud Services, etc.) to
the users. To this end, the knowledge of the actual path is necessary but not suf icient. As we have
no control on the server, it is not possible to launch monitoring activities from that server towards
the users. One way to circumvent this problem is to ind some other nodes, referred to as probes in
the sequel, near the server, and then trigger some path monitoring from them.
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Figure 3.19: Probe location work low

This section will address the irst step of this process, namely the discovery of probes that are near
the server, to allow various use cases to trigger the relevantmonitoring activities based on standard
tools.
Our problem can then be stated as follows.
In the considered application, a client, C , communicates with some point of interest (hereafter
referred to as PoI), for example a CDN server streaming data to C .
When the performance is not acceptable, the client (or a proxy thereof) launches a troubleshooting
procedure to diagnose the path from the PoI to C 1. The irst step consists, for the Supervisor, in
triggering a Reasoner, R (see Step 1 in Fig. 3.19). The only data that need to be given to R are the
IP addresses of C and the PoI.
To solve this problem, we assume the existence of geographically distributed probes (i.e., mPlane
probes), whose IP addresses and ASNs are known (these have to be fetched and refreshed regu-
larly). Wealso assume that theprobes reply toping andaccept request fromR to issuetraceroute [104]
to some IP addresses.
The sketch of the algorithm of the Reasoner is as follows:

1. Find the ASN of the PoI, knowing its IP address, using some IP-to-AS database(s). Candi-
date solutions here are using the TeamCymru service [98] or downloading BGP routing ta-
bles [103] and performing lookups.

2. Find the AS-Path from the PoI toC , using BGP data. This can be extracted from publicly avail-
able BGP data [103] (Steps 2.A and 2.B in Fig. 3.19).

3. Find a list of probes located near the PoI (the distance used here could be the RSD distance,
or the estimated RTT) and rank them in order of increasing distances.

1Other tests can be used to diagnose the path from C to the PoI, but these tests, e.g., traceroute, are very easy, and
therefore omitted here
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4. Filter this list to remove false positives, namely initiate traceroutes from the probes in this list
towards C and collect the result from the probes (Steps 3.A and 3.B in Fig. 3.19). The probes
whose AS-Path towardsC matches the AS-path from the PoI toC , or is close enough, are kept
(e.g. they share a long common AS-path suf ix).

5. Reiterate the process (steps 3 to 4) to ind probes near intermediate nodes along the AS-path
from PoI to C .

6. Output the list of probes in some structured order in decreasing order of common suf ixes
(Steps 4 in Fig. 3.19).

These two possible methods for step 3 were detailed in Sec. 2.9.1.

3.9.1 Ranking probes with respect to their distances to some point of interest

We now show how this method can be applied to our problem. For every probe, its RTT to the
PoI will be estimated. We rely on the existence of a few dozen vantage points, typically mPlane
nodes. The Reasoner will send to all the vantage points a list of nodes (probes + PoI) to ping. These
vantage points will ping them, measure the RTTs, and return the results to the Reasoner. Given the
symmetry of RTTs, they are equal to the RTTs that the PoI and the probes would themselves issue
towards these vantage points.
Then the collected dataset at the Reasoner will be structured as follows:

• there will be one feature vector per Probe and an additional one for the PoI,
• these feature vectors have as many components as there are landmarks,
• and each component of these feature vectors is the RTT between the probe (or PoI) and the
corresponding landmark.

Then, the Reasoner estimates the distances between all the probes and the PoI. Finally a ranking of
probes is produced, which is a list of probes in increasing order of estimated RTT distances to the
PoI.
In addition, the Supervisor advertises the capability to locate mPlane probes near some speci ied
Point of Interest (PoI).

3.10 Topology

This section presents the mPlane work low for network topology related algorithms described in
Sec. 2.10. Those algorithms can be used by several use cases. For instance, tracebox may ind a
suitable usage in the mobile use case (with the tracebox port onto Android). Fig. 3.20 illustrates
how topology discovery algorithms inserts themselves in the mPlane architecture.

3.10.1 MPLS Tunnel Diversity

Scamper [63] has been extended and ported into the mPlane architecture. scamper offers the op-
portunity to reveal, through traceroute probes, the presence of MPLS tunnels. Next, the LPR algo-
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Figure 3.20: Topology discovery work low

rithm (Sec. 2.10.1.2) is able to analyze the collected dataset to determine the potential MPLS tunnel
diversity.
A basic work low of the MPLS tunnel diversity analysis involves the following components:

• Supervisor. The Supervisor advertises the capability to determine, based on a set of traces
going throughMPLS tunnels, whether those tunnels allows for traf ic engineering (TE) or not.
It receives requests from clients and possibly asks Probes to performmeasurement (Step 1.A
on Fig. 3.20).

• Scamper Probes. The scamper [63] Probes, developed in mPlane WP2, are geographically
distributed. On one hand, theymay be con igured to “constantly” probe the network through
a list of destinations. The probing can be based on standard traceroute (ICMP, UDP, or TCP)
or on ParisTraceroute [7] (also ICMP, UDP, or TCP). On the other hand, they can act “on de-
mand” according to speci ic requirements by the Supervisor. Regarding the later, the Super-
visor provides the Probes with a given list of destinations and the type of probing requires
(traceroute or Paris Traceroute with the protocol – ICMP, TCP, UDP – considered). Both
cases are illustrated by Step 1.B on Fig. 3.20. Data collected is exported in warts format with
mplane-http or mplane-ssh to the Repository.

• Repository. Depending on how Probes have been con igured (i.e., long term measurements
or on demand measurements), the Repository will act differently. For long term measure-
ments, raw data is simply stored within the Repository. For on demand measurements, the
raw data is not only stored but also preprocessed by the Repository. Only MPLS tunnels seen
as the scamper Probe address, <Ingress LER, Egress LER> pair, LSPs, and traceroute des-
tinations are considered. The preprocessed data is dumped into a text ile that is next sent to
the Reasoner. This is Step 2 on Fig. 3.20. Data are sent to the Reasoner on demand, in a text
ile format (Step 3 on Fig. 3.20).

• Reasoner. The Reasoner runs the LPR algorithm (see Sec. 2.10.1.2) on a text ile that ag-
gregates traceroute measurements from geographically distributed scamper probes. The
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Reasoner sends the results to the Supervisor (Step 4 on Fig. 3.20) that is, next, in charge of
dispatching them to the clients.

3.10.2 Middleboxes Discovery

Regardingmiddleboxes detection, there are twopossibilities. Either the client evolves in themobile
world and, consequently, will preferably use tracebox Android. Either the client is in the wired
network and will preferably consider the scamper port of tracebox.
A basicwork lowof themiddleboxdiscovery in themPlane architecture involves the following com-
ponents:

• Supervisor. The Supervisor advertises the capability to reveal the presence (or not) of mid-
dleboxes along a given path. It receives requests from clients and possibly asks Scamper or
Android Probes to performmeasurement (Step 1.A on Fig. 3.20).

• Scamper Probes. The scamper [63] Probes, developed in mPlane WP2, are geographically
distributed. We extended scamper so that it includes now tracebox. Each scamper Probe an-
nounces three capabilities, each one being divided into IPv4 and IPv6: “standard capability”
(a simple tracebox probe over TCP without any option), “speci ic capability” (a tracebox
probe that can be precisely speci ied by selecting IP ields value – ECN, DSCP, IPID/IPFLOW
– , the transport layer – TCP or UDP –, and various TCP options – MSS, WScale, ECN, …–)
and “speci ic quote size capability” (the same as speci ic capability but it provides additional
results, such as the ICMP quoting size used by each hop). Each scamper Probe measures
the target provided in the speci icationmessage received and export the measurements with
mplane-http or mplane-ssh to the Repository (Steps 1.B and 2 on Fig. 3.20).

• Android Probes. Android Probes, developed in mPlaneWP2, are geographically distributed
andmust be explicitly installed by clients on their Androidmobile device (thatmust be rooted
irst). Android Probes offer a single capability (under IPv4): “standard capability”. Each An-
droid Probe measures the target provided in the speci ication message received and export
the measurements with mplane-http or mplane-ssh to the Repository (Steps 1.B and 2 on
Fig. 3.20).

• Repository. Data is stored in the Repository. If the data comes from scamper Probes, traces
are stored in a raw warts formatwith eachmeasurement being identi ied by a (run#, saddr,
daddr, key)-tuple where the key is used to match possible concurrent probing runs. Data are
sent to the Reasoner on demand (Step 3 on Fig. 3.20).

• Reasoner. The Reasoner compares Probes sent with messages received from routers along
the paths in order to identify possible middleboxes. In addition, the Reasoner may confront
themiddleboxwith the taxonomy(seeSec. 2.10.2) inorder tode ine the typeof path-impairment.
Note that, in some cases, a single probing cannot be enough to reveal the presence of a mid-
dlebox. Thus, the Reasoner may elaborate new tests based on previous tests results. It may
recon igure Probes characteristics, change tracebox settings or modify destinations (Step
1.B on Fig. 3.20). The Reasoner sends the results to the Supervisor (Step 4 on Fig. 3.20) that
is, next, in charge of dispatching them to the clients.
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3.10.3 IGP Weight Inference

• Supervisor. The Supervisor advertises the capability to infer IGP weight of paths in a given
AS. It receives requests from clients and possibly asks Probes to performmeasurement (Step
1.A on Fig. 3.20).

• MERLINProbes. TheM [67] Probes are geographically distributed. EachM Probe
comes with a single capability, i.e., “probe”. It receives the list of IP addresses to target. Each
M Probe measures the targets provided in the speci ication message received and ex-
port the measurements, in a text ile format, with mplane-http or mplane-ssh to the Reposi-
tory (Step 2 on Fig. 3.20).

• Repository. Data is stored and preprocessed in the Repository. In the context of IGP weight
inference, the Repository stores two kinds of data: the MERLIN dataset, as text iles, and the
scamper dataset, as warts iles (Step 3 on Fig. 3.20).

• Reasoner. Once data collected by M has been received, the Reasoner is in charge of
retrieving, from the dataset, the largest connected component. From this component, the
Reasoner generates a list of IP addresses for each subnet /24 within the component. This list
is sent to scamper Probes (Step 1.B on Fig. 3.20), with the capability “Paris Traceroute with
MDA”. Once the Paris traceroutes have been done, the Reasoner builds the constraint system
and solves it. Results are sent back to the Supervisor that is in charge of dispatching them to
the client (Step 4 on Fig. 3.20).

• Scamper probes. The scamper [63] Probes, developed in mPlane WP2, are geographically
distributed. Scamper Probes offer several capabilities. Here, we are interested by the “Paris
Traceroute with MDA” [7, 8] capability that allows one to perform Paris Traceroute with the
detection of load-balanced paths. This can be done in ICMP, UDP, TCP mode. Scamper also
receives, from the Reasoner, the list of targets. Each scamper Probe measures the target pro-
vided in the speci ication message received and export the measurements, in warts format,
with mplane-http or mplane-ssh to the Repository.

3.11 Internet-Scale Anycast Scanner

This section presents the work low of an Internet-scale anycast scanner in mPlane based on the
enumeration and geolocation methodology presented in Sec. 2.11. The main goal of the scanner
is to periodically scan the Internet address space to track the evolution of anycast adoption and
server deployments over time. More speci ically, the tool identi ies IPV4 pre ixes using anycast. It
also enumerates and geographically locates the various replicas per anycast pre ix.
The anycast scanner can assist in the diagnosis of network performance anomalieswith CDNs using
anycast (e.g., EdgeCast networks 2 [30]). More speci ically, it helps ISPs discover newly deployed
servers, and thus explain abnormal shifts in the traf ic they carry toward an anycast service. The
tool can be seen as part of a larger effort from the research community to geographically map the
Internet infrastructure [3, 15] and identify the various components of the physical Internet [28]
(e.g., data centers, PoPs). Althoughmost anycast service providers regularly publish physical maps

2EdgeCast serves popular Internet services such as Twitter, LinkedIn, andWordPress from geographically distributed
anycasted servers around the globe
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with the number and locations of their servers, this information is often incomplete and outdated.
One reason for this is that the Internet is constantly evolving tomeet client demands. Thus, periodic
census of the Internet address space (ranging from several times a day, to once every few weeks
depending on the usage) can provide timely representations of anycast adoption and deployments.
As a side note, the tool can potentially detect BGP pre ix hijacking.

3.11.1 mPlane Workflow

The anycast scanner has two components: a back-end Measurement and Analysis component and
a front-end Visualization component. At the back-end, a Supervisor instructs mPlane FastPing
Probes to periodically measure the latency to all /24 pre ixes and send the results to a Repository.
The Reasoner runs an algorithm to detect anycast IPs based on the aggregated measurements, and
an algorithm to enumerate and geolocate replicas of the anycast IPs. The output is pushed to a
front-end Repository. At the front-end, a web-based Visualization tool presents a historic and near
real-time view of IPV4 anycast adoption and the geographical deployments of existing anycast ser-
vices based on queries to the front-end Repository. Through the web-page, we plan to provide the
user with a visual representation of the evolution of the number of IPs using anycast. Additionally,
for each anycast IP, we plan to show maps of server deployments and deployment changes across
time.
Fig. 3.21 depicts a basic work low of the service in mPlane. The back-end component proceeds as
follows:

• FastPing Probes. The FastPing [18] probes, developed in WP2, belong to the same mPlane
domain. They are con igured with the hostname of their Supervisor and therefore periodi-
cally report to the Supervisor the capability to “measure” and “export” measurements. The
Supervisor maintains a list of all active Probes seen in the lastX minutes.

• Back-end Repository. The Repository exports the capability to “collect” measurements.
The capability statement speci ies the URL (i.e., hostname and transport protocol number)
at which the Repository will wait for the measurements.

• Front-end Repository. The Repository exports the capability to “store” measurements and
answer queries at a speci ic URL. Both operations should be in JSON format (application/x-
mplane+json).

• Supervisor. The Supervisor periodically (e.g., once per day) instructs the active Probes to
“measure” the Internet address space and “export” the measurements with mplane-http or
mplane-ssh to the back-end Repository. The speci ication statement from the Supervisor to
the Probes includes a link section with the address of the Repository. The Supervisor sends
a “collect” speci ication to the Repository with the duration of the measurement collection
period. Moreover, the Supervisor speci ies the address of the Reasoner.
Each Probe sends a receipt back to the Supervisor acknowledging the reception of the “mea-
sure” and “export” speci ications. Next, each Probe uploads its own measurements to the
Repository. When the measurement collection period expires, the back-end Repository ex-
tracts the minimum number of RTT per probe-destination pre ix tuple, outputs the results in
Text-CSV format, and exports this ile to the Reasoner.
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Figure 3.21: Anycast scanner: ”Capability push / Speci ication push” work low in mPlane

• Reasoner. The Reasoner runs the anycast detection and enumeration algorithm on the CSV
ile which aggregates, for each IP pre ix, the latency measurements from geographically dis-
tributed FastPingProbes. TheReasoner ships the results to the Supervisor, which stores them
in the front-end Repository.

The front-end component is a web-based Visualization tool that provides users with information
about the fraction of anycast pre ixes detected, and maps of the number and locations of replicas
for a speci ic anycast IP. Both pieces of information are bounded by a time interval t1 and t2 that
the user has to enter on the web-page. The web-page allows users to browse the history of anycast
adoption rate and the maps of server deployment over time for an anycast service. The web-page
translates user requests into JSON speci ications to the supervisor. The supervisor sends “query”
messages to the front-end repository and relays the answers back to the web-page also in JSON.
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3.11.2 Challenges

Anycast enumeration is challenging because instances can be global (i.e., highly reachable from ev-
erywhere in the Internet) or local (i.e., topologically scoped to a catchment area). Therefore, only
probes present in catchments areas of new instances can discover them. However, in order to enu-
merate asmany servers as possible, a naive strategy is to use all the available probes. Fan et al. [33]
employs 62k vantage points deployed at end-user laptops and desktops to enumerate tens of DNS
root servers and 300k open recursive name servers to discover 14 AS112 instances. Clearly, there
is an imbalance (logarithmic relationship [33]) between the number of probes and the number of
worldwide instances to discover (the vastmajority of services have a few dozens instances, 100 be-
ing an upper limit rarely reached). Leveraging rDNS servers to perform redundant measurements
(e.g., multiple probes querying the same anycast instance) is a waste of critical Internet infrastruc-
ture resources and might incur additional load on the overall DNS system. The main concern here
is the signi icant use of processing and networking resources and the probing load incurred at the
Probes and the targets. High probing traf ic towards a given IP destination or range can appear
suspicious and lead to the black listing of Probes.
We are currently exploring severalmetrics to bias a-priori the selection of Probes by the Supervisor.
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4 Conclusion

This deliverable presents updates to analysis algorithms initially provided in Deliverable D4.1 [73]
(Chap. 2). These algorithms perform analyses on the data collected bymeasurement probes (WP2)
and/or stored and pre-processed in the repositories (WP3). Each use-case (WP1) has been ad-
dressed from this perspective, focusing on its analysis modules. In particular, we inspect each use
case and discuss improvements and new validation results. In addition, we have proposed a series
of more generic algorithms (e.g., related to network topology and routing) that will be useful to
better support various use-cases currently considered and also in a larger context.
The deliverable also proposes the work low descriptions of the different use-cases. They spec-
ify the iterative interaction loops between various mPlane modules (from WP2, WP3 and WP4),
thereby allowing for a cross-checking of the analysis modules and the reasoner interactions. In
each use case, we show how the relevant Reasoner coordinates themeasurements and the analysis
performed by Probes and Repositories, actuating through the Supervisor. This Reasoner is able to
iteratively perform different analysis tasks, taking additional analysis steps based on the results of
the previous observed results. As such, this reasoner offers the necessary adaptability and smart-
ness of the mPlane to ind the proper high-level yet accurate explanations to the problems under
analysis in the different use cases.
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