
Plane
mPlane

an Intelligent Measurement Plane for Future Network and Applica on Management

ICT FP7-318627

Demonstrator Implementa on Release
and User Guidelines

Author(s): Author names
A-LBELL
ENST (ed.) D. Rossi, D. Cicalese
FW A. E. Kahveci, A. Sannino
POLITO S. Traverso, M.Mellia
FUB E. Tego, F. Matera
ALBLF Z. Ben Houidi
EURECOM M. Milanesio
NEC M. Ahmed
TI O. Jabr, F. Invernizzi
TID I. Leon das
NETvisor J. Bartok Nagy, A. Bakay, G. Rozsa
FTW A. D'Alconzo, P. Casas
ULg
SSB S. Pentassuglia
FHA M. Faath
ETH B. Trammell

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

Document Number: D6.2
Revision: 0.1
Revision Date: 30 Oct 2015
Deliverable Type: DEM
Due Date of Delivery: 30 Oct 2015
Actual Date of Delivery: 30 Oct 2015
Nature of the Deliverable: (R)eport
Dissemina on Level: Public

Abstract:

This deliverable provides informa on to setup and demonstrate the different use cases. Its aim is not to faithfully reproduce
all the fully-fledged mPlane demonstra ons (shown at conferences, YouTube videos, etc.) but to provide a quick yet complete
bootstrap guide to start replica ng such demos. Specifically, for each use case the deliverable provides guidelines in required
hardware, mPlane so ware and their configura on, as well as instruc ons to setup and interact with the mPlane so ware.

Plane
2

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

Contents

1 Executive summary. 4

2 Generic Guidelines. 6

2.1 Common instructions. 7

2.2 Reference Implementation Instructions. 9

2.3 Chain of certi icates instructions . 12

3 Use-case Guidelines. 14

3.1 Estimating content and service popularity for network optimization 15

3.2 Passive content curation . 18

3.3 Active measurements for multimedia content delivery. 21

3.4 Quality of Experience for web browsing . 24

3.5 Mobile network performance issue cause analysis . 28

3.6 Anomaly detection and root cause analysis in large-scale networks 31

3.7 Veri ication and Certi ication of Service Level Agreements . 35

3.8 Path transparency measurements . 41

Plane
3

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

1 Execu ve summary

The main objective of WP6 is to show the capabilities of the mPlane platform based on the
demonstration of a selected subset of functionality with respect to the use cases de ined in
WP1.

The main objective of Deliverable D6.2 is to empower users of mPlane technology with a
set of easily reproducible instructions to install and replicate the mPlane use cases, subject
to availability of needed equipment at the user premises. With respect to D5.5, a private
deliverable that provides detailed instructions to replicate fully- ledged experiments in the
Fastweb testplant, D6.2 represents a public counterpart that aims at providing generic in-
structions for boostrapping such experiments.

D6.2 does not introduce per se new software components. Rather, guidelines in D6.2 make
reference (and use) of mPlane components that already have extensively described in a se-
ries of software deliverable, namely D1.4 (mPlane protocol Reference Implementation, Su-
pervisor and communication interfaces), D2.3 (programmable probes), D3.4 (repositories
and big-data processing frameworks), and D4.4 (reasoners and analysis modules). While
the aim of D1.4, D2.3, D3.4 and D4.4 is to extensively describes each individual component,
the aimofD6.2 is toprovide a simple syntactical glue among them. To facilitate replicationof
one ormore use-cases for the practitioners, guideline description is reported in a templated
fashion, so that work low of each use-cases follows the same steps.

The full work low include both steps that are common to all use cases, as well as speci ic
instructions. Chapter 2 of this deliverable presents a reference demonstration environment
(Sec.2.1), consisting of theminimal hardware and software requirements common to all use
cases. This includes, e.g., steps to setup the reference implementation (Sec.2.2) as well as to
setup a chain of ceri icates (Sec.2.3).

Chapter 3 then describes, for each use case, the demonstration steps to follow. Details about
each use-case speci ic requirement, con igurations and instructions, are reported in a tem-
plated fashion as follows:

• Hardware list (UC-speci ic equipment)

• Software list (in terms of mPlane components, repositories and reasoners needed by
the UC)

• Software dependency list (in terms of additional third-party software that is used by,
but not a main product of mPlane)

• Software installation (pointing to the relevant pages in themPlanewebsite, or GitHub)

• Software con iguration (shall any mPlane component require speci ic per-UC con igu-
ration, it will be listed here)

• Step-by-step walkthrough (providing, for the sake of the example, a simple and eas-
ily repeatable sequence of commands, expected output and snapshots of the running
software)

Following instructions in Chapters 2-- 3, users should be able to run demonstrations similar
to those described in D5.5 and publicly demonstrated at several venues.

Plane
4

http://www.ict-mplane.eu
http://www.github.com

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

Notice that while this software deliverable collects information available from the mPlane
website aswell as GitHub, it is notmeant to be directly used in PDF format1: the primary pri-
mary vehicle of mPlane software and guidelines dissemination are meant to be the mPlane
website and GitHub. D6.2 is thus a handy and informative collection of guidelines for all
use-cases. Practitionerswilling to follow these instructions step-by-step for one (or several)
use-case(s) are thus invited to point their browser to http://www.ict-mplane.eu/public/
demonstration-guidelines for the online version of instructions collected in D6.2.

1SinceWebpages are rendered as PDFs, hyperlinks are however lost in this process

Plane
5

http://www.ict-mplane.eu
http://www.ict-mplane.eu
http://www.github.com
http://www.ict-mplane.eu/public/demonstration-guidelines
http://www.ict-mplane.eu/public/demonstration-guidelines

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

2 Generic Guidelines

We start by reporting, common instructions:

• for the generic use case (Sec.2.1)

• to setup the reference implementation (Sec.2.2)

• to setup the chain of certi icates (Sec.2.3)

Plane
6

Home › Demonstration guidelines

Clone content

The main objective of WP6 is to show the capabilities of the mPlane platform based on the demonstration of a selected subset

of functionality with respect to the use cases defined in WP1. The main objective of this webpage is to empower users of

mPlane technology with a set of easily reproducible instructions to install and replicate the mPlane use cases, subject to

availability of needed equipment at the user premises.

From a high-level view point, all use cases (UC) can be described using a simplified reference demonstration environment

illustrated in the figure above, that consists in the minimal hardware and software requirements common to all use cases. for

instance, a single mPlane Supervisor can be used for all UCs, and similarly the same Analysis infrastracture (e.g., hadoop

cluster) can be shared across UCs. All use cases will need you to go through these preliminary steps:

installing the reference implementation

configuring the chain of certificates

At the same time, all UCs have different requirements in terms of specific equipment and mPlane components, so that a

per-UC description is required to assist their setup. Specifically, use-case specific requirement, configurations and

instructions, are detailed in dedicated subpages per UC, according to the following template:

Hardware list (UC-specific equipment)

Sofware list (in terms of mPlane components, repositories and reasoners needed by the UC)

Sofware dependency list (in terms of additional third-party software that is used by, but not a main product of mPlane)

Sofware installation (pointing to the relevant pages in the mPlane website, or GitHub)

Sofware configuration (shall any mPlane component require specific per-UC configuration, it will be listed here)

Step-by-step walkthrough (providing, for the sake of the example, a simple and easily repeatable sequence of

commands, expected output and snapshots of the running software)

 You can access per-UC instructions by the Demonstration guideline menu, or through the link below:

Guidelines for Estimating content and service popularity for network optimization

Guidelines for Passive content curation

Guidelines for Active measurements for multimedia content delivery

Guidelines for Quality of Experience for web browsing.

Guidelines for Mobile network performance issue cause analysis

Guidelines for Anomaly detection and root cause analysis in large-scale networks

Demonstration guidelines View Edit Revisions

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

My account Log out

https://www.ict-mplane.eu/public/demonstration-guidelines

2.1. COMMON INSTRUCTIONS 7

Guidelines for Verification and Certification of Service Level Agreement

Following these instructions, users should be able to run demonstrations similar to those shown the EuCNC exhibition, the

mPlane Final workshop and other venues.

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

https://www.ict-mplane.eu/public/demonstration-guidelines

8 CHAPTER 2. GENERIC GUIDELINES

Home › SOFTWARE › Reference Implementations and SDK › mPlane RI - Reference Implementation

Description

This module provides a mPlane Software Development Kid (SDK) for Python 3 and contains the mPlane protocol reference

implementation. It is intended for the use of component and client developers to interoperate with the mPlane platform. It

requires Python 3.3 or greater.

The core classes in the mplane.model and mplane.scheduler packages are documented using Sphinx; current Sphinx

documentation can be read online here.

The mPlane Protocol provides control and data interchange for passive and active network measurement tasks. It is built

around a simple workflow in which Capabilities are published by Components, which can accept Specifications for

measurements based on these Capabilities, and provide Results, either inline or via an indirect export mechanism negotiated

using the protocol.

Measurement statements are fundamentally based on schemas divided into Parameters, representing information required to

run a measurement or query; and Result Columns, the information produced by the measurement or query. Measurement

interoperability is provided at the element level; that is, measurements containing the same Parameters and Result Columns

are considered to be of the same type and therefore comparable.

Quick Start

To install from PyPI, type:

$ pip3 install mplane-sdk

To install from GitHub type:

$ git clone https://github.com/fp7mplane/protocol-ri

$ cd protocol-ri

$ python3 setup.py install

This section describes how to get started with the mPlane SDK, the included component runtime mpcom, the debugging

client mpcli, and the demonstration supervisor mpsup. It presumes that the software is run from the root directory of a

working copy of the https://github.com/fp7mplane/protocol-ri Git repository. The demonstration supervisor and the sample

configuration files are not installed with the release SDK module.

Run Supervisor, Component and Client

To start the demonstration Supervisor with the included sample configuration and certificates, change to the repository

directory and run:

scripts/mpsup --config ./conf/supervisor.conf

To run the Component:

scripts/mpcom --config ./conf/component.conf

At this point, the Component will automatically register its capabilities to the Supervisor. Now launch the Client:

mpcli --config ./conf/client.conf

As soon as it's launched, the Client connects to the Supervisor and retrieves the capabilities. To get a list of commands

available, type help. The minimum sequence of commands to run a capability and retrieve results is:

listcap will show all the available capabilities.1.

mPlane Software Development Kit (SDK) for Python 3

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/mplane-software-development-kit-sdk-python-3

2.2. REFERENCE IMPLEMENTATION INSTRUCTIONS 9

runcap <name_or_token> runs a capability from the listcap list. You will be asked to insert parameter values for

that capability.

2.

listmeas shows all pending receipts and received measures.3.

showmeas <name_or_token> shows the measure (or pending receipt) in detail.4.

While executing these operations, the supervisor and the component will print some status udate messages, giving

information about the communications going on.

Common Problems

If an error like this: AttributeError: 'module' object has no attribute 'url' shows up, try to update

the urllib3 library: sudo pip3 install --upgrade urllib3

1.

If you get something like: ssl.CertificateError: hostname '127.0.0.1' doesn't match

'Supervisor-1.SSB.mplane.org', try the following steps:

add the following entry in /etc/hosts: 127.0.0.1 Supervisor-1.SSB.mplane.org

replace all “127.0.0.1” with “Supervisor-1.SSB.mplane.org” in the conf files

2.

Sample Configuration Files

Sample configuration files are located in protocol-ri/conf/ in the mPlane GitHub repository.

component.conf

[TLS] - paths to the certificate and key of the component, and to the root-ca certificate (or ca-chain) [Roles] - bindings

between Distinguished Names (of supervisors and clients) and Roles [Authorizations] - for each capability, there is a list of

Roles that are authorized to see that capability [module_] - parameters needed by specific component modules (e.g. ping,

tStat, etc). If you don't need a module, remove the related section. If you add a module that needs parameters, add the

corresponding section.

[component] - miscellaneous settings:

registry_uri: link to the registry.json file to be used

workflow: type of interaction between component and client/supervisor. Can be component-initiated or client-initiated.

This must be the same both for the component and the client/supervisor, otherwise they will not be able to talk to each

other.

To be properly set only if component-initiated workflow is selected:

client_host: IP address of the client/supervisor to which the component must connect

client_port: port number of the client/supervisor

registration _ path: path to which capability registration messages will be sent (see register capability)

specification _ path: path from which retrieve specifications (see retrieve specification)

result _ path: path to which results of specifications are returned (see return result)

To be properly set only if client-initiated workflow is selected:

listen_port: port number on which the component starts listening for mplane messages

client.conf

[TLS] - paths to the certificate and key of the client, and to the root-ca certificate (or ca-chain) [client] - miscellaneous

settings:

registry_uri: link to the registry.json file to be used

workflow: type of interaction between client and component/supervisor. Can be component-initiated or client-initiated.

This must be the same both for the client and the component/supervisor, otherwise they will not be able to talk to each

other.

To be properly set only if component-initiated workflow is selected:

listen_host: IP address where the client starts listening for mplane messages

listen_port: port number on which the client starts listening

http://www.ict-mplane.eu/public/mplane-software-development-kit-sdk-python-3

10 CHAPTER 2. GENERIC GUIDELINES

registration _ path: path to which capability registration messages will be received (see register capability)

specification _ path: path where specifications will be exposed to components/supervisors (see retrieve specification)

result _ path: path where results of specifications will be received (see return result)

To be properly set only if client-initiated workflow is selected:

capability _ url: path from which capabilities will be retrieved

supervisor.conf

Since the Supervisor is just a composition of component and client, its configuration file is just a union of the file described

above. [client] section regards the configuration of the part of the supervisor facing the component, in other words its "client

part" [component] section erregards the configuration of the part of the supervisor facing the client, in other words its

"component part"

Learning More

See doc/HOWTO.md in the GitHub repository for information on getting started with the mPlane SDK for demonstration

purposes.

See doc/conf.md for an introduction to the mPlane SDK configuration file format.

See doc/client-shell.md for an introduction to mpcli debug client shell.

See doc/component-dev.md for an introduction to developing components with the mPlane SDK and running them with

the mpcom runtime.

See doc/protocol-spec.md for the mPlane protocol specification.

Official version

The official version of the SDK is available at https://github.com/fp7mplane/protocol-ri.

Anyone wishing to use the SDK for development within the project should be tracking the master branch of the project on

GitHub. The 0.9.0 release (current as of D2.3) is tagged as sdk-v0.9.0.

The 0.9.0 release of the SDK is also available from the Python Package Index (PyPI) as mplane-sdk.

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/mplane-software-development-kit-sdk-python-3

2.2. REFERENCE IMPLEMENTATION INSTRUCTIONS 11

 Pull requests Issues Gist

protocol-ri / PKI / README.md

This repository

You don’t have any verified emails. We recommend verifying at least one email.

Email verification helps our support team verify ownership if you lose account access and allows you to receive all the notifications you ask for.

5 530 Watch Star Fork

fp7mplane / protocol-ri

master

cf71f75 3 days ago

1 contributor

stepenta Renamed HOWTO to README in PKI folder

43 lines (27 sloc) 1.87 KB

Simple instructions for Certificate Generation

Scripts

This folder contains three main .sh scripts:

create-component-cert.sh

create-client-cert.sh

create-supervisor-cert.sh

Configuration files for each of those scripts can be found in the the ./etc/ subfolder

Additionally, in case you don't care about compatibility with the PKI provided in this repository, we provide a further script:

create-ca.sh

Its use is however not encouraged; see Generating a new CA below for more info.

Generating a certificate

To generate a certificate (e.g. a component certificate), follow these steps:

open the corresponding configuration file (./etc/component.conf)1.

modify the SAN field (e.g. replace DNS:Supervisor-1.SSB.mplane.org with DNS:Supervisor-1.Polito.mplane.org)2.

modify the fields in the [component_dn] section (you will be prompted for these fields while running the script, so you

can also modify them later)

3.

run create-component-cert.sh and follow the instructions:

enter filename of your certificate

enter PEM passphrase (passphrase to open your encrypted certificate)

enter the Distinguished Name

enter the root-ca passphrase (mPlan3_CA)

re-enter PEM passphrase

4.

Certificate created in PKI/ca/certs/5.

Generating a new CA:

IMPORTANT: You can create your own CA and generate certificates dependent from that CA, but these will not be

compatible with certificates provided in this repository. If you want to keep compatibility, use the provided CA (follow the

steps in Generating a certificate)

To generate a new CA, run create-ca.sh and follow the instructions:

enter PEM passphrase (passphrase to open your encrypted certificate)

Raw Blame History

https://github.com/fp7mplane/protocol-ri/blob/master/PKI/README.md

12 CHAPTER 2. GENERIC GUIDELINES

re-enter PEM passphrase

The certificate will be created in PKI/ca/root-ca/, and the directory structure for the PKI will also be created in PKI/ca/

Status API Training Shop Blog About Pricing© 2015 GitHub, Inc. Terms Privacy Security Contact Help

https://github.com/fp7mplane/protocol-ri/blob/master/PKI/README.md

2.3. CHAIN OF CERTIFICATES INSTRUCTIONS 13

318627-mPlane
Demonstrator Implementa on Release
and User Guidelines

3 Use-case Guidelines

We now report speci ic per use-case instructions for

• Estimating content and service popularity for network optimization (Sec.3.1)

• Passive content curation (Sec.3.2)

• Active measurements for multimedia content delivery (Sec.3.3)

• Quality of Experience for web browsing (Sec.3.4)

• Mobile network performance issue cause analysis (Sec.3.5)

• Anomaly detection and root cause analysis in large-scale networks (Sec. 3.6)

• Veri ication and Certi ication of Service Level Agreements (Sec. 3.7)

• Path transparency measurements (Sec. 3.8)

Plane
14

Home › Demonstration guidelines › Estimating content and service popularity for network optimization

Requirements

This page details the requirements that are specific to the Contet Popularity Estimation in addition to those expressed for the

Reference demonstration environment (link).

Hardware list

Probe: One dedicated machine running Tstat as passive traffic probe

Repository: One dedicated machine for the repository running MondoDB and the analysis modules for the Content

Popularity Estimation.

Software list

mPlane protocol reference implementation (GitHub repository)

mPlane framework for the use-case (GitHub repository)

Probes

Tstat - Passive network traffic collection and analysis (mPlane page, GitHub repository)

Repositories

MongoDB (official page)

Reasoner

Reasoner for the Content Popularity Estimation (mPlane page)

Software dependencies

Probe: Linux OS and Python3

Repository: Linux OS, Python3 and MongoDB 3.0 or highe

Software installation

Download and install Tstat; follow the instructions at GitHub repository

Download and install MongoDB; follow the instructions at its official page

Download and install the Tstat mPlane proxy interface; follow the instructions at GitHub repository

Download and install the mPlane proxy for the repository, tstatrepository.py (customised for this specific use-case) and

the reasoner, cachereasoner, from the GitHub repository for this demo.

Run the software

Run Tstat (check the mPlane page for details):

sudo ./tstat/tstat -l -i DEVNAME -s OUTPUTDIR

Run MondoDB (check its official page for details):

sudo /etc/init.d/mongodb start

Run the mPlane software

Here we assume that [PROTOCOL_RI_DIR] is the folder where the GitHub repository of the mPlane protocol reference

implementation has been cloned.

The code for the use case is available on GitHub under mPlane demo material.

Guidelines for Estimating content and service popularity for network optimization

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-estimating-content-and-service-popularity-network-optimization

3.1. ESTIMATING CONTENT AND SERVICE POPULARITY FOR NETWORK OPTIMIZATION 15

Reasoner

cachereasoner is the Python script for the reasoner. It periodically runs the request which returns the list of contents to

cache in a given server.

Supervisor

The Python code for the supervisor is the one provided in the mPlane protocol RI repository, i.e., scripts/mpsup. It receives

the requests from the reasoner and forwards them to the repository and analysis module component.

Repository and Analysis Module

tstatrepository.py integrates the capabilities of communicating with Tstat and the interface to the query the analysis

module.

HowTo

1. Set the parameters in the files supervisor.conf, tstatrepository.conf, reasoner.conf (e.g., path to certificates,

supervisor address, client port and address, and roles)

2. Set the following parameters in the files cacheController.py and tstatrepository.py to connect to the Analysis module

that estimates the content popularity of contents

 _controller_address = Content Estimation analysis module address

 _controller_port = Content Estimation analysis module port

3. Set the envirnoment variable MPLANE_RI to point to [PROTOCOL_RI_DIR]

 $ export MPLANE_RI=[PROTOCOL_RI_DIR]

4. Run the mPlane components:

Supervisor

$./scripts/mpsup --config ./conf/supervisor.conf

 Tstat proxy:

$./scripts/mpcom --config ./mplane/components/tstat/conf/tstat.conf

Run the Repository proxy:

$./scripts/mpcom --config ./mplane/components/tstat/conf/tstatrepository.conf

Run the reasoner (make sure you have set the MPLANE_RI variable)

 $ python3 cachereasoner --config reasoner.conf

Step-by-step walkthrough

Warmup: activating the DB collection of content request timeseries

Once started, the mPlane proxy interface for Tstat should start exporting data (HTTP logs) to the repository interface. This will

filter the HTTP requests based on a targeted kind of content (e.g., YouTube videos). Filtered content will be used to build

request timeseries and which will be stored in the MongoDB database.

Observe: the content expected to be popular in the future and the accuracy of the prediction

The reasoner will periodically query the analysis modules to obtain the list of pieces of content which represent the best

candidates to be cached in a CDN system based on their expected popularity.

This use-case shall run for a long period of time, and the demo will mainly demonstrate the feasibility of the approach and its

viability using the mPlane protocol. For the sake of showcasing, the accuracy of the content popularity estimation environment

will rely on the analysis of historical data we have collected in the past and pre-imported in the use-case repository.

http://www.ict-mplane.eu/public/guidelines-estimating-content-and-service-popularity-network-optimization

16 CHAPTER 3. USE-CASE GUIDELINES

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-estimating-content-and-service-popularity-network-optimization

3.1. ESTIMATING CONTENT AND SERVICE POPULARITY FOR NETWORK OPTIMIZATION 17

Home › Demonstration guidelines › Passive content curation

Requirements

This page details the requirements that are specific to the Passive Content Curation in addition to those expressed for the

Reference demonstration environment (link).

Hardware list

Probe: One dedicated machine running Tstat as passive traffic probe

Repository: One dedicated machine for the repository importer, the analysis modules for the Passive Content Curation,

and the website used to present the captured URLs.

Software list

mPlane protocol reference implementation (GitHub repository)

mPlane framework for the use-case (GitHub repository)

Probe

Tstat - Passive network traffic collection and analysis (mPlane page, GitHub repository)

Repository and analysis modules

WeBrowse - an online HTTP request processing module which extracts URLs clicked by users (GitHub repository)

Reasoner

Reasoner for the Passive Content Curation (mPlane page)

Software dependencies

Probe: Linux OS and Python3

Repository: Linux OS, Python3, pymysql and schedule Python modules

Supplemental software dependencies

This software is needed for to enable the presentation module (a website) for the URLs captured by WeBrowse:

Apache 2.4.7 or higher (possibly configured in "worker" mode, which requires fast-cgi and php5-fpm packages)

MySQL 14.14 or higher

PHP 5.5.9 or higher

Urllib2 for Python3

Software installation

Download and install Tstat; follow the instructions at GitHub repository

Download and install the mPlane proxy for the repository, tstatrepository.py (customised for this specific use-case), and

the reasoner, reasoner, from the GitHub repository for this demo

Run the software

Run Tstat (check the mPlane page for details):

sudo ./tstat/tstat -l -i DEVNAME -s OUTPUTDIR

Run the mPlane software

Here we assume that [PROTOCOL_RI_DIR] is the folder where the GitHub repository of the mPlane protocol reference

implementation has been cloned.

Guidelines for Passive content curation

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-passive-content-curation-0

18 CHAPTER 3. USE-CASE GUIDELINES

The code for the use case is available on GitHub under mPlane demo material.

Supervisor

The Python code for the supervisor is the one provided in the mPlane protocol RI repository, i.e., scripts/mpsup. It receives

the specification from the reasoner and forwards them to the other mPlane components.

Repository and Analysis Module

tstatrepository.py integrates the capabilities of communicating with Tstat and the interface to the query the analysis

module.

Reasoner

reasoner is the Python script for the reasoner. It starts the Passive Content Curation demo by activating the streaming

exporter of HTTP logs generated by Tstat, and periodically queries the tstatrepository to obtain the list of the most popular

content observed in a given period.

HowTo

1. Set the parameters in the files supervisor.conf, tstatrepository.conf, reasoner.conf (e.g., path to certificates,

supervisor address, client port and address, and roles)

2. Set the environment variable MPLANE_RI to point to [PROTOCOL_RI_DIR]

$ export MPLANE_RI=[PROTOCOL_RI_DIR]

3. Run the mPlane components:

Supervisor

$./scripts/mpsup --config ./conf/supervisor.conf

 Tstat proxy:

$./scripts/mpcom --config ./mplane/components/tstat/conf/tstat.conf

Run the Repository proxy:

$./scripts/mpcom --config ./mplane/components/tstat/conf/tstatrepository.conf

Run the reasoner (make sure you have set the MPLANE_RI variable)

 $ python3 reasoner --config reasoner.conf

Step-by-step walkthrough

Warmup: online extraction of user clicks from network traffic

Once started, the mPlane proxy interface for Tstat should start exporting data (HTTP logs) to the repository interface. This will

filter the HTTP requests to extract those corresponding to actual clicks generated by users. The analsyis modules built on top

of the streaming importer will also classify the URLs depending on the kind of content the point to (e.g., videos or news).

Observe: URLs observed in the network presented in a WeBrowse

The demo will demonstrate the feasibility of the passive content curation approach and its viability using the mPlane

protocol. For the sake of showcasing, the URLs extracted by the WeBrowse modules will be presented in a website, similar to

the one available in Polito deployment, http://webrowse.polito.it (see the picture below). Notice that popular content exhibit

as expected a strong locality bias, with italian newspages (having no english version) consistently showing up in the interface.

Trigger: visit webpages to have them presented in WeBrowse

During the demo we will emulate the behaviour of a user in the network by generating automatic visits to a list of news

webpages. These will hence appear in the front-page of WeBrowse.

http://www.ict-mplane.eu/public/guidelines-passive-content-curation-0

3.2. PASSIVE CONTENT CURATION 19

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-passive-content-curation-0

20 CHAPTER 3. USE-CASE GUIDELINES

Home › Demonstration guidelines › Active measurements for multimedia content delivery

Requirements

This page details the requirements that are specific to the Active Measurements for Multimedia Content Delivery use case, in

addition to those expressed for the Reference demonstration environment (link).

Hardware list

Probe: dedicated machine to run the OTT-probe and GLIMPSE probe. It can also host the EZRepo and the RC1 reasoner

needed for this demo.

CDN server: (preferably more than one) to deliver multimedia content

Miniprobe: (hardware based OTT probes, optional) to actively monitor multimedia delivery. The miniprobes used in the use case demonstration are

NETvisor's proprietary hardware appliances called MiniProbes. We suggest to use of the models M-180 or above (in the official UC demo we use

M-180 and M-195 models).

Impairment device: to emulate streaming errors like jittering, packet delays, noise.

Software list

mPlane protocol reference implementation (GitHub repository)

mPlane framework for the use-case (GitHub repository)

Probes

OTT-probe (mPlane page, GitHub repository)

GLIMPSE probe (mPlane page, GLIMPSE official project page)

Repositories

EZRepo (mPlane page, GitHub repository)

Reasoner

RC1 reasoner (mPlane page, GitHub repository)

Software dependencies

Probes, EZRepo, RC1 reasoner: Linux OS and Python 3.x

Software installation

Download and install OTT-probe; follow the instructions at GitHub repository

Download and install GLIMPSE; follow the instructions at GLIMPSE official project page

Download and install EZRepo; follow the instructions at GitHub repository

Download and install RC1 reasoner; follow the instructions at GitHub repository

Software configuration

The demo environment specific configuration parameters like certificates, client listening links, etc should be set in the corresponding configuration

files in the "conf/" directory (for the core components like supervisor) and in the "conf/mmcd/" directory (for the probes used in the demo like

probes, EZrepo and RC1 reasoner).

Probes must be configured to connect to the Supervisor and to send indirect measurement data to the EZRepo instance as

well.

Guidelines for Active measurements for multimedia content delivery

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-active-measurements-multimedia-content-delivery

3.3. ACTIVE MEASUREMENTS FOR MULTIMEDIA CONTENT DELIVERY 21

Both content servers should have 4 VoD titles each (i.e. servers are alternative sources for same content).

The topology of the network needs to be uploaded in the Reasoner (as a JSON file).

The initial set of routine measurements needs to be configured in the Supervisor (as a JSON file).

Demonstration environment

CDN servers for content hosting and streaming

Impairment devices to emulate errors (packet delays, jitter, etc) in video streaming

Step-by-step walkthrough

Warmup: starting the monitoring infrastructure

1. Install and start up the components: the Supervisor (with GUI), the EZ_Repo and the RC1 Reasoner, possibly on a single

machine. In any case, the Supervisor and the Repository need to have public IP addresses. Launch commands from separate

windows, under the PYTHONPATH (~/protocol-ri) directory:

$ mplane/svgui --config conf/svgui.conf

$ scripts/mpcom --config conf/mmcd/ezrepo.conf

$ scripts/mpcom --config conf/mmcd/rc1.conf

In the supervisor's terminal window we expect to see the intro and the |mplane| prompt. By issuing "listcap" command we

can check if repository and reasoner has been registered and connected to the supervisor. The GUI shall be accessible via the

<supervisor>:<gui_port> address (default <gui_port> is 9892).

2. Deploy mPlane OTT probes, GLIMPSE probes and Pinger probes to multiple subscriber locations. Probes are implemented in

Python and install packages will be created for Linux, Mac and Windows. In the following command we use a unified probe,

with GLIMPSE, OTT-probe and Pinger installed.

$ scripts/mpcom --config conf/mmcd/common_probe.conf

We should see if the probes are up and running by issuing the "listcap" command from the prompt.

3. Probes are also available as hardware devices, deployed on the Miniprobe platform (TODO reference).

Trigger & observe: "Houston, we've had a problem here"

Error scenario #1: remove a piece of content from both servers (to emulate ”upstream/ingress error").

$ mmcd/errgen_rmcontent.sh

Reasoner shall correctly identify ”upstream error”.

Error scenario #2: Shutdown one of the content server (keeping the machine running).

$ mmcd/errgen_serverdown.sh

Reasoner should correctly identify ”CDN server X error”.

Error scenario #3: Configure a bandwidth limitation of about 500 kbps on one of the customer access lines.

$ mmcd/errgen_limitbandwidth.sh

Reasoner should correctly identify ”Inadequate CPE bandwidth for Customer Y”.

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

http://www.ict-mplane.eu/public/guidelines-active-measurements-multimedia-content-delivery

22 CHAPTER 3. USE-CASE GUIDELINES

Privacy

http://www.ict-mplane.eu/public/guidelines-active-measurements-multimedia-content-delivery

3.3. ACTIVE MEASUREMENTS FOR MULTIMEDIA CONTENT DELIVERY 23

Home › Demonstration guidelines › Quality of Experience for web browsing

Requirements

This page details UC-specific requirements in addition to those detailed expressed for the Reference demonstration

environment.

Hardware list

A Linux PC (for running the probe and the reasoner)

A set of servers (at least 3) for running the repository.

Software list

A OpenStack - Sahara cluster

The Firelog probe and the Web QoE reasoner

Components

Firelog probe

Repositories

OpenStack - Sahara cluster, with the configuration steps provided here

Reasoner

The Web QoE reasoner.

Software dependency

In order to run the use case the following software is needed.

Software:

Python (>=3.3.x)

java runtime environment (>=1.7) (JAVA_HOME set)

Apache Flume

Linux packages

for the probe:

dh-autoreconf

python-numpy

sqlite3

for the repository:

python-psycopg2

Root access is needed to compile and run Tstat at the probe side.

Software installation

Probe:

Follow the instructions provided on the probe home page

For Ubuntu Linux a install.sh is provided. On others Linux systems follow the instruction in the "usage of standalone

probe" subsection on the probe home page

Guidelines for Quality of Experience for web browsing

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-quality-experience-web-browsing-0

24 CHAPTER 3. USE-CASE GUIDELINES

Repository:

Pre-requisites: A OpenStack-Sahara cluster

Navigate to the OpenStack web interface

Go to: Compute/Access & Security: Create Key Pair

Go to: Data Processing/Plugins: verify if Apache Spark plugin is installed, if not install it

Go to: Compute/Images:

Create Image using this image

Check the "Public" checkbox

Go to: Data Processing/Image Registry

User name: ubuntu

Plugin Spark 1.5 -> add plugin tags

Go to: Data Processing/Node Group Template

Create template master (master + namenode)

Create template worker (slave + datanode)

Go to: Data Processing/Cluster Template

Create cluster

Assign 1 master + 3 slaves

Launch cluster (use generated authentication)

On each cluster machine:

sudo apt-get install libpq-dev

download the DB for retrieving data from HDFS from here, unpack.

All the software is now ready to be configured.

Reasoner:

The web qoe reasoner is based on the mpcli script, so it will run as any other component in the mPlane framework.

Software configuration

Components

Change directory to [PROTOCOL_RI_DIR]/mplane/components/phantomprobe

edit conf/firelog.conf: add username, modify paths of the local tstat, flume and phantomjs binaries

edit conf/flume.conf for the sink ip/port

edit conf/firelog-tstat.conf specifying ip/subnet to sniff from (e.g., 192.168.13.0 / 255.255.255.0)

Repositories

On all nodes edit /etc/hadoop/conf/hdfs-site.xml

<property>

<name>dfs.datanode.data.dir.perm</name>

<value>755</value>

</property>

sudo service hadoop-hdfs-datanode (hadoop-hdfs-namenode) restart

On the master node:

Edit dinodb/config/stado.config

xdb.nodecount (number of worker nodes)

xdb.node.k.dbhost (k being the sequence number)

xdb.node.k.dbport

http://www.ict-mplane.eu/public/guidelines-quality-experience-web-browsing-0

3.4. QUALITY OF EXPERIENCE FORWEB BROWSING 25

On all nodes:

Edit metastore.conf

metastore.hdfs.namenode -> namenode of HDFS (ipaddr:port) # lsof -i (default 50070)

metastore.hdfs.datanode -> datanode of HDFS (separated by ',')

metastore.hdfs.dir -> the path of datanodes' data directory (e.g., /dfs/dn/current, which MUST have read permission)

metastore.datanode.port: 8888

postgresraw.path -> the path of DiNoDB node

postgresraw.num: 1

add Add $DiNoDBnode/bin to PATH

cd $dinodbnode; bin/pg_ctl start -D datadir1

on all worker nodes: cd $metastore; nohup python dinodbnode.py &

on master node: cd $stado/bin; ./gs-server.sh

on master node: Use gs-createdb.sh or createtable.sh to create the schema

Reasoner

Make sure that params in webqoe/extract.py point to the master node on the repository

Demonstration environment

Browsing session with no impairments

Browsing session with impairments

Step-by-step walkthrough

Warmup - Setting up the QoE Use case: first browsing session

Download and install the probe

Register the probe to the supervisor

Execute:

runcap firelog-diagnose

when: now + 1s

destination.url = www-selected-url

when done:

show-meas firelog-diagnose-0

No error should be reported.

Trigger:

In order to raise errors, impairments should be put on the path between the probe and the web server. The easier way is

to use tools like netem on a proxy machine (e.g., the gateway)

Observe:

Re-running the same measurements in presence of impairments will highlight the root cause identified by the diagnosis

algorithm on the probe side

Executing the reasoner:

export PYTHONPATH=.

python3 mplane/components/qoe_reasoner.py --config conf/firelog-reasoner.conf --url www-selected-url

will cause the diagnosis algorithm to be run on the data available on the repository, so to provide further details on the

selected web site behaviour.

http://www.ict-mplane.eu/public/guidelines-quality-experience-web-browsing-0

26 CHAPTER 3. USE-CASE GUIDELINES

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-quality-experience-web-browsing-0

3.4. QUALITY OF EXPERIENCE FORWEB BROWSING 27

Home › Demonstration guidelines › Mobile network performance issue cause analysis

Requirements

Hardware list

Mobile Phones

The mobile probe runs on rooted Android devices. It has been tested on Anrdoid 4.2.2 or later devices. Also the unmodified YouTube application may be

used if we want to perform root cause analysis on YouTube videos.

Access Point/Router

The phones connect to the internet through a wireless access point, this should be a linux-based access-point where root

access is possible. In our setup we use Netgear WNDR3800 running openWRT OS.

Media/Content Server

Our approach can work with both YouTube and custom video servers. In case of a customised video server a linux-based

machine that supports Apache/2.4.7 or higher is required.

Repository

A linux-based machine that supports running mongoDB and the mPlane reference implementation is adequate. Enough storage should be provided to

store the measurements (depending on the demonstration size). The Repository can be co-hosted with the media-server.

Reasoner

A linux-based machine that supports running the mPlane reference implementation and Java (Weka) is adequate. The Reasoner can be co-hosted with the

Repository and/or the media-server.

Visualization

A linux-based machine that supports a web-server is adequate. The visualization machine can be co-hosted with the other servers above.

Software list

Components

 Mobile Probe (https://www.ict-mplane.eu/public/mobile-probe-android)

 Router/Server probe (router_probe.tar.gz, server_probe.tar.gz)

Repositories

Mongo-db (https://www.ict-mplane.eu/public/mongo-db)

Reasoner

Mobile Network RCA Reasoner (https://www.ict-mplane.eu/public/mobile-network-rca-reasoner)

Software dependency

 Mobile Probe: rooted Android device.

 Router Probe: AR71xx based router running OpenWRT with ip tool and Python 2.7 installed. If a router with different

architecture is used, compatible Tsat and Python binaries should be provided.

Guidelines for Mobile network performance issue cause analysis

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-mobile-network-performance-issue-cause-analysis

28 CHAPTER 3. USE-CASE GUIDELINES

 Server Probe: Linux OS with ip tool and Python 2.7 with pycurl library installed.

 All probes should have connectivity with the Repository.

 Video Server: Apache/2.4.7 or newer. All videos from https://goo.gl/IMOloZ should be previously downloaded in the

server’s public directory.

 Repository: MongoDB and node.js with modules “express”, “zlib”, “util”, “events” installed.

 Reasoner: The dependencies for the fault simulation component can be found in https://www.ict-mplane.eu/public

/mobile-network-rca-reasoner. The machine learning component requires Java 1.7 or later and Weka 3.6.13.

Software installation

 Install the Mobile Probe following the instructions in https://www.ict-mplane.eu/public/mobile-probe-android.

 Install the Router Probe by extracting the router-probe.tar.gz in the router's local file system change to the directory

with the extracted files and execute the provided install script (run.sh).

 Install the Server Probe by extracting the server-probe.tar.gz in the server's local file system, change to the directory

with the extracted files and execute the provided install script (run.sh).

 The repository installation script (repository_node.js) needs to be run with the following command node

repository_node.js.

 The reasoner script (reasoner.py) is controlled automatically and does not require installation.

 Install the reasoner as describd here (https://www.ict-mplane.eu/public/mobile-network-rca-reasoner)

Software configuration

 The global variable "REPO_URL" in the "parseAndPush.py" scripts which are included in the Mobile and Router Probes

tarballs should be changed to point to the Repository URL or IP address.

Repositories

specific configuration

Reasoner

specific configuration

Step-by-step walkthrough

Warmup: Launching the probes

 The mobile device should be connected to the router’s wireless network and a DSL or direct link to the video server

should be available to provide access to the video content.

 Launch the Router/Server Probe as root by running ./run.sh in both devices. After the dependency checks have finished

the probes will start to register and send hardware and network metrics to the repository.

 Launch the Mobile Probe and select the “Video Server URL” option from the menu. Enter the URL or the IP address of

the video server including the trailing “/”. If this is left empty, the default option is “http://mplane.pdi.tid.es/youtube/”.

Trigger: Simulating a fault

 Launch the fault simulation script as explained in https://www.ict-mplane.eu/public/mobile-network-rca-reasoner.

 The Mobile Probe will automatically start a playback of a randomly selected video.

 When the video is finished stop the simulation script.

Observe: Video session QoE and root cause analysis

 The reasoner automatically evaluates the QoE of the new video session and illustrates the video timestamp along with

the estimated QoE and the predicted impairment.

 The reasoner's output can be seen with an HTTP GET to "http://<reasoner.IP>/sessions"

File:

http://www.ict-mplane.eu/public/guidelines-mobile-network-performance-issue-cause-analysis

3.5. MOBILE NETWORK PERFORMANCE ISSUE CAUSE ANALYSIS 29

1269repositroyreasoner.tar.gz

1270serverprobe.tar.gz

1271routerprobe.tar.gz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-mobile-network-performance-issue-cause-analysis

30 CHAPTER 3. USE-CASE GUIDELINES

Home › Demonstration guidelines › Anomaly detection and root cause analysis in large-scale networks

Requirements

This page details UC-specific requirements in addition to those expressed for the Reference demonstration environment (link)

Notice that the interaction between the different components listed in the present page, is schematically illustrated in the

corresponding use case description webpage (link). This page assumes knowledge of these interactions, and merely

expresses guidelines to setup and start each component.

Hardware list

One dedicated machine running Tstat as passive traffic probe

One dedicated machine for the repository running DBStream

One machine running DidNETPerf (non necessarily dedicated, can be the same machine running the use-case reasoner)

Software list

mPlane framework for the use-case (GitHub repository), containing the mPlane Supervisor, the Reasoner

(mpAD_Reasoner) and the proxy for ADTool.

Components

Tstat - Passive network traffic collection and analysis (mPlane page, GitHub repository)

ADTool - Statistical Anomaly Detection Module, version 2.3 (mPlane page)

DisNETPerf - Network Proximity Service Module (GitHub repository)

mPlane Ripe Atlas proxy - proxy to distributed active measurment platform (GitHub repository)

Repositories

DBStream, including MATH data tranfer protocol (mPlane page, GitHub repository)

Reasoner

mpAD_Reasoner (mPlane page)

Software installation

Download and install the Tstat; follow instructions at GitHub repository

Download and install DBStream; follow instructions at GitHub repository

Download and install the ADTool analysis module; follow instructions at the corresponding mPlane page

Download and install the mPlane framework for the use-case, which already provides the mPlane proxy to the ADTool at GitHub repository

Download and install the mPlane RIPE Atlas proxy following the instructions at GitHub repository

Download and install DisNETPerf following the instructions at GitHub repository

Software configuration

Run the mPlane Supervisor:

Guidelines for Anomaly detection and root cause analysis in large-scale networks

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-anomaly-detection-and-root-cause-analysis-large-scale-networks

3.6. ANOMALY DETECTION AND ROOT CAUSE ANALYSIS IN LARGE-SCALE NETWORKS 31

./scripts/mpsup --config ./conf/supervisor.conf

Run the mPlane Client:

./scripts/mpcli --config ./conf/client.conf

Run the Tstat proxy:

./scripts/mpcom --config ./mplane/components/tstat/conf/tstat.conf

Run the Repository proxy:

./scripts/mpcom --config ./mplane/components/tstat/conf/tstatrepository.conf

Components

Run the ADTool proxy:

./scripts/mpcom --config ./mplane/components/ADTool/conf/adtool.conf

Run the RIPE Atlas proxy:

./scripts/mpcom --config ./mplane/components/ripe-atlas/conf/component.conf

Repositories

Run both DBStream and the MATH importer module, math_repo:

./hydra --config sc_tstat.xml

./math_repo

Run Tstat and the MATH exporter module, math_probe, using the mPlane Client shell:

|mplane| runcap tstat-log_tcp_complete-core

|when| = now + inf

|mplane| runcap tstat-exporter_log

repository.url = localhost:3000

Reasoner

no specific configuration

Demonstration environment

Import in DBStream external data provided by geo-localization services such as MaxMind and IP address analysis services

such as the one provided by the Team Cymru community.

Step-by-step walkthrough

Warmup

The use-case is run by starting the mpAD_Reasoner which interacts with all the mPlane components through the mPlane

Supervisor, using the mPlane RI protocol, and orchestrates all the tasks needed to automate the detection and diagnosis of

anomalies occurring in the distribution of YouTube videos.

run the mpAD_Reasoner

./scripts/mpadtoolreasoner --config ./conf/mpadclient.conf

This use-case shall run for several months collecting and analyzing YouTube measurements in the quest for anomalies. However, we cannot ensure the

presence of major anomalous events in the YouTube video provisioning during the deployment period. For the sake of showcasing the detection and

diagnosis procedure of a major event, we will rely on the analysis historical data where we have detected and investigated a major anomaly and have

been pre-imported in the use-case repository.

http://www.ict-mplane.eu/public/guidelines-anomaly-detection-and-root-cause-analysis-large-scale-networks

32 CHAPTER 3. USE-CASE GUIDELINES

Consequently, the use-case demo consists of two scenarios

Scenario 1: use-case proof-of-concept

This scenario is intended to showcase that the mPlane Anomaly Detection modules can effectively detect anomalous behaviors related to both QoS-based

and QoE-based performance metrics, and help in the root cause analysis investigation. The demo is based on historical YouTube traces pre-loaded in

DBStream.

Trigger

Once the mpAD_Reasoner is started the ADTool starts analysing the preloaded YouTube traces. After a few analysis rounds

ADTool starts flagging anomalies related to YouTube users QoE degradation. Along with the anomaly, the tool returns to the

reasoner the list of involved server IP addresses.

Observe

The reasoner client displays the list of server IP address involved in the anomaly along with the affected traffic features.

DisNETPerf is used to locate the RIPE Atlas probes closest to the servers involved in the anomaly.

The reasoner triggers, via the mPlane RIPE Atlas proxy, traceroutes from the identified probes towards the passive

vantage point where TStat is deployed.

The reasoner combines results returned by RIPE Atlas and the historical passive measurements, to generate a report

about the flagged YouTube server IP addresses.

Scenario 2: real-time correlation of passive and active measurements

This part of the demo is meant to showcase that by using the mPlane reasoner it is possible to orchestrate the live collection of passive and periodic active

measurements, and to trigger on the fly further active measurements. DBStream stores and analyzes nearly in real-time all the collected measurements.

This part of the demo uses live traffic from Tstat probe at PoliTo/Fastweb (passive), active measurements returned by DistNETPerf (periodic/continuous,

based on RIPE Atlas), and the RIPE Atlas mPlane proxy instantiation (reactive, on-demand).

The mpAD_Reasoner instructs ADTool to run on DBStream tables containing live data collected from the Tstat probe. The

demo work-flow for Scenario 2 resembles the one of Scenario 1, with the only difference that we have no guarantee that any

anomaly is flagged at run-time.

Trigger

For demo purposes a subset of YouTube servers (e.g., those serving most of the traffic) are selected via the reasoner terminal

to be further investigated through the RIPE Atlas active measurements.

Observe

Analysis results are reported in a similar manner of Scenario 1.

The pictures below show the typical output of the ADTool running on a number of traffic features. The detector outputs are

then used by the reasoner to generate the anomaly report. For instance, a number of red dots in the picture refers to

situations that can trigger alarms for anomalous situations detected by the reasoner.

http://www.ict-mplane.eu/public/guidelines-anomaly-detection-and-root-cause-analysis-large-scale-networks

3.6. ANOMALY DETECTION AND ROOT CAUSE ANALYSIS IN LARGE-SCALE NETWORKS 33

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-anomaly-detection-and-root-cause-analysis-large-scale-networks

34 CHAPTER 3. USE-CASE GUIDELINES

Home › Demonstration guidelines › Verification and Certification of Service Level Agreement

Requirements

This page details UC-specific requirements in addition to those detailed expressed for the Reference demonstration

environment.

Hardware list

Two Linux PC (for running the probe components server and client, the reasoner could be run on either of them.)

Software list

The mSLAcert probe and the SLA reasoner.

Components

mSLAcert probe

Repositories

The data it is stored locally, no repository it is needed.

Reasoner

The SLA reasoner.

Software dependency

In order to run the use case the following software is needed.

Software:

Python (>=3.3.x)

Linux packages

Additional libraries for RI

sudo apt-get install python3-yaml

sudo apt-get install python3-urllib3

sudo apt-get install python3-tornado

for the probe:

 sudo apt-get install iperf

for the reasoner:

expect - sudo apt-get install expect

convert - sudo apt-get install imagemagic

cupsfilter - sudo apt-get install cups

ps2pdf - sudo apt-get install ghostscript

Executable permission are needed to run the reasoner.

Software installation

Guidelines for Verification and Certification of Service Level Agreement

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

3.7. VERIFICATION AND CERTIFICATION OF SERVICE LEVEL AGREEMENTS 35

Probe:

On a Ubuntu-like PC, follow the instructions provided on the probe home page

Software configuration

Before running the components and the RI you need to configure the .conf files at ./conf/ directory.

mPlane RI:

You need to configure mPlane client as following:

./conf/client.conf

 [TLS]

 cert = PKI/ca/certs/"client-certicate".crt

 key = PKI/ca/certs/"plaintext certificate.key

 ca-chain = PKI/ca/root-ca/root-ca.crt

 [client]

 # leave registry_uri blank to use the default registry.json in the mplane/ folder

 registry_uri =

 # http://ict-mplane.eu/registry/demo

 # workflow may be 'component-initiated' or 'client-initiated'

 workflow = component-initiated

 # for component-initiated:

 listen-host = "IP of the machine where is launched the client" (exmp:192.168.3.1)

 listen-port = 8891

 listen-spec-link = https://"IP to where the spec are/IP Supervisor":8891/

 registration-path = register/capability

 specification-path = show/specification

 result-path = register/result

 # for client-initiated:

 capability-url: "IP supervisor":8890/ (exmp:192.168.2.1:8890/)

./conf/supervisor.conf

[TLS]

cert= PKI/ca/certs/CI-Supervisor-FUB.crt

key= PKI/ca/certs/CI-Supervisor-FUB-plaintext.key

ca-chain = PKI/ca/root-ca/root-ca.crt

[Roles]

org.mplane.FUB.Components.mSLAcert_server = guest,admin

org.mplane.FUB.Agent.mSLAcert_Agent = guest,admin

org.mplane.FUB.Supervisors.CI_Supervisor_FUB = admin

Supervisor-1.FUB.mplane.org = admin

org.mplane.FUB.Clients.CI-Client_FUB = guest,admin

[Authorizations]

ping-average-ip4 = guest,admin

ping-detail-ip4 = guest,admin

tcpsla-average-ip4 = guest,admin

tcpsla-detail-ip4 = guest,admin

udpsla-average-ip4 = guest,admin

udpsla-detail-ip4 = guest,admin

msla-average-ip4 = guest,admin

msla-detail-ip4 = guest,admin

msla-AGENT-Probe-ip4 = guest,admin

[client]

workflow may be 'component-initiated' or 'client-initiated'

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

36 CHAPTER 3. USE-CASE GUIDELINES

workflow = component-initiated

for component-initiated:

listen-host = "IP of the machine where is launched the supervisor" (exmp: 192.168.2.1)

listen-port = 8889

listen-spec-link =

https://127.0.0.1:8889/

registration-path = register/capability

specification-path = show/specification

result-path = register/result

for client-initiated:

component-urls: "IP of component 1":8888/,"IP of component 2":8888/ (exmp:

192.168.1.1:8888/,192.168.4.1:8888/)

[component]

scheduler_max_results = 20

leave registry_uri blank to use the default registry.json in the mplane/ folder

registry_uri =

http://ict-mplane.eu/registry/demo

workflow may be 'component-initiated' or 'client-initiated'

workflow = component-initiated

for component-initiated:

client_host = "IP of the machine where is launched the client" (exmp: 192.168.2.1)

client_port = 8891 / 9911

registration_path = register/capability

specification_path = show/specification

result_path = register/result

for client-initiated:

listen-port = 8890

listen-cap-link =

https://127.0.0.1:8890/

You will have also to configure a client that will be used by ./reasoner_msla.sh

Components

./conf/component*.conf

[TLS]

cert = PKI/ca/certs/"Components-certicate".crt

key = PKI/ca/certs/"plaintext certificate".key

ca-chain = PKI/ca/root-ca/root-ca.crt

[Roles]

org.mplane.FUB.Clients.CI-Client_FUB = guest,admin

"add also the roles for all the other components, client, supervisor ect"

[Authorizations]

msla-AGENT-Probe-ip4 = guest,admin

"add the capability of your probe"

[module_mSLA_main]

module = mplane.components."name of python file"

ip4addr = 1.2.3.4

 [component]

 scheduler_max_results = 20

leave registry_uri blank to use the default registry.json in the mplane/ folder

 registry_uri =

http://ict-mplane.eu/registry/demo

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

3.7. VERIFICATION AND CERTIFICATION OF SERVICE LEVEL AGREEMENTS 37

workflow may be 'component-initiated' or 'client-initiated'

workflow = component-initiated

for component-initiated

client_host = "IP of the supervisor" (exmp: 192.168.2.1)

client_port = 8889

registration_path = register/capability

specification_path = show/specification

result_path = register/result

for client-initiated

listen-port = 8888

listen-cap-link = https://127.0.0.1:8888/

Repositories

There are no repositories used for this usecase.

Reasoner

mSLAcert reasoner uses mPlane client, if it is different from the one configured, you need to add an additional link for it at the

supervisor.

ipaddressdest.in- each row contains the destination IP that have mSLAcert_Agent enabled.

ipsupervisor.in- on this file is set the IP of the supervisor that the reasoner will use.

measnum.in- on this file is set the default value is "0", please do not change this file.

timemeas.in- on this file, measurement unit is set in seconds, the default value is 40 seconds.

Demonstration environment

To demo this use case, special hardware is needed to add impairments on the network (like modifying RTT, adding

congestion, modifying jitter etc).

Step-by-step walkthrough

Before launching the components, the configuration files are needed to be configured as in "Software configuration" part.

To run the CI components (with SSL), from the protocol-ri directory, run:

To run CI mSLAcert server:

export PYTHONPATH=.

./scripts/mpcom --config ./conf/component.conf

To run CI mSLAcert Agent:

export PYTHONPATH=.

./scripts/mpcom --config ./conf/component-agent.conf

To run mPlane client:

export PYTHONPATH=.

./scripts/mpcli --config ./conf/client.conf

To run mPlane Supervisor:

export PYTHONPATH=.

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

38 CHAPTER 3. USE-CASE GUIDELINES

./scripts/mpsup --config ./conf/supervisor.conf

This will launch the supervisor.

To run mSLAcert reasoner:

./reasoner_msla.sh

Warmup:

First, you need to make sure that all the component communicate with each other:

From the mPlane client connect to the supervisor and get capabilities:

|mplane|getcap https:"ipsupervisor":8890

After make sure all the capabilities are presented on the supervisor with:

|mplane|listcap

Trigger:

To see impact on TCP traffic of different network conditions, the following impairments could be used:

High RTT (>=100ms): this can cause TCP congestion control to not saturate the capacity on high speed link

High jitter (>=30% RTT): this can trigger false retransmission at TCP layer

Link congestion: this would show TCP congenstion control issues when dealing with not responsive traffic.

Low SNR: this can create packet losses which are not related to congenstion, thus reducing TCP throughput

High BER: as above, packet lost due to physical impairment would trigger TCP congestion control despite no congestion is

present.

Observe:

You can choose the capability you want to run with: "|mplane| runcap cap-name" command. To fully test SLA, run tests based

on RTT, TCP and UDP measurements:

You could launch the SLA capability as:

|mplane|runcap msla-average-ip4

|when| = now + 40s / 1s

destination.ip4 = 192.168.1.2

source.ip4 = 1.2.3.4

ok

And get the results as:

|mplane| showmeas msla-average-ip4-0

Measurements could be performed and retrieved separately as well:

|mplane| runcap ping-average-ip4}

|mplane| runcap ping-detail-ip4

|mplane| runcap tcpsla-average-ip4

|mplane| runcap tcpsla-detail-ip4

|mplane| runcap udpsla-average-ip4

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

3.7. VERIFICATION AND CERTIFICATION OF SERVICE LEVEL AGREEMENTS 39

|mplane| runcap udpsla-detail-ip4

|mplane| showmeas [label-or-token]

In a normal case with no interference, there should not be significant difference between the throughput of TCP and the

throughput of UDP on the client side. If there are impairments on the network we would see degradation of TCP throughput,

or increase of RTT jitter, etc.. To analyse more in detail the nature of the impairment on the network, other

probes/capabilities could be used. For example on high RTT, depending on you congestion algorithm you could see a difference

of throughput as seen below:

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

http://www.ict-mplane.eu/public/guidelines-verification-and-certification-service-level-agreement

40 CHAPTER 3. USE-CASE GUIDELINES

Home

Public page Guidelines for Path transparency measurements has been updated.

Clone content

Requirements

This page details demonstration-specific requirements.

Introduction

The demonstration described here is a standalone demo, not integrated into the demonstration supervisor/repository, to

illustrate the applicability of the mPlane protocol and architecture to Internet transport research. Pathspider consists of a

custom mPlane client, which takes the role of client, reasoner, and supervisor all in one, and an mPlane component. It can be

used in standalone mode (with client speaking to component locally), in service mode (component starts and waits for client-

initiated connection to run measurements), and in client mode (connecting to previously started components). In addition to

its own component and measurements Pathspider integrates the Scamper component for following up potential

path-dependent connectivity issues by running traceroutes from each vantage point measurements are taken from.

Hardware list

The client/supervisor runs on any reasonably recent commodity PC (including laptops) that can run Python 3 in a UNIX or

UNIX-like environment. The service-mode component runs on geographically and topologically separated virtual machines

with good network connectivity without any ECN impairment (for this demo, five DigitalOcean VMs,

path-(sfo|nyc|lon|ams|sin).corvid.ch).

Software list

Pathspider is available from https://github.com/britram/pathtools, and should be installed as described below on all service

machines as well as on a central client from which the demonstration is run.

Software dependency

As Pathspider is installed as a single software installation including everything necessary for client, service, and standalone

mode operation, all dependencies are required regardless of the intended mode of operation. The following software is

necessary:

mPlane SDK (https://github.com/fp7mplane/protocol-ri) and its dependencies. Since Pathspider uses multiple value

support, the sdk-multival branch is as of this writing necessary, though mPlane SDK releases beyond 1.0.0 should include

multiple value support.

QoF (https://github.com/britram/qof) and its dependencies. The develop branch is necessary for ECN measurement

features.

Scamper and tracebox (https://github.com/fp7mplane/components/blob/master/scamper/source/scamp...) and their

dependencies.

Software installation

To install pathspider for demonstration purposes, first create a Python 3.4 virtual environment:

$ virtualenv -p python3.4 venv

$ source venv/bin/activate

Guidelines for Path transparency measurements View Edit Revisions

Building an Intelligent Measurement Plane for the Internet

Registration for mPlane Final Workshop, Heidelberg, November 30, 2015

My account Log out

https://www.ict-mplane.eu/public/guidelines-path-transparency-measurements

3.8. PATH TRANSPARENCY MEASUREMENTS 41

Install tornado:

(venv) $ pip install tornado

Installing the sdk-multival branch of mPlane using git and pip:

(venv) $ git clone https://github.com/fp7mplane/protocol-ri.git

(venv) $ cd protocol-ri

(venv) $ git checkout sdk-multival

(venv) $ cd ..

(venv) $ git clone https://github.com/britram/pathtools.git

(venv) $ pip install -v -e protocol-ri

And finally to install pathspider type: (note: dependencies numpy and

pandas need some time to install):

(venv) $ pip install -v -e pathtools

Software configuration

pathspider operates in three modes:

service: Just run mPlane components, acting as a measurement probe.

client : A client implementation analyzing results from multiple probes; fills the supervisor and reasoner roles.

standalone : A standalone implementation where the measurements and analysis are performed on the same computer.

Cannot find path-dependent behavior.

Each operating mode has its own configuration file. Either service.conf, client.conf or standalone.conf. standalone.conf

basically includes all configuration options from the client and serivce mode.

Client Configuration

Adjust URLs to point to your mPlane probes:

[probes]

nyc = http://path-nyc.corvid.ch:18888/

ams = http://path-ams.corvid.ch:18888/

sin = http://path-sin.corvid.ch:18888/

sfo = http://path-sfo.corvid.ch:18888/

lon = http://path-lon.corvid.ch:18888/

[main]

use_tracebox = false

resolver = http://path-ams.corvid.ch:18888/

Service Configuration

You will probably want to change interface_uri to the network interface

the traffic flows.

[module_ecnspider]

module = pathspider.ecnspider2

worker_count = 200 # num of connection attempts in parallel (threads)

connection_timeout = 4 # timeout for a single connection attempt

interface_uri = ring:eth0 # libtrace uri, interface to listen on

https://www.ict-mplane.eu/public/guidelines-path-transparency-measurements

42 CHAPTER 3. USE-CASE GUIDELINES

qof_port = 54739 # port for inter-process communication with QoF.

enable_ipv6 = true # enable/disable ipv6 capabilities

ip4addr = 0.0.0.0 # bind measurement connections to this IPv4 address

ip6addr = :: # bind measurement connections to this IPv4 address

[module_btdhtresolver]

module = pathspider.btdhtresolver

enable_ipv6 = true # enable/disable ipv6 capabilities

ip4addr = 0.0.0.0 # bind resolver to this IPv4 address

ip6addr = :: # bind resolver to this IPv4 address

port4 = 9881 # bind address collector to this IPv4 address

port6 = 9882 # bind address collector to this IPv6 address

[module_scamper]

module = pathspider.scamper.scamper

ip4addr = 1.2.3.4

ip6addr = ::1

#[module_webresolver]

#module = pathspider.webresolver

Step-by-step walkthrough

Assuming that we have a set of service mode Pathspider instances configured as well as a client mode Pathspider instance

configured to connect to them, as above:

Start pathspider instances on each probe (from the appropriate path / Python venv)

pathspider --mode service

Start the pathspider client and client gui on the client side:

pathspider --mode client --webui -v -B -c 100

Browse to the pathspider gui (https://localhost:1234).

Select a source for resolution (``IP address list'') and enter a list of target IP addresses to test. For a good demonstration,

you can use known-path dependent or otherwise interesting IP addresses, as available from previous testing, e.g. those

available at http://ecn.ethz.ch.

Start measurements. Targets with results will show up lower in the workflow when they are available; the color coding

shows whether ECN is available (green), unavailable (red), or path-dependent (orange) on a given target.

To examine the routes to a given target, click on it. This will initiate Tracebox measurements to the target. Targets with

results will be shown when available. Click on a result to see a graph of paths to the target.

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and

does not necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or

warranty is given that the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Privacy

https://www.ict-mplane.eu/public/guidelines-path-transparency-measurements

3.8. PATH TRANSPARENCY MEASUREMENTS 43

	Executive summary
	Generic Guidelines
	Common instructions
	Reference Implementation Instructions
	Chain of certificates instructions

	Use-case Guidelines
	Estimating content and service popularity for network optimization
	Passive content curation
	Active measurements for multimedia content delivery
	Quality of Experience for web browsing
	Mobile network performance issue cause analysis
	Anomaly detection and root cause analysis in large-scale networks
	Verification and Certification of Service Level Agreements
	Path transparency measurements

