
�����
ŵWůĂŶĞ

ĂŶ /ŶƚĞůůŝŐĞŶƚ DĞĂƐƵƌĞŵĞŶƚ WůĂŶĞ ĨŽƌ &ƵƚƵƌĞ EĞƚǁŽƌŬ ĂŶĚ �ƉƉůŝĐĂƟŽŶ DĂŶĂŐĞŵĞŶƚ

/�d &WϳͲϯϭϴϲϮϳ

WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ
/ŶŝƟĂů ZĞůĞĂƐĞ

�ƵƚŚŽƌ;ƐͿ͗ WK>/dK �ůĞƐƐĂŶĚƌŽ &ŝŶĂŵŽƌĞ͕ DĂƌĐŽ DĞůůŝĂ͕ DĂƵƌŝǌŝŽ DƵŶĂĨž
&h� �ĚŝŽŶ dĞŐŽ
^^� 'ŝĂŶŶŝ �Ğ ZŽƐĂ͕ ^ƚĞĨĂŶŽ WĞŶƚĂƐƐƵŐůŝĂ
d/ &ĂďƌŝǌŝŽ /ŶǀĞƌŶŝǌǌŝ
�hZ��KD DĂƌĐŽ DŝůĂŶĞƐŝŽ
�E^d WĞůůĞŐƌŝŶŽ �ĂƐŽƌŝĂ͕ �ĂŶŝůŽ �ŝĐĂůĞƐĞ͕ �ĂƌŝŽ ZŽƐƐŝ͕
E�� DĂƵƌŝǌŝŽ �ƵƐŝ͕ ^ĂǀĞƌŝŽ EŝĐĐŽůŝŶŝ
E�ds/^KZ �͘ ^ǌĂďſ͕ d͘ ^ǌĞŵĞƚŚǇ
d/� 'ŝŽƌŐŽƐ �ŝŵŽƉŽƵůŽƐ͕ /ůŝĂƐ >ĞŽŶƟĂĚŝƐ
&,� DŝĐŚĂĞů &ĂĂƚŚ͕ ZŽůĨ tŝŶƚĞƌ
h>' �ĞŶŶŽŝƚ �ŽŶŶĞƚ͕ <ŽƌŝĂŶ �ĚĞůŝŶĞ͕ zŽŶŐũƵŶ >ŝĂŽ
�d, �ƌŝĂŶ dƌĂŵŵĞů

�ŽĐƵŵĞŶƚ EƵŵďĞƌ͗ �Ϯ͘Ϯ
ZĞǀŝƐŝŽŶ͗ ϭ͘Ϭ
ZĞǀŝƐŝŽŶ �ĂƚĞ͗ Ϯϳ DĂǇ ϮϬϭϰ
�ĞůŝǀĞƌĂďůĞ dǇƉĞ͗ Zd�
�ƵĞ �ĂƚĞ ŽĨ �ĞůŝǀĞƌǇ͗ ϭ DĂǇ ϮϬϭϰ
�ĐƚƵĂů �ĂƚĞ ŽĨ �ĞůŝǀĞƌǇ͗ Ϯϳ DĂǇ ϮϬϭϰ
EĂƚƵƌĞ ŽĨ ƚŚĞ �ĞůŝǀĞƌĂďůĞ͗ ;^ͿŽŌǁĂƌĞ
�ŝƐƐĞŵŝŶĂƟŽŶ >ĞǀĞů͗ WƵďůŝĐ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

�ďƐƚƌĂĐƚ͗

dŚŝƐ ĚĞůŝǀĞƌĂďůĞ ĐŽůůĞĐƚƐ ƚŚĞ ƐŽŌǁĂƌĞ ƌĞůĞĂƐĞĚ ďǇ ƚŚĞ ŵWůĂŶĞ �ŽŶƐŽƌƟƵŵ Ăƚ ŵŽŶƚŚ ϭϴ͘ dŚŝƐ ŝƐ Ă ƐŽŌǁĂƌĞ ĚĞůŝǀĞƌĂďůĞ͕ ƐŽ ƚŚŝƐ
ĚŽĐƵŵĞŶƚ ďƌŝĞŇǇ ĚĞƐĐƌŝďĞƐ ƚŚĞ ƐŽŌǁĂƌĞ ďǇ ĐŽůůĞĐƟŶŐ ƚŚĞ ŝŶĨŽƌŵĂƟŽŶ ƚŚĂƚ ŝƐ ƉƌĞƐĞŶƚ ŽŶ ƚŚĞǁĞďƐŝƚĞ ƉĂŐĞ Ăƚ ƚŚĞ ƟŵĞŽĨǁƌŝƟŶŐ͘
^ŽŌǁĂƌĞ ĂŶĚ ŝŶƐƚƌƵĐƟŽŶ ŽŶ ŚŽǁ ƚŽ ĂĐĐĞƐƐ ŝƚ ŵƵƐƚ ďĞ ĂĐĐĞƐƐĞĚ ĨƌŽŵ ͘

<ĞǇǁŽƌĚƐ͗ ŵWůĂŶĞ ƐŽŌǁĂƌĞ͕ ƉƌŽǆǇ ŝŶƚĞƌĨĂĐĞ

����� Ϯ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

�ŝƐĐůĂŝŵĞƌ

dŚĞ ŝŶĨŽƌŵĂƟŽŶ͕ ĚŽĐƵŵĞŶƚĂƟŽŶ ĂŶĚ ĮŐƵƌĞƐ ĂǀĂŝůĂďůĞ ŝŶ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ ĂƌĞ ǁƌŝƩĞŶ ďǇ ƚŚĞ ŵWůĂŶĞ �ŽŶͲ
ƐŽƌƟƵŵ ƉĂƌƚŶĞƌƐ ƵŶĚĞƌ �� ĐŽͲĮŶĂŶĐŝŶŐ ;ƉƌŽũĞĐƚ &WϳͲ/�dͲϯϭϴϲϮϳͿ ĂŶĚ ĚŽĞƐ ŶŽƚ ŶĞĐĞƐƐĂƌŝůǇ ƌĞŇĞĐƚ ƚŚĞ
ǀŝĞǁ ŽĨ ƚŚĞ �ƵƌŽƉĞĂŶ �ŽŵŵŝƐƐŝŽŶ͘
dŚĞ ŝŶĨŽƌŵĂƟŽŶ ŝŶ ƚŚŝƐ ĚŽĐƵŵĞŶƚ ŝƐ ƉƌŽǀŝĚĞĚ ǭǭĂƐ ŝƐΖΖ͕ ĂŶĚ ŶŽ ŐƵĂƌĂŶƚĞĞ Žƌ ǁĂƌƌĂŶƚǇ ŝƐ ŐŝǀĞŶ ƚŚĂƚ ƚŚĞ
ŝŶĨŽƌŵĂƟŽŶ ŝƐ Įƚ ĨŽƌ ĂŶǇ ƉĂƌƟĐƵůĂƌ ƉƵƌƉŽƐĞ͘ dŚĞ ƵƐĞƌ ƵƐĞƐ ƚŚĞ ŝŶĨŽƌŵĂƟŽŶ Ăƚ ŝƚƐ ƐŽůĞ ƌŝƐŬ ĂŶĚ ůŝĂďŝůŝƚǇ͘

����� ϯ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

�ŽŶƚĞŶƚƐ

�ŝƐĐůĂŝŵĞƌ͘ ϯ

�ǆĞĐƵƟǀĞ ^ƵŵŵĂƌǇ͘ ϱ

ϭ ^ŽŌǁĂƌĞ ĚĞƐĐƌŝƉƟŽŶ͘ ϲ

����� ϰ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

�ǆĞĐƵƟǀĞ ^ƵŵŵĂƌǇ

dŚŝƐ ĚĞůŝǀĞƌĂďůĞ ƐƵŵŵĂƌŝǌĞƐ ƐŽŌǁĂƌĞ ƚŚĂƚ ƚŚĞ �ŽŶƐŽƌƟƵŵŵĂĚĞ ĂǀĂŝůĂďůĞ Ăƚ ŵŽŶƚŚ ϭϴ ƐŝŶĐĞ ƚŚĞ ďĞŐŝŶͲ
ŶŝŶŐ ŽĨ ƚŚĞ ƉƌŽũĞĐƚ͘ dŚĞ ƐŽŌǁĂƌĞ ƚŚĂƚ ŝƐ ƉĂƌƚ ŽĨ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ ŝƐ ůŝƐƚĞĚ ďĞůŽǁ͗

ϭ͘ �ůŽĐŬŵŽŶ

Ϯ͘ ��d/

ϯ͘ &ĂƐƚƉŝŶŐ

ϰ͘ &ŝƌĞůŽŐ

ϱ͘ '>/DW^�

ϲ͘ DŽďŝWƌŽďĞ

ϳ͘ WĞƌĨŽƌŵĂŶĐĞsŝƐŽƌ

ϴ͘ YŽ&

ϵ͘ Z/>�ŶĂůǇǌĞƌ

ϭϬ͘ ^ĐĂŵƉĞƌ

ϭϭ͘ dƌĂĐĞďŽǆ

ϭϮ͘ dƐƚĂƚ

ϭϯ͘ ƉƌŽďĞͲůŽĐĂůͲƐƚŽƌĂŐĞ

ϭϰ͘ ǇŽƵƚƵďĞͲƉƌŽďĞ

&Žƌ ĞĂĐŚ ƚŽŽů͕ Ă ǁĞď ƉĂŐĞ ŚĂƐ ďĞĞŶ ƉƌĞƉĂƌĞĚ ĨŽůůŽǁŝŶŐ ƚŚĞ ƐĂŵĞ ƐƚƌƵĐƚƵƌĞ͕ ĂŶĚ ĂŶ ĂƌĐŚŝǀĞ ŝƐ ƉƌŽǀŝĚĞĚ
ƐŽ ƚŽ ĂůůŽǁ ƉĞŽƉůĞ ƚŽ ĚŽǁŶůŽĂĚ ĂŶĚ ƌƵŶ ƚŚĞ ƌĞůĞĂƐĞĚ ƐŽŌǁĂƌĞ͘ �ĞƚĂŝůĞĚ ŝŶĨŽƌŵĂƟŽŶ ŽĨ ǁŚĂƚ ŚĂƐ ďĞĞŶ
ĚĞǀĞůŽƉĞĚ ǁŝƚŚŝŶ ŵWůĂŶĞ ŝƐ ŐŝǀĞŶ͘

�ĂĐŚ ƚŽŽů ƉĂŐĞ ĐĂŶ ďĞ ĂĐĐĞƐƐĞƐ ĨƌŽŵ ĨƌŽŵ ͘ dŚĞ
ƉĂŐĞ ůŝƐƚƐ ŵŽƌĞ ƐŽŌǁĂƌĞ ƚŚĂƚ ŚĂƐ ďĞĞŶ ĚĞǀĞůŽƉĞĚ ďǇ ŵWůĂŶĞ ƉĂƌƚŶĞƌƐ ǁŚŝĐŚ ĂƌĞ ŶŽƚ ƉĂƌƚ ŽĨ ƚŚŝƐ ĚĞůŝǀͲ
ĞƌĂďůĞ͘ dŚĞ ůŝƐƚ ĂďŽǀĞ ŝŶĐůƵĚĞƐ ƐŽŌǁĂƌĞ ƚŚĂƚ ĞŝƚŚĞƌ ǁĂƐ ĞŶƟƌĞůǇ ĚĞǀĞůŽƉĞĚ͕ Žƌ ƚŚĂƚ ƌĞĐĞŝǀĞĚ ƐŝŐŶŝĮĐĂŶƚ
ĐŽŶƚƌŝďƵƟŽŶƐ ĂŶĚ ƵƉĚĂƚĞƐ ǁŝƚŚŝŶ ƚŚĞ ƉƌŽũĞĐƚ͘

����� ϱ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

ϭ ^ŽŌǁĂƌĞ ĚĞƐĐƌŝƉƟŽŶ

dŚŝƐ ĚĞůŝǀĞƌĂďůĞ ƐƵŵŵĂƌŝǌĞƐ ƚŚĞ ƐŽŌǁĂƌĞ ƚŚĂƚ ŚĂƐ ďĞĞŶ ŝŶŝƟĂůůǇ ƌĞůĞĂƐĞĚ ďǇ ƚŚĞ �ŽŶƐŽƌƟƵŵ ĂƚŵŽŶƚŚ ϭϴ
ƐŝŶĐĞ ƚŚĞ ďĞŐŝŶŶŝŶŐ ŽĨ ƚŚĞ WƌŽũĞĐƚ͘ �ĂĐŚ ƐŽŌǁĂƌĞ ŝƐ ĚĞƐĐƌŝďĞĚ ŽŶ ƚŚĞ ŵWůĂŶĞ ǁĞďƐŝƚĞ͕ ĂĐĐĞƐƐŝďůĞ ĨƌŽŵ

͘ ^ƵĐŚ ƉĂŐĞ;ƐͿ ǁŝůů ĐŚĂŶŐĞ ŝŶ ƚŚĞ ĨƵƚƵƌĞ͕ ĂŶĚ ŽƚŚĞƌ
ƐŽŌǁĂƌĞ ǁŝůů ďĞ ŵĂĚĞ ĂǀĂŝůĂďůĞ ĂƐ ƐŽŽŶ ĂƐ ŶĞǁ ƚŽŽůƐ ĂƌĞ ƌĞůĞĂƐĞĚ͘ EŽƚĞ ŝŶĚĞĞĚ ƚŚĂƚ ƚŚĞ ƉĂŐĞ ĂůƌĞĂĚǇ
ŚŽƐƚƐ ŽƚŚĞƌ ƐŽŌǁĂƌĞ ƚŚĂƚ ƉĂƌƚŶĞƌƐ ŵĂĚĞ ĂǀĂŝůĂďůĞ ĚƵƌŝŶŐ ƚŚĞ ƉƌŽũĞĐƚ͕ Žƌ ƐŽŵĞ ĂůƉŚĂ ƌĞůĞĂƐĞ ŽĨ ƚŽŽůƐ
ƚŚĂƚ ĂƌĞ ŶŽƚ ƉĂƌƚ ŽĨ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ͘ dŚŝƐ ĚĞůŝǀĞƌĂďůĞ ŝƐ ƚŚƵƐ ŝŶƚĞŶĚĞĚ ƚŽ ďĞ Ă ƐŶĂƉƐŚŽƚ ŽĨ ƚŚĞ ƐƚĂƚƵƐ ŽĨ
ƚŚĞ ƉĂŐĞ Ăƚ ƚŚĞ ƟŵĞ ŽĨ ǁƌŝƟŶŐ͘ �ĂĐŚ ƉĂŐĞ ĨŽůůŽǁƐ ƚŚĞ ƐĂŵĞ ƐĐŚĞŵĞ͕ ƐŽ ƚŚĂƚ Ă ƵŶŝĨŽƌŵ ĚĞƐĐƌŝƉƟŽŶ ŽĨ
ƚŚĞ ƚŽŽůƐ ĂŶĚ ƐŽŌǁĂƌĞ ŝƐ ŽīĞƌĞĚ͘ /Ŷ ƉĂƌƟĐƵůĂƌ͕ ƚŚĞ ĨŽůůŽǁŝŶŐ ŝƚĞŵƐ ĂƌĞ ƉƌĞƐĞŶƚ͗

ͻ �ĞƐĐƌŝƉƟŽŶ͗ Ă ĚĞƐĐƌŝƉƟŽŶ ŽĨ ƚŚĞ ƐŽŌǁĂƌĞ ŝƐ ƉƌŽǀŝĚĞĚ͕ ǁŝƚŚ ŽŶĞ ƉŝĐƚƵƌĞ ƚŚĂƚ ŚĞůƉƐ ƚŽ ŝĚĞŶƟĨǇ ŝƚƐ
ƐĐŽƉĞ ĂŶĚ ŐŽĂůƐ͘ /Ŷ ĐĂƐĞ ƚŚĞ ƐŽŌǁĂƌĞ ŚĂƐ ĂůƌĞĂĚǇ ĂǁĞďƉĂŐĞ ĚĞƐĐƌŝďŝŶŐ ŝƚ͕ ǁĞ ƌĞƉŽƌƚ ŝŶ ƚŚŝƐ ƐĞĐƟŽŶ
ŽŶůǇ Ă ďƌŝĞĨ ĚĞƐĐƌŝƉƟŽŶ ĂŶĚ ƉƌŽǀŝĚĞ ƉŽŝŶƚĞƌƐ ƚŽ ƚŚĞ ŽƌŝŐŝŶĂů ǁĞďƉĂŐĞ;ƐͿ ƚŽ ĂǀŽŝĚ ƌĞƉůŝĐĂƟŶŐ ĚĂƚĂ͘

ͻ YƵŝĐŬ ƐƚĂƌƚ͗ ŝƚ ƉƌŽǀŝĚĞƐ Ă ƐŝŵƉůĞ ĚĞƐĐƌŝƉƟŽŶ ŽŶ ŚŽǁ ƚŽ ĚŽǁŶůŽĂĚ͕ ĐŽŵƉŝůĞ ĂŶĚ ƌƵŶ ƚŚĞ ƐŽŌǁĂƌĞ͘
>ŝŶŬƐ ƚŽ ĞǆƚĞƌŶĂů ƌĞƉŽƐŝƚŽƌŝĞƐ ĐĂŶ ďĞ ƵƐĞĚ͕ Ğ͘Ő͕͘ ƚŽ Žƌ ƚŽ Ă ƉƌŝǀĂƚĞ ƐǀŶ͕ ŝŶ
ĐĂƐĞ ƚŚĞ ƐŽŌǁĂƌĞ ŝƐ ŶŽƚ ŶĂƟǀĞůǇ ŚŽƐƚĞĚ ŝŶ ƚŚĞ ŵWůĂŶĞ ƐǀŶ͘

ͻ EĞǁ ĨĞĂƚƵƌĞƐ ƐƵƉƉŽƌƚĞĚ ďǇ ƚŚĞ ŵWůĂŶĞ ƉƌŽũĞĐƚ͗ ŚĞƌĞ ǁĞ ůŝƐƚ ƚŚĞ ŶĞǁ ĨĞĂƚƵƌĞƐ ƚŚĂƚ ŚĂǀĞ ďĞĞŶ
ĂĚĚĞĚ ĚƵƌŝŶŐ ŵWůĂŶĞ ŝŶ ĐĂƐĞ ƐŽŌǁĂƌĞ ŚĂƐ ŶŽƚ ďĞĞŶ ĞŶƟƌĞůǇ ĚĞǀĞůŽƉĞĚ ǁŝƚŚŝŶ ƚŚĞ ƉƌŽũĞĐƚ͕ ďƵƚ
ƌĂƚŚĞƌ ŝƚ ŚĂƐ ďĞĞŶ ĞǆƚĞŶĚĞĚ ĚƵƌŝŶŐ ƚŚĞ ƉƌŽũĞĐƚ͘

ͻ ŵWůĂŶĞ ƉƌŽǆǇ ŝŶƚĞƌĨĂĐĞ͗ ,ĞƌĞ ŝŶĨŽƌŵĂƟŽŶ ŽŶ ŚŽǁ ƚŽ ƵƐĞ ƚŚĞŵWůĂŶĞ ŶĂƟǀĞ ĂƌĐŚŝƚĞĐƚƵƌĞ ŝŶƚĞƌĨĂĐĞ
ŝƐ ŽīĞƌĞĚ͘ dŚĞ ƐŽŌǁĂƌĞ ĐĂŶ ĞŝƚŚĞƌ ŶĂƟǀĞůǇ ƐƵƉƉŽƌƚ ƚŚĞŵWůĂŶĞ ŝŶƚĞƌĨĂĐĞ͕ Žƌ Ă ƉƌŽǆǇ ŚĂƐ ƚŽ ďĞ ƵƐĞĚ
ƚŽ ĞǆƉŽƐĞ ĐĂƉĂďŝůŝƟĞƐ͕ ĞǆĐŚĂŶŐĞ ĐŽŵŵĂŶĚƐ͕ ĂŶĚ ƌĞƚƌŝĞǀĞ ƌĞƐƵůƚƐ͘ EŽƚĞ ƚŚĂƚ ƚŚĞ ŵWůĂŶĞ ƌĞĨĞƌĞŶĐĞ
ĂƌĐŚŝƚĞĐƚƵƌĞ ŝƐ ƐƟůů Ă ǁŽƌŬ ŝŶ ƉƌŽŐƌĞƐƐ Ăƚ ƚŚĞ ƟŵĞ ŽĨ ǁƌŝƟŶŐ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ ĂŶĚ ŝƚ ǁŝůů ďĞ ĚĞƚĂŝůĞĚ
ŝŶ �ϭ͘ϰ Ăƚ ŵŽŶƚŚ Ϯϰ͘ ,ĞŶĐĞ͕ ŝŶĨŽƌŵĂƟŽŶ ŚĞƌĞ ŝƐ ƚŽ ďĞ ĐŽŶƐŝĚĞƌĞĚ Ă ƉƌĞůŝŵŝŶĂƌǇ ƌĞůĞĂƐĞ ĂŶĚ ĂƌĞ
ƐƵƉƉŽƐĞĚ ƚŽ ĐŚĂŶŐĞ ŝŶ ƚŚĞ ĨƵƚƵƌĞ͘

ͻ KĸĐŝĂů ǀĞƌƐŝŽŶ͗ ŚĞƌĞ ůŝŶŬƐ ƚŽ ƚŚĞ ĨƌŽǌĞŶ ǀĞƌƐŝŽŶ ŽĨ ƚŚĞ ƐŽŌǁĂƌĞ Ăƚ ƚŚĞ ƟŵĞ ŽĨ ǁƌŝƟŶŐ ƚŚŝƐ ĚĞůŝǀͲ
ĞƌĂďůĞ ĂƌĞ ƉƌŽǀŝĚĞĚ͘ &Žƌ ŝŶƐƚĂŶĐĞ͕ ŝŶ ĐĂƐĞ ƚŚĞ ƐŽŌǁĂƌĞ ŝƐ ŚŽƐƚĞĚ ŝŶ Ă ƉƵďůŝĐ Žƌ ƉƌŝǀĂƚĞ ƌĞƉŽƐŝƚŽƌǇ͕
Ă ͘ƚĂƌ͘ Őǌ ĂƌĐŚŝǀĞ ŝƐ ƉƌŽǀŝĚĞĚ ǁŝƚŚ ƚŚĞ ƟŵĞƐƚĂŵƉ ŽĨ ŝƚƐ ĐƌĞĂƟŽŶ͘

/Ŷ ƚŚĞ ĨŽůůŽǁŝŶŐ͕ ǁĞ ƌĞƉŽƌƚ ƚŚĞ ƉƌŝŶƚĞĚ ǀĞƌƐŝŽŶ ŽĨ ĞĂĐŚ ƚŽŽů ĚĞƐĐƌŝƉƟŽŶ ƉĂŐĞ͘ /ƚ ŚĂƐ ƚŽ ďĞ ŝŶƚĞŶĚĞĚ ĂƐ Ă
ƐŶĂƉƐŚŽƚ ƐŝŶĐĞ ƚŚĞ ƉĂŐĞ ŝƚƐĞůĨ ŝƐ ƐƵƉƉŽƐĞĚ ƚŽ ĐŚĂŶŐĞ ŝŶ ƚŚĞ ĨƵƚƵƌĞ͘ dŚĞ ƚŽŽůƐ ƚŚĂƚ ĂƌĞ ŝŶĐůƵĚĞĚ ĂƌĞ͗

ϭ͘ �ůŽĐŬŵŽŶ

Ϯ͘ ��d/

ϯ͘ &ĂƐƚƉŝŶŐ

ϰ͘ &ŝƌĞůŽŐ

ϱ͘ '>/DW^�

ϲ͘ DŽďŝWƌŽďĞ

ϳ͘ WĞƌĨŽƌŵĂŶĐĞsŝƐŽƌ

����� ϲ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

ϯϭϴϲϮϳͲŵWůĂŶĞ �Ϯ͘Ϯ
WƌŽďĞ DĞĂƐƵƌĞŵĞŶƚ WƌŝŵŝƟǀĞƐ ĂŶĚ �ŶĂůǇƐŝƐ >ŝďƌĂƌǇ Ͳ /ŶŝƟĂů ZĞůĞĂƐĞ

ϴ͘ YŽ&

ϵ͘ Z/>�ŶĂůǇǌĞƌ

ϭϬ͘ ^ĐĂŵƉĞƌ

ϭϭ͘ dƌĂĐĞďŽǆ

ϭϮ͘ dƐƚĂƚ

ϭϯ͘ ƉƌŽďĞͲůŽĐĂůͲƐƚŽƌĂŐĞ

ϭϰ͘ ǇŽƵƚƵďĞͲƉƌŽďĞ

KƚŚĞƌ ƐŽŌǁĂƌĞ ƉƌĞƐĞŶƚ ŝŶ ƚŚĞ ĨƌŽŶƚ ƉĂŐĞ ŝƐ ŶŽƚ ŝŶƚĞŶĚĞĚ ƚŽ ďĞ ƉĂƌƚ ŽĨ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ͘ dŚĞ ůŝƐƚ ĂďŽǀĞ
ŝŶĐůƵĚĞƐ ƐŽŌǁĂƌĞ ƚŚĂƚ ĞŝƚŚĞƌ ǁĂƐ ĞŶƟƌĞůǇ ĚĞǀĞůŽƉĞĚ͕ Žƌ ƚŚĂƚ ƌĞĐĞŝǀĞĚ ƐŝŐŶŝĮĐĂŶƚ ĐŽŶƚƌŝďƵƟŽŶƐ ĂŶĚ ƵƉͲ
ĚĂƚĞƐ ǁŝƚŚŝŶ ƚŚĞ ƉƌŽũĞĐƚ͘ �Ŷ ĂůƉŚĂ ǀĞƌƐŝŽŶ ŽĨ ƚŚĞ ŵWůĂŶĞ ZĞĨĞƌĞŶĐĞ /ŵƉůĞŵĞŶƚĂƟŽŶ ;Z/Ϳ ŝƐ ƉƌĞƐĞŶƚ͕ ďƵƚ
ŝƚ ŝƐ ŶŽƚ ƉĂƌƚ ŽĨ ƚŚŝƐ ĚĞůŝǀĞƌĂďůĞ ĂƐ ŝƚ ǁŝůů ďĞ ŽĸĐŝĂůůǇ ďĞ ƉĂƌƚ ŽĨ �ϭ͘ϰ͘

����� ϳ ŽĨ ϳ ZĞǀŝƐŝŽŶ ϭ͘Ϭ ŽĨ Ϯϳ DĂǇ ϮϬϭϰ

Home › SOFTWARE

mPlane architecture:
RI - Reference Implementation (developed by ETH, SSB)

Passive tools:
Blockmon, a distributed stream-processing platform (developed by NEC)

DATI, a flexible, high performance passive monitoring platform (developed by TI)

RILAnalyzer, a tool to perform network analysis from within a mobile device (developed by TID)

QoF, a TCP-aware flow meter (developed by ETH)

Tstat, a passive monitoring tool (developed by POLITO)

MobileProbe, a tool for monitoring smartphone performance for Android devices (developed by TID)

Active tools:
DMFSGD: a tool to infer delay between distance hosts without performing any measurement (developed by ULG)

GLIMPSE, an end host-based network measurement tool (developed by FHA)

Fastping, a fast ICMP scanner for TopHat (developed by ENST)

MERLIN, a router-level topology discovery tool (developed by ULG)

mSLAcert, a tool for measurement of multi layer throughput and other active data for Service layer level agreement
certification (developed by FUB)

PerformanceVisor proxy, an universal mplane proxy module for the existing ''PerformanceVisor'' (PVSR) monitoring
framework (developed by Netvisor)

Scamper, a sophisticated active probing tool (developed by CAIDA)

Tracebox, a tool for topology discovery (developed by ULG)

youtube-probe, a lightweight active YouTube video download performance evaluation tool (developed by NETVISOR)

Mixing active and passive:
Firelog: a Firefox plugin to measure HTTP QoE (developed by EURECOM)

Repository tools:
Hadoop Fair Sojourn Protocol, a scheduler for Apache Hadoop (developed by EURECOM)

Tstat - LogSync, a simple data export framework (deveoped by POLITO)

 Others:
IPFIX, an ipfix module for python3.3 (deveoped by ETH)

probe-local-storage is a small-footprint in-memory DB for time-series data with local processing (developed by
NETVISOR)

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Software View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/node/314
https://www.ict-mplane.eu/node/51
https://www.ict-mplane.eu/node/39
https://www.ict-mplane.eu/node/315
https://www.ict-mplane.eu/node/44
https://www.ict-mplane.eu/node/340
https://www.ict-mplane.eu/node/40
https://www.ict-mplane.eu/node/320
https://www.ict-mplane.eu/node/45
https://www.ict-mplane.eu/node/313
https://www.ict-mplane.eu/node/51
https://www.ict-mplane.eu/node/316
https://www.ict-mplane.eu/node/37
https://www.ict-mplane.eu/node/328
https://www.ict-mplane.eu/node/45
https://www.ict-mplane.eu/node/322
https://www.ict-mplane.eu/node/50
https://www.ict-mplane.eu/node/324
https://www.ict-mplane.eu/node/49
https://www.ict-mplane.eu/node/323
http://www.top-hat.info/
https://www.ict-mplane.eu/node/43
https://www.ict-mplane.eu/node/334
https://www.ict-mplane.eu/node/50
https://www.ict-mplane.eu/node/331
https://www.ict-mplane.eu/node/38
https://www.ict-mplane.eu/node/319
https://www.ict-mplane.eu/node/333
https://www.ict-mplane.eu/node/321
https://www.ict-mplane.eu/node/50
https://www.ict-mplane.eu/public/youtube-probe
https://www.ict-mplane.eu/node/47
https://www.ict-mplane.eu/node/327
https://www.ict-mplane.eu/node/42
https://www.ict-mplane.eu/node/318
https://www.ict-mplane.eu/node/42
https://www.ict-mplane.eu/node/326
https://www.ict-mplane.eu/node/37
https://www.ict-mplane.eu/node/312
https://www.ict-mplane.eu/node/51
https://www.ict-mplane.eu/public/probe-local-storage
https://www.ict-mplane.eu/node/47
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/
https://www.ict-mplane.eu/public/software
https://www.ict-mplane.eu/node/250/edit
https://www.ict-mplane.eu/node/250/revisions
https://www.ict-mplane.eu/node/250/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Home › SOFTWARE › Blockmon

Description:
Blockmon is a software allowing construction of flexible and high performance (rates in the 10Gb range) monitoring and
data analysis nodes, where a node can be for example a hardware probe or a PC. Blockmon has started under the EU FP7
DEMONS project, and it is still under constant development under the EU FP7 mPlane mainly by NEC. The official Blockmon
page is available at https://github.com/blockmon/blockmon.

Blockmon is based around the notion of blocks, which are small units of processing (e.g., packet counting). Blocks are
connected and communicate between each other via gates. Among other functionalities, Blockmon provides an
implementation of Tstat passive probe as result of collaboration activities within the mPlane project.

A set of inter-connected blocks represents a composition, which defines the application to run on top of the platform. Users
can express their compositions in terms of XML files.

More information on Blockmon and its performance are provided in

Simoncelli, D., M. Dusi, F. Gringoli, and S. Niccolini, Stream-monitoring with blockmon: convergence of network
measurements and data analytics platforms, SIGCOMM Comput. Commun. Rev., 2013

and on the Blockmon official website.

Quick start:

We recommend the user to refer to the lastest version available on github:

git clone https://github.com/blockmon/blockmon.git

To guide the user through the installation process, an INSTALL file is provided.

The README file contains information on how to create compositions with existing blocks and how to start developing new
blocks for any need.

Users can run pcapsrcctr.xml as the sample application that comes with the code. The application simply counts packets
coming to an network interface and consisits of the declaration of a set of blocks and their connections, all in XML format,
as shown below:

<composition id="mysnifferctr" app_id="boh">
 <install>
 <threadpool id="sniffer_thread" num_threads="2" >
 <core number="0"/>
 </threadpool>

 <block id="sniffer" type="PcapSource" invocation="async" threadpool="sniffer_thread">
 <params>

Blockmon

Building an Intelligent Measurement Plane for the Internet

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://fp7-demons.eu/
https://www.ict-mplane.eu/node/44
https://github.com/blockmon/blockmon
https://www.ict-mplane.eu/node/316
https://www.ict-mplane.eu/publications?f%5Bauthor%5D=95
https://www.ict-mplane.eu/publications/stream-monitoring-blockmon-convergence-network-measurements-and-data-analytics
https://github.com/blockmon/blockmon
https://www.ict-mplane.eu/

 <source type="live" name="eth0"/>
 <!--bpf_filter expression="!tcp"/-->
 </params>
 </block>

 <!-- NOTE: passive blocks shouldn't have a threadpool assigned to them -->
 <block id="counter" type="PktCounter" invocation="direct">
 <params> </params>
 </block>

 <connection src_block="sniffer" src_gate="sniffer_out" dst_block="counter" dst_gate="in_pkt"/>
 </install>
</composition>

Once the correct interface has been set as parameter for the capture block, you can run it by typing (note, sudo privilege
might be required):

$./blockmon pcapsrcctr.xml

New features supported by the mPlane project
Thanks to the support of the mPlane project we extended Blockmon functionalities with the following features:

integration with Tstat tool. Regarding its ability to collect information on the traffic that crosses a link, we created a
block which integrates the Tstat tool;

exchanging data across nodes. We then introduced the ability of inter-data communication across multiple Blockmon
nodes, so that nodes can exchange or send information to aggregating nodes, thus allowing distributed computation;

stream-DPI capabilities. We are working on designing and integrating primitives for stream-DPI analysis and adding
high-availability techniques to the platform;

bug fixes. The platform is constantly maintained and bug fixes are pushed to the public git repository.

mPlane proxy interface
Coming soon.

Official versions

May 8th, 2014 - frozen release for D2.2:

svn checkout https://svn.ict-mplane.eu/svn/public/software/blockmon

For the latest release, please always refer to the github repository

git clone https://github.com/blockmon/blockmon.git

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/public/tstat
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › DATI

Public page DATI has been updated.

Description
DATI is a flexible, high performance passive monitoring platform. Build on FreeBSD, it leverages on NetMAP fast and safe
network driver to access network devices, reaching up to 14.88 Mpps with a CPU running at less than 1 GHz. The goal of
the platform if to give developers an high level view of traffic of interest without the complexity of high speed traffic capture
and classification details.
The system can recognize traffic flows from static BPF signatures and collect state information (volume, packets number
and session duration) as well as application-level data based on an XML description of the protocol stack.

On top of this framework is possible to build any analysis application, called analyzer App, that can elaborate traffic
information extracted by DATI at its own convenience. An analyzer App can be written in any language whith the only
requirement to have a REDIS library to interface with the in-memory database and pub/sub facility.

New features supported by the mPlane project
With the support the mPlane project some specific analyzer App have been written, enabling the platform to extract
following measure and features

TCP RTT delay

Radius informations

Routing protocols informations (OSPF, BGP, LDP)

mPlane proxy interface
The mPlane proxy interface for DATI is written in nodejs leveraging on the mPlane nodejs library.

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

DATI View Edit Revisions Log

Building an Intelligent Measurement Plane for the Internet
My account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://www.freebsd.org/cgi/man.cgi?query=netmap&sektion=4
http://redis.io/
http://node.js/
https://www.npmjs.org/package/mplane
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/
https://www.ict-mplane.eu/public/dati
https://www.ict-mplane.eu/node/340/edit
https://www.ict-mplane.eu/node/340/revisions
https://www.ict-mplane.eu/node/340/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Home › SOFTWARE › Fastping

Description:
Fastping, developed by ENST, is a fast ICMP scanner for TopHat/TDMI, a dedicated measurement infrastructure running
over PlanetLab. If you landed to this page following a http://ow.ly/wPjH6 URL found within an ICMP packet, this means that
you have been a target of an academic experiment with the fastping software, that this page introduces.

"Fast" in fastping means that 50k hosts can be probed in about 5 seconds (a more detailed performance analysis is
reported in the fastping documentation). Scalability of a single proble is obtained in user-space (as opposite to the zmap
sofware that requires root privileges), with a non-blocking multi-thread design (that allows to significantly exceed nMap
Scripting Engine performance, but of course not as much as zmap).

Additionally, leveraging the TopHat/TDMI infrastructure, fastping couples the ability to scan a large number of hosts during
small time windows, to the availability of a large number of spatially disperse probes -- up to 1000 PlanetLab/OneLab
nodes, of which typically around 300 are available at any time.

These temporal and spatial scalability properties can be leveraged for instance, to understand Internet properties such as
(but not limited to):

anycast detection (when all probes target the same target during the same window, but change target over time)

bufferbloat evaluation (when each probe tracks disjoint targets, but keep the same target continuously over time)

Internet census (when each probe tracks disjoint targets, changing target over time)

Fastping already perform a fair amount of statistical pre-processesing, providing output at different granularities. Namely,
from the most coarse to the most fine-grained:

(txt) experiment summary

(cvs) per-probe statistics summary (e.g., CDF of relevant metrics as RTT delay, RTT variation, or TTL variation)

(cvs) per-probe per-host statistics (e.g., quantiles of relevant merics as RTT delay, RTT variation, or TTL variation)

(cvs) raw measurement

The above results can be stored locally at a probe (useful for testing/local use), or uploaded to an repository via FTP (useful
to centralize data collection from a PlanetLab experiment).

Quick start:

Fastping is a python script and

can be used as a standalone shell tool (its usage is thus relatively simply explained by the manpage)

can be used as a TopHat/TDMI component (out of scope of this page)

can be queried as a mPlane probe (i.e., receive and parse mPlane specification)

Example of use of the tool as a standalone shell tool and as mPlane probe can be found in the software package
(HOWTO.shell and HOWTO.mplane in the main directory respectively) as well as in the fastping documentation

Fastping View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
https://www.ict-mplane.eu/node/43
http://www.top-hat.info/
http://ow.ly/wPjH6
http://www.telecom-paristech.fr/~drossi/paper/fastping.pdf
https://zmap.io/
https://zmap.io/
http://www.top-hat.info/
http://www.telecom-paristech.fr/~drossi/paper/fastping.pdf
https://www.ict-mplane.eu/public/fastping
https://www.ict-mplane.eu/node/323/edit
https://www.ict-mplane.eu/node/323/revisions
https://www.ict-mplane.eu/node/323/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

New features supported by the mPlane project
Fastping was entirely developed during the mPlane project. So thanks, mPlane!

As of May 15th 201, only the mPlane client/server probe and the repository are implemented.

The implementation of a supervisor for all fastping probes (i.e., PlanetLab and beyond) is a planned ongoing effort

mPlane proxy interface
The mPlane Fastping interface offers the ability to specify the set of target IP address ranges.

(simplest form) each probe can be queried individually, i.e., specifying the target for each probe in mPlane terms, and
will upload the results on the specified server

(work in progress) measurement specification can be addressed to a dedicated mPlane supervisor, handling the
TopHat/TDMI probes, that will dispatch measurement specification to all Fastping probes that registered to the
supervisor

mPlane custom registry
To harness the full power of fastping, a number of parameters have clearly been defined in the mPlane registry. While most
of the parameters are trivial, one is worth discussing at length.

To achieve efficient operation, it is imperative for fastping to receive compact specification of target addresses ranges.
However, the current mPlane registry only support a destination.ipv4 type specifying a single target address -- which
clearly clashes with the ability of probing at large scale.

To circumvent with this current mPlane limit, the fastmPlane implementation employs a clever trick that is both compatible
with the current mPlane specifications, and that will possibly be entirely supported by future releases -- since the necessity
to specify list of primitive types will be possible shared among multiple components, and thus supported by mPlane.

The fastping custom registry specify thus a destinations.ipv4range type whereby the s implies that a plurality of IPv4
ranges, expressed as A.B.C.D/N are expected. Notice that since a single address can be expressed as a /32 range, this
effectively means that it is possible to practicaly "mix" addresses and ranges, while maintaining plurality of a single type!

Official version
May 25th, frozen release for D2.2

svn co https://svn.ict-mplane.eu/svn/public/software/fastping-d22

We strongly recommend to use up-to-date release available through the github https://github.com/fp7mplane/protocol-
ri/tree/fastping

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://github.com/fp7mplane/protocol-ri/tree/fastping
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › Firelog

Description:
FireLog is a browser based tool to collect web page browsing data and users' subjective experiences. It is designed with the
goal of helping end users to understand questions related to their web page browsing:

Which/what (types of) web pages have poor experiences.

What happens underneath the browser while user is feeling bad about their browsing.

What happens to other user(s) for similar pages.

What is the cause for the poor experienced web page.

Generally, FireLog system is composed by two parts: a client side capturing engine, and a centralized server repository.
Currently, the client capturing engine is based on a lightweighted firefox extension. The capturing engine is installed at the
end user and will capture key events during user's browsing. Meanwhile, it sends back the data to a FireLog server
triggered by user's events such as closing an old tab/window, etc. The FireLog server is configured with Apache/PHP and a
database system. Processing and diagnosis engine is also instrumented. More detailed description about its mechanism and
architecture are available at the plugin web page.

Quick start:
Download the tarball and follow the instructions on README.txt.

New features supported by the mPlane project
The current version of the probe is enanched with several features:

The probe is divided into a passive part and an active one:

The passive part collects browser data during a browsing session

The active part performs active measurements (i.e., ping and traceroute) towards the contacted web servers

A diagnosis column result is added. The probe locally performs a diagnosis to identify the root cause of a poor
performance in the browsing session.

A mix of raw and aggregated results are sent to the mPlane repository for further analysis.

mPlane proxy interface
The mPlane proxy inferface can be found on the branch "firelog" on mplane-github (see below).

To start the service, simply launch:

python3 firelog.py -4 local_ip -u url

and connect with the mPlane client.

Official version
May 15th, 2014: frozen release for D2.2

Firelog prototype presenting all the functionalities [tarball] (no mPlane proxy, but standalone)

Firelog mPlane interface [gihub]

File:

Firelog View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://firelog.eurecom.fr/
https://www.ict-mplane.eu/sites/default/files//public/public-page/firelog//901firelog.tar.gz
https://www.ict-mplane.eu/sites/default/files//public/public-page/firelog//901firelog.tar.gz
https://github.com/fp7mplane/protocol-ri.git
https://www.ict-mplane.eu/public/firelog
https://www.ict-mplane.eu/node/327/edit
https://www.ict-mplane.eu/node/327/revisions
https://www.ict-mplane.eu/node/327/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

 901firelog.tar.gz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/firelog//901firelog.tar.gz
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › GLIMPSE

Description:
GLIMPSE is an end host-based network measurement tool. It is written in C++ with Qt and is cross-platform by design. The
release version of GLIMPSE will be made available at http://www.measure-it.net at a later stage. The main focus of
GLIMPSE is troubleshooting.

The source-code of GLIMPSE can be found in the public mPlane svn repository (see quick start section). This is a pre-
release version which showcases the probe software with its measurement tools. To make sure this version can be used
after changes to the GLIMPSE-backend the communication with the backend-servers is disabled in this version. The
interfaces and back-end structures are under heavy development right now and change frequently.

Quick start:
You can check out the pre-release version here:

svn checkout https://svn.ict-mplane.eu/svn/public/software/glimpse

To compile the software you should download and install Qt and QtCreator from here. This version of GLIMPSE was tested
with Qt 5.2.1. The requirements for the different platforms are:

Linux: libwnck (Arch & Gentoo) libwnck-dev (Debian & Ubuntu based) libwnck-devel (for RPM), openssl

Android: Android SDK and NDK

Windows: openssl, WinPcap

Run QtCreator, open the client.pro from the source-code, add your Qt configuration and select the "mobile" project near the
"Play" button. This launches the graphical version of the probe on the desktop computer or your mobile device (if
configured). Login and registration are not necessary. You may also run the console-version of the probe, but as server
communication and therefore receiving measurement tasks are disabled for this version the probe will just start and do
nothing.

Usage

After starting the probe you see the login screen. Just click login without entering any data to get to the main menu.
Measurements can be defined and started from the "Toolbox" tab. Results can be seen on the "Reports" tab (after a
measurement has been executed). The event-log is shown on the "Home" tab for debugging purposes. As server
communication is disabled in this version now schedules are shown in the "Schedule" tab.

New features supported by the mPlane project

GLIMPSE View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://www.measure-it.net/
http://qt-project.org/downloads
https://www.ict-mplane.eu/public/glimpse
https://www.ict-mplane.eu/node/324/edit
https://www.ict-mplane.eu/node/324/revisions
https://www.ict-mplane.eu/node/324/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

GLIMPSE was completely developed as part of the mPlane project. The key features are

Plugin system for measurements

On-demand troubleshooting if the user experiences problems or bad performance

Scheduled measurements and measurement campaigns

User-defined measurements

Measurements against server hosts as well as other end-users

On-demand troubleshooting buttons and scheduled measurements are deactivated in the pre-release version (see below).

Measurement tools included as the time of this writing:

Ping (UDP and ICMP)

Traceroute (UDP)

Bulk transfer capacity (TCP)*

UPnP lookup

Trains of packet pairs*

HTTP download

You may run these measurements from the "Toolbox"-tab in the application. Measurements marked with an asterisk need
another GLIMPSE probe as peer for the measurement. The default settings for these measurements are preconfigured with
the address of another probe running at our own servers at the moment. As development goes on this probe may not be
available anymore and you need to setup a second probe which is publicly reachable (this is going to change to allow NAT
traversal) through port 5005 and 5006.

mPlane proxy interface
We are going to implement a proxy interface to make a GLIMPSE probe work within a mPlane architecture (supervisor with
reasoner/repository): the probe has a wrapper to convert capabilities and specifictions received from a mPlane supervisor
to the GLIMPSE data format, and the results are wrapped into the mPlane format before sending to a mPlane repository.
The probes are also going to advertise their own capabilities in mPlane format.

These interfaces are not implemented yet.

Official version
May 15th, 2014 - frozen release for D2.2 [tarball] [svn]

File:
 914glimpse.tar.bz2

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/glimpse//914glimpse.tar.bz2
https://svn.ict-mplane.eu/svn/public/software/glimpse/
https://www.ict-mplane.eu/sites/default/files//public/public-page/glimpse//914glimpse.tar.bz2
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › MobiProbe

Description:
The application periodically launches a YouTube video from a list of short and long videos, while it logs hardware, system
and network measurements in the background. When a number of measurements becomes available, they are aggregated
and sent to a remote server. For the network measurements the application uses a precompiled tstat binary for Android
which is packed inside the apk file.

Collected Metrics:

Hardware: CPU usage, free memory, RSSI (when on WiFi), cell tower information, location information from GPS and
WiFi, connectivity state

System: Playback state, re-buffering events, re-buffering duration, load time, HTTP requests, video decoder state

Network: statistics per tcp flow as they are provided by tstat

Requirements:
The application requires root access and the pcap library to be present in /system/lib in order to allow tstat to listen on the
network interface. It is also required to have the official YouTube application installed on the device.

Quick start:
Installation and first use:

Download the application on the device

Install the application*

When the application starts it will ask for superuser permission which you need to grant

When prompted to complete action using Browser or YouTube, select YouTube and Always

*If installation fails you need to enable 'Unknown sources' that is found in Settings->Security

General Usage:
From the main interface the user can monitor the status of the synchronisation with the server and the number of
measurements and bytes sent.
The application's menu offers the options to Restart/Stop monitoring and completely Exit the application.

New features supported by the mPlane project
The probe was developed entirely within the mPlane project.

mPlane proxy interface
The proxy can be found here: https://github.com/fp7mplane/protocol-ri/tree/mobile_probe_tid

The proxy Interface is written in python and it sits on top of MongoDB. It exports the collections of mongoDB as capabilities
using the Reference Implementation. Afterwards, the mPlane clients can pull the requested data.

Mobile Probe (Android) View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
https://github.com/fp7mplane/protocol-ri/tree/mobile_probe_tid
https://www.ict-mplane.eu/public/mobile-probe-android
https://www.ict-mplane.eu/node/328/edit
https://www.ict-mplane.eu/node/328/revisions
https://www.ict-mplane.eu/node/328/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Official version
May 15th, 2014, frozen release for D2.2: [tar.gz] [svn]

File:
 921mobiprobe-youtubeprobe.tar.gz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/mobile-probe-android//921mobiprobe-youtubeprobe.tar.gz
https://svn.ict-mplane.eu/svn/public/software/mobileprobe/
https://www.ict-mplane.eu/sites/default/files//public/public-page/mobile-probe-android//921mobiprobe-youtubeprobe.tar.gz
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › PerformanceVisor

Description:
PerformanceVisor (PVSR) is a commercially available monitoring solution from NETvisor Ltd. It is a unified platform for
monitoring not just networks but also service quality and end-user experience, applications and various components of IT
infrastructures. PVSR's measurement collectors support numerous open and vendor-specific monitoring protocols , as
summarized by the following figure:

As part of the mPlane project we developed an universal mPlane proxy application for PerformanceVisor. It can be
configured to map different measurement capilities from PerformanceVisor onto mPlane capabilities. The proxy turns PVSR
into an mPlane repository and also into an mPlane probe, since it offers capabilities for the protocol verbs "query" and
"measure":

If the proxy receives a "measure" request for a measurement then first it checks whether the measurement already
exists in PVSR's configuration or not. If it does not exists then it creates and starts the measurement, otherwise it
updates the measurement configuration to match the parameters received (if necessary).

If the proxy receives a "query" request for measurement results, then it looks up the measurement in PVSR's
configuration, verifies that specified measurement parameters match, and then it answers the query.

The proxy supports the "now ... future / period" "when" specifications for "measure" and "past ... now / period" "when"
specification for "query":

The data collection cycle is specified by the period parameter, which means that it must be a valid PVSR data collection
cycle period, for example 1m or 5m

The duration must be an integer multiple of periods

The beginning time is interpreted differently when the measurement does not exist in PVSR, because in this case
enough time must be allowed to PVSR to update its data collector configuration. In order to do that the proxy waits
additional minutes for the measurement results. Obviously this only applies to the "measure" specifications

Once the measurements are finished the proxy returns the measured values for each collection time during the
measurement duration, i.e. the proxy returns multiple results for each specifications (except then duration = period).

Quick start:
Since PerformanceVisor is a commercially available product, first you have to request a demo from NETvisor Ltd. After you
have the proper PVSR installation (you uploaded the license file and started all PVSR modules), you have to

Download the proxy application from here https://github.com/fp7mplane/pvsr-proxy-probe

Copy the "mplane" directory from the mPlane reference implementation into the same directory where you downloaded
the proxy application

The proxy application also needs pvsr_soap_client Python package which can be found on the PerformanceVisor server
in the /opt/pvsr/lib directory: just copy the pvsr_soap_client.py to the same directory where you downloaded the proxy

PerformanceVisor proxy View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://www.netvisor.eu/en/pvsr.html
https://github.com/fp7mplane/pvsr-proxy-probe
https://www.ict-mplane.eu/public/performancevisor-proxy
https://www.ict-mplane.eu/node/319/edit
https://www.ict-mplane.eu/node/319/revisions
https://www.ict-mplane.eu/node/319/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

application

Optional: if you want to use the default pvsr_proxy_probe.cfg then you will have to add these lines to the
mplane/registry.txt file:

pvsr.availability: natural

pvsr.user: string

pvsr.pwd: string

pvsr.proxy: string

pvsr.regex: string

pvsr.count: natural

pvsr.ipsla.config_entry: natural

The next step is the configuration if the proxy by editing the pvsr_proxy_probe.cfg file. The file format is JSON:

soap: SOAP configuration for PVSR

url: the PVSR SOAP server URL

wsdl_url: the proxy downloads the WSDL from this URL

user and password: PVSR user and password information

logging: the configuration file for the Python logging module

default_site: the proxy can automatically create Jaga and Synthetic transaction equipments in PVSR if they do not exist.
If it does so then it created them below this site. If the site does not exists then it creates the site as well. If the
parameter is not specified then the proxy uses "mPlane"

delete_created_measurements: if it is set to false then the proxy will not delete those measurement specification in
PVSR which it created once the measurements are done

pvsr_default_conf_check_cycle: if it is specified (in seconds) then the proxy assumes that the default measurement
cycle is this in PVSR as well. Be aware that if you change this then you will have to reconfigure PVSR as well. The
parameter only affect cases when the specified measurement does not exists in PVSR

measurements: hash containing the available measurements through the proxy interface. The name will be used as the
label of the capability as <key>-measure and <key>-query

types: the PVSR measurement types belonging to this capability. The key of the hash items must be a valid PVSR
measurement type

"first" and "second": the mPlane registry name of the first and second PVSR measurement values.

multiply: optional parameter, integer. If specified then the proxy will multiply the result received from PVSR
before forwarding to the mPlane client

index_mplane_name: optional. The mPlane parameter used as the Index parameter for the measurement in PVSR

mplane_constants: optional hash, the proxy places each parameter into the capability

uda_name2mplane_name: optional hash, the key is a PVSR measurement additional parameter name code, the
value is an mPlane parameter name

uda_constants: optional hash, used only if the measurement does not exists in PVSR. The key is a PVSR
measurement additional parameter name code

equipment: name of the PVSR equipment offering the measurements

check_udas: optional parameter. If set to false then the proxy do not check wether the values for the PVSR
measurement UDAs match the values in the specification or not

verb_measure: optional parameter. If set to false then the proxy do not offer the verb "measure"

verb_query: optional parameter. If set to false then the proxy do not offer the verb "query"

The last step is to create the equipments in PVSR, however this step is not required for the Jaga and Synthetic transaction
equipments.
The default configuration already contains several measurement specifications as examples:

Jaga ping measurement

HTTP availability check

Cisco Ping

Cisco IP SLA ping

New features supported by the mPlane project

The application allows a wide range of measurements to be imported into the mPlane architecture, already implemented in
PerformanceVisor. The proxy component was developed entirely for mPlane.

mPlane proxy interface
Since this is a generic proxy framework between mPlane and PVSR, the available capabilities, their parameters and results,
etc… all depend on the pvsr_proxy_probe.cfg configuration file.

Examples
For sample specifications please have a look at this session log: https://www.ict-
mplane.eu/sites/default/files//public/public-page/performancevisor-plugins//841examplecalls.txt

The PVSR measurement charts for this session:

pvsr-mplane-web:

 pvsr-mplane-cisco-ping:

pvsr-mplane-ping:

pvsr-mplane-cisco-ipsla:

Official version

https://www.ict-mplane.eu/sites/default/files//public/public-page/performancevisor-plugins//841examplecalls.txt

May 15th, 2014 stable version for D2.2

Development version [github]

File:
 Sample calls between the proxy and the reference implementation command line client
 910pvsr-proxy-probe-master.zip

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/performancevisor-proxy//910pvsr-proxy-probe-master.zip
https://github.com/fp7mplane/pvsr-proxy-probe
https://www.ict-mplane.eu/sites/default/files//public/public-page/performancevisor-plugins//841examplecalls.txt
https://www.ict-mplane.eu/sites/default/files//public/public-page/performancevisor-proxy//910pvsr-proxy-probe-master.zip
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › QoF

Description:
QoF is a TCP-aware flow meter, available at http://github.com/britram/qof.

QoF (Quality of Flow) is an IPFIX Metering and Exporting process, designed for passive measurement of per-flow
performance characteristics.

QoF is primarily intended to support research into passive measurement of performance metrics for TCP flows; however, it
can also be used for general flow measurement, especially in environments where the deployment of technologies which
inspect packet payload is restricted. QoF is a fork of YAF version 2.3.2, with the following major differences from the YAF
codebase:

Removal of all payload inspection code.

Replacement of packet acquisition layer with WAND's libtrace.

Replacement of most command line flags with a YAML-based configuration file, which allows implicit feature selection
through direct specification of the information elements to appear in QoF's export templates.

Support for new information elements focused on passive TCP performance measurement.

QoF is licensed under the GNU General Public License, Version 2.

Quick start:
To install QoF:

1. Make sure you’ve got QoF’s direct dependencies: libglib-2.0 (the GNOME C modernization layer) and libyaml and their
headers. On Debian systems, install the libglib-2.0-dev andlibyaml-dev packages.

2. Download and install libfixbuf from CERT; version 1.2.0 required.

3. Download and install libtrace from WAND at the University of Waikato. On Debian systems, this is in the libtrace3-
dev package. Building libtrace requires bison and flex headers, as well.

4. Install QoF. This works the same as it does everywhere: ./configure --prefix=/some/where && make &&
make install; if installing straight from the git working directory, use autogen.sh first. You may need the --
with-libtrace flag to ./configure if not installed in a system path. If installed to the same prefix as libfixbuf, the
autotools script should automatically find it.

To run QoF, writing to an IPFIX file:

qof —yaml yaml-file —in libtrace-uri —out ipfix-filename

The libtrace-uri for a PCAP file named foo.pcap would be pcapfile:foo.pcap. Note that libtrace supports compressed
trace files natively (e.g. pcapfile:foo.pcap.gz); see the libtrace documentation for more.

There’s a sample yaml-file configuration file in the test directory. The most important configuration directive is template:,
which lists the Information Elements which will be exported by YAF.

QoF includes a set of tools in Python for analyzing IPFIX output for research purposes; these are described in the GitHub
wiki.

New features supported by the mPlane project
The entirety of the feature set added to QoF since it was forked from YAF in November 2012 was added with the support of
the mPlane project.

mPlane proxy interface
Proxy interface development is ongoing, pending the development of an mPlane to IPFIX Information Element bridge
interface.

QoF View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://github.com/britram/qof
http://tools.netsa.cert.org/fixbuf
http://research.wand.net.nz/software/libtrace.php
https://github.com/britram/qof/wiki/YAML
https://github.com/britram/qof/wiki/YAML
https://github.com/britram/qof/wiki/Pytools
http://tools.netsa.cert.org/yaf
https://www.ict-mplane.eu/public/qof
https://www.ict-mplane.eu/node/313/edit
https://www.ict-mplane.eu/node/313/revisions
https://www.ict-mplane.eu/node/313/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Official version
Release 0.9.0 of 4 November 2013 is available here: qof-0.9.0.tar.gz. The manual is here: qof.pdf.

Users of QoF should track the master branch at github: https://github.com/britram/qof

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://trammell.ch/downloads/qof-0.9.0.tar.gz
https://trammell.ch/docs/qof.pdf
https://github.com/britram/qof
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › RILAnalyzer

Description:
RILAnalyzer: a tool to perform network analysis from within a mobile device, available
at http://andriusa.github.io/RILAnalyzer

Modern smartphone platforms add new challenges for the cellular networks they are running on. Equally though,
complexity of cellular networks is hard to deal with for application and system developers, worsening each other's
performance and efficiency. Such difficulties are largely caused by the lack of cross-layer understanding of interactions
between different entities - applications, devices, the network and its management plane.

To address the issue, we are releasing RILAnalyzer publicly. It is a tool that provides mechanisms to perform network
analysis from within a mobile device. RILAnalyzer is capable of recording low-level radio information and accurate cellular
network control-plane data, as well as user-plane data. Such data can be used to identify previously overlooked network
and connectivyt management issues and infer how the different configurations interact with application logic, causing
network and energy overheads.

Quick start:
You will need a rooted device to install the software. We tested it on Samsung Galaxy SII using CyanogenMod 10.1. You
can find detailed instructions at the website (http://andriusa.github.io/RILAnalyzer)

New features supported by the mPlane project
RILAnalyzer was developed as a tool to perform network analysis from within a mobile device to address th emobile
connectivity use case. Data collected by this tool are exported and analyzed by the mobileProbe.

mPlane proxy interface
Data are stored and synchronized to a mongoDB database via the mobileProbe. The mplane proxy can access the data
through the mongDB capability extractor found here (still in progress).
https://github.com/fp7mplane/protocol-ri/tree/mobile_probe_tid

Official version
May 15th, 2014: You can download the version here: [tar]

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

RILAnalyzer View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://andriusa.github.io/RILAnalyzer
http://andriusa.github.io/RILAnalyzer
https://www.ict-mplane.eu/public/mobile-probe-android
https://www.ict-mplane.eu/public/mobile-probe-android
https://github.com/fp7mplane/protocol-ri/tree/mobile_probe_tid
https://github.com/narseo/ril_analyzer/tarball/master
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/
https://www.ict-mplane.eu/public/rilanalyzer
https://www.ict-mplane.eu/node/320/edit
https://www.ict-mplane.eu/node/320/revisions
https://www.ict-mplane.eu/node/320/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Home › SOFTWARE › Scamper

Description:
scamper is a parallelised packet-prober capable of large-scale Internet measurement using many different measurement
techniques. Briefly, scamper obtains a sequence of measurement tasks from the input sources and probes each in parallel
as needed to meet a packets-per-second rate specified on the command line. Tasks currently being probed are held
centrally by scamper in a set of queues the probe queue if the task is ready to probe, the wait queue if it is waiting for time
to elapse, and the done queue if the task has completed and is ready to be written out to disk. Each measurement
technique is implemented in a separate module that includes the logic for conducting the measurement as well as the
input/output routines for reading and writing measurement results, allowing measurement techniques to be implemented
independently of each other. When a new measurement task is instantiated, the task attaches a set of callback routines to
itself that \scamper then uses to direct the measurement as events occur, such as when it is time to probe, when a
response is received, or when a time-out elapses. Sockets required as part of a measurement are held centrally by scamper
in order to share them amongst tasks where possible so that resource requirements are reduced. Finally, scamper centrally
maintains a collection of output files where completed measurements are written.

scamper comes with several probing utilities: ping, traceroute (various versions), Doubletree, tracebox, alias resolution, ...

scamper supports two types of output: text (on the standard output) and warts files (warts is a binary format for storing
packets into the scamper system).

Quick start:
Building scamper from the source is very easy:

$./configure
$ make
$ sudo make install

scamper can be run under Linux, Mac OS X, BSD.

scamper is a command line tool that can be launched as follows:

scamper -c -p -w -M -o -O -f

Options are the following:

-c command specifies the command to use for scamper. Possible choices are delias, neighbourdisc, ping, trace, tracelb, sniff, sting, and tbit;

-p pps specifies the target packets-per-second rate for scamper to reach. By default, this value is 20;

-w window specifies the maximum number of tasks that may be probed in parallel. A value of zero places no upper limit. By default, zero is used;

-M monitorname specifies the canonical name of machine where scamper is run. This value is used when recording the output in a warts output file;

-o outputfile specifies the default output file to write measurement results to. By default, stdout is used;

-O options allows scamper's behaviour to be further tailored. The only relevant choice here (for mPlane) is warts (it ouputs

results to a warts binary file);

-f listfile specifies the input file to read for target addresses, one per line, and uses the command specified with the -c option on each.

New features supported by the mPlane project
Thanks to the support of the mPlane project we extended tracebox functionalities with the following features:

 tracebox support

Scamper View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://www.caida.org/tools/measurement/scamper/
https://www.ict-mplane.eu/public/tracebox
https://www.ict-mplane.eu/public/tracebox
https://www.ict-mplane.eu/public/scamper
https://www.ict-mplane.eu/node/333/edit
https://www.ict-mplane.eu/node/333/revisions
https://www.ict-mplane.eu/node/333/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

mPlane proxy interface
Scamper's Tracebox mPlane proxy interface.

Official version
May 15th, 2014: ADD TARBALL frozen release for D2.2

 svn co https://svn.ict-mplane.eu/svn/public/software/scamper-tracebox

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/public/tracebox
https://svn.ict-mplane.eu/svn/public/software/scamper-tracebox
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › Tracebox

Description:
Tracebox is an open source topology discovery software that has been developped by the Université de Liège et by the
Université catholique de Louvain in Beligum. Tracebox is an extension to the widely used traceroute tool. The objective of
tracebox is to detect various types of middlebox interference over almost any path. To do so, tracebox sends IP packets
containing TCP segments with different TTL values and anlyses the packet encapsulated in the returned ICMP message.
 Further, as recent routers quote, in the ICMP message, the entire IP packet that they received, tracebox is able to detect
any modification performed by upstream middleboxes. In addition, tracebox can often pinpoint the network hop where the
middlebox interference occurs.

The figure above ((a) topology) shows a simple network, where MB1 is a middlebox that changes the TCP sequence number

and the MSS size in the TCP MSS option but that does not decrement the TTL. R1 is an old router while R2 is a router that is

able to quote, in the returned ICMP message, the entire message that is responsible of the problem. The server always
answer with a TCP reset. The output of running tracebox between ``Source'' and ``Destination'' is given by the below part
of the figure ((b) output). The output shows that tracebox is able to effectively detect the middlebox interference but it may
occur at a downstream hop. Indeed, as R1 does not quote the full packet, tracebox can only detect the TCP sequence

change when analyzing the reply of R1. Nevertheless, when receiving the full message quoted from R2, that contains the

complete IP and TCP header, tracebox is able to detect that a TCP option has been changed upstream of R2. At the second

hop, \tracebox shows additional modifications on top of the expected ones. The TTL and IP checksum are modified by each
router and the TCP checksum modification results from the modification of the header.

Tracebox comes in three flavours:

The original software, written in C++, allows some LUA embedding to easily extend tracebox capabilities. This is
particularly interesting for discovering new types of middleboxes. This version supports two types of output: text (on
the standard output) and pcap files.

tracebox has been ported into scamper, an integrated tool for topology discovery. scamper comes with interesting tools
in the context of mPlane: ping, traceroute (various implementations), Doubletree, TBit, ... scamper allows for IPv4 and
IPv6 network probing. tracebox into scamper supports two types of output: text (on the standard output) and warts
files (warts is a binary format for storing packets into the scamper system).

tracebox has been ported into the Android system in order to support some mPlane use cases. Due to limitations
inherent to mobile systems, the Android tracebox is a kind of light version of the original one. The output is sent to a
back office where any kind of manipulation is made possible.

Quick start:
Original Software

The original software is freely available at tracebox.org (with the source code). The software works under Mac OS X, BSD,
and Linux distribution. If you are under Mac OS X, the easiest way to install tracebox is to run homebrew (brew install
tracebox).

Source can be found at http://www.github.com/tracebox/tracebox.

Tracebox requires:

Tracebox View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
https://www.ict-mplane.eu/public/universite-de-liege-ulg
http://www.caida.org/tools/measurement/scamper/
http://www.tracebox.org/
http://www.github.com/tracebox/tracebox
https://www.ict-mplane.eu/public/tracebox
https://www.ict-mplane.eu/node/321/edit
https://www.ict-mplane.eu/node/321/revisions
https://www.ict-mplane.eu/node/321/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

The development package of libpcap, (lib)lua >= 5.1.

Automake, autoconf and libtool.

To build Tracebox:

$./bootstrap.sh

$ make

$ sudo make install

 There are two possible ways to use tracebox either with the Python scripts (see some samples scripts in
/tracebox/examples) or with the default binary. The later only sends one TCP probe and look for changes in the path.

Scamper Port

The current snapshot of scamper's source code is cvs-20140404 and do not contain Tracebox yet (available soon).
Scamper should compile and run under FreeBSD, OpenBSD, NetBSD, Linux, MacOS X, Solaris, Windows, and DragonFly. All
releases of scamper are licensed under the GPL v2.

Source can be found at http://www.caida.org/tools/measurement/scamper/.

To build Scamper:

$./configure

$ make

$ sudo make install

The Scamper Tracebox implementation is the most complete and efficient. It involves different options to modify the text
output format (e.g: traceroute-like output vs simplified middlebox locations only output, add the ICMP quoting size
standard used by each hop, ...). It also contains other non-tracebox middlebox detection methods callable through the
following arguments:

--proxy detects potentiel proxies between host and destination.

--statefull detects statefull middleboxes between host and destination.

--frags path packet fragmentation allowance.

Android Port

The tracebox Android port is available at androidtracebox.org (with the source code).

To install tracebox Android:

1. Root your mobile phone (it is impossible to forge packet without the right privileges)

2. Install tracebox Android from the Play Store.

tracebox Android usage is very intuitive. You can either enter yourself a destination to probe or download, from the back
office (the source code of the back office is also available), a targets file.

mPlane proxy interface
The current mPlane Tracebox interface contains 3 capabilities (each one subdivided for IPv4/IPv6):

traceboxV_standard_capability: a simple tracebox probe over TCP without any options. V is the IP version.

traceboxV_specific_capability: a tracebox probe that you can precisely specify by choosing IP fields value (ECN, DSCP,
IPID/IPFLOW), the transport layer (TCP or UDP) and various TCP options (MSS, WScale, ECN, MPTCP, ...).

traceboxV_specific_quotesize_capability: the same probe description than traceboxV_specific_capability with an
additional result column containing the ICMP quoting size standard used by each hop

New features supported by the mPlane project
Thanks to the support of the mPlane project we extended tracebox functionalities with the following features:

tracebox port into scamper

tracebox deployment on IPv6 infrastructure

tracebox port into Android

Official version
May 15th, 2014: frozen release for D2.2 [tarball] [svn]

Development version [github]

File:

http://www.caida.org/tools/measurement/scamper/code/scamper-cvs-20140404.tar.gz
http://www.caida.org/tools/measurement/scamper/
http://www.androidtracebox.org/
https://play.google.com/store/apps/details?id=be.ac.ulg.androidtracebox
https://www.ict-mplane.eu/sites/default/files//public/public-page/tracebox//915scamper-tracebox-20-05-14.tar.gz
https://github.com/fp7mplane/protocol-ri/tree/tracebox

 915scamper-tracebox-20-05-14.tar.gz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/tracebox//915scamper-tracebox-20-05-14.tar.gz
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › Tstat

Description:
Tstat is an open source traffic passive analyzer developed at Telecommunication Network Group (TNG) of Politecnico di
Torino. It started as a branch of TCPtrace with a focus on TCP statiscs only, but over the years it evolved in a full fledge
monitoring solution offering an extensive set of measurements for IP, TPC and UDP, as well as traffic classification
capabilities through a combination of Finite State Machine Deep Packet Inspection (FSM DPI) and Behavioural engines.

As shown in the figure, Tstat can produce real time analysis processing live traffic acquired from both standard PC NICs
(using the libpcap) or DAG cards. Moreover, it can also process previously recorded packet-level traces of various formats
(libpcap, snoop, etherpeek, etc.).

Tstat supports different output formats:

log files: text files collecting per-flow stats. Each file is related to a different protocol or application (e.g., TCP/UDP
traffic, video streaming, etc.);

histograms: a set of histogram, each one related to a specific traffic features (e.g., incoming/outgoing IP bitrate,
number of TCP flows, etc.). Statistics are collected over a time window (by default 5 minutes) and saved in separated
text files;

RRD: a set of histograms saved in RRD format

pcap: dump files

Quick start:
We recommend the user to refer to the last version available on SVN:

svn checkout http://tstat.polito.it/svn/software/tstat/branches/mplane/

The software works for Linux, BSD, Mac OS, and Adroid. To compile the software, from the Tstat main software folder

./autogen.sh

./configure

./make

Note: to compile on Android, please refer to http://tstat.polito.it/svn/software/tstat/trunk/doc/android.txt

To run tstat in live mode from a network interface DEVNAME (e.g., eth0) and create logs in the directory OUTDIR, run

./tstat -l -i DEVNAME -s OUTPUTDIR

For more information, please refer to the official website http://tstat.polito.it

New features supported by the mPlane project
Thanks to the support of the mPlane project we extended Tstat functionalities with the following features

HTTP module: it allows to save text log files reporting information about HTTP queries/responses

IP address anonymization: it allows to mask local IP address monitored using hashing functions

Blockmon integration: we collaborated with NEC to integrate Tstat analysis modules in Blockmon

Tstat View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://www.telematica.polito.it/
http://www.polito.it/
http://www.tcptrace.org/
http://www.tcpdump.org/
http://www.endace.com/
http://www.tcpdump.org/
http://oss.oetiker.ch/rrdtool/
http://tstat.polito.it/svn/software/tstat/trunk/doc/android.txt
http://tstat.polito.it/
https://www.ict-mplane.eu/node/44
https://www.ict-mplane.eu/node/315
https://www.ict-mplane.eu/public/tstat
https://www.ict-mplane.eu/node/316/edit
https://www.ict-mplane.eu/node/316/revisions
https://www.ict-mplane.eu/node/316/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

log_sync: a client/server application which allows to continuously export from Tstat logs from probes to repositories

improved log configurability: rather than collecting a monilitich set of stats, Tstat now offers more fine-grained
control on which set of features a saved in the logs. Per-flow stats are now grouped in macro classes which can be
added or removed at runtime

Android integration: thanks to the effort of TID, Tstat works also on rooted Android devices

OpenWRT integration: thanks to the effort of NETVISOR, starting from release 37196, the OpenWRT Linux
distribution contains Tstat as a "Network Utilities" package

mPlane proxy interface
Tstat mPlane proxy interface is available on github

To test the software:

STEP1: run Tstat

From the root folder of the Tstat software obtained doing a svn checkout

>>> sudo tstat/tstat -l -i eth0 -s /tmp/tstat_output_logs -T tstat-conf/runtime.conf

This exectute Tstat in live capture from the eth0 interface, using the default runtime configuration, and saving the logs
in /tmp/tstat_output_logs

STEP2: run the Tstat mPlane proxy

>>> git clone https://github.com/fp7mplane/protoco-ri.git tstat_proxy
>>> cd tstat_proxy
>>> git checkout tstat
>>> python3 mplane/tstat_proxy.py -T path/to/tstat/runtime.conf -c conf/client-certs.conf

This will create a secure enabled mPlane service listening on 127.0.0.1 and port 8888

STEP3: run the mPlane client and schedule an experiment

>>> python3 mplane/client.py -c conf/client-certs.conf
>>> |mplane| connect https://locahost:8888
>>> |mplane| when now + 5m
>>> |mplane| runcap 1

This connect the client to the Tstat mPlane proxy, and schedule to collect the TCP End-to-End features provided in the
log_tcp_complete for 5 minutes

STEP5: check for results

Tstat provides on messages on stdout reflecting the variation of the runtime configuration

[Wed May 14 23:44:14 2014] TCP log level set to 1 (Core + End_to_end)
[Wed May 14 23:44:14 2014] created new outdir tstat_output_logs/2014_05_14_23_44.out
[Wed May 14 23:49:30 2014] TCP log level set to 0 (Core)
[Wed May 14 23:49:30 2014] created new outdir tstat_output_logs/2014_05_14_23_49.out

 For further information please refer to the description provided in github, the official Tstat website and its SVN
documentation

Official version
May 15th, 2014 - frozen release for D2.2

tstat v3.0 [tar.gz]

tstat mPlane proxy [tar.gz]

File:
 858tstat-3.0.tar.gz
 859tstatproxy.tar.gz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

https://www.ict-mplane.eu/node/45
https://www.ict-mplane.eu/node/47
https://github.com/fp7mplane/protocol-ri/tree/tstat
https://github.com/fp7mplane/protocol-ri/tree/tstat
http://tstat.polito.it/HOWTO.shtml
http://tstat.polito.it/svn/software/tstat/branches/mplane/doc/
https://www.ict-mplane.eu/sites/default/files//public/public-page/tstat//858tstat-3.0.tar.gz
https://www.ict-mplane.eu/sites/default/files//public/public-page/tstat//859tstatproxy.tar.gz
https://www.ict-mplane.eu/sites/default/files//public/public-page/tstat//858tstat-3.0.tar.gz
https://www.ict-mplane.eu/sites/default/files//public/public-page/tstat//859tstatproxy.tar.gz

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › probe-local-storage

Description
probe-local-storage is a software module for lighweight probes, implementing an in-memory database for time-series data
(integer-valued metrics sequences). The module is developed in C++ with minimal external dependencies, suitable for
embedded environments

Features include:

In-memory DB for time-series numerical data with

Statistical/Aggregation functions to support pre-processed data retrieval and charting

(experimental) RLE support for efficient memory usage

Threshold alert evaluation (under development)

Perodic backup to volatile storage (SD card)

HTTP/SOAP/JSON interface (SNMP under development)

On-line reconfiguration

Small memory consumption

Intended usage:

store 1sec resolution time series data and their n*60 sec aggregations

up to a few days/weeks for a few dozen metrics or measurement slots (channels)

in a few dozen MBs of memory

provide charting-friendly aggregated and pre-processed data over HTTP/JSON query interface

An overview about probe-local-storage with furtjher details can be found in the file probe-storage-slides.pdf within the
source.

probe-local-storage is meant to be used as a daemon process.

Quick start
probe-local-storage depends on the following software libraries:

net-snmp-devel (net-snmp 5.x)

libjson-c-dev

libreactor, libaggregation (developed by NETvisor, also provided within the project)

the uci configuration file library, (source also provided with the project for convenience)

probe-local-storage View Edit Revisions Log

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://wiki.openwrt.org/doc/techref/uci
https://www.ict-mplane.eu/public/probe-local-storage
https://www.ict-mplane.eu/node/339/edit
https://www.ict-mplane.eu/node/339/revisions
https://www.ict-mplane.eu/node/339/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

Compilation and quickstart: follow the included QuickStart.txt file, which shows how to

compile the code (with dependencies)

configure the database for accepting records

sample queries to verify basic operation

New features supported by the mPlane project

The current, open-source version of probe-local-storage is a complete rewrite of an earlier commercial version.

Official version
currently in the project SVN at https://svn.ict-mplane.eu/svn/private/software/probe-local-storage

Software release as of May 15th, 2014: probe-local-storage-r1287.tgz

File:
 899probe-local-storage-r1287.tgz

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://svn.ict-mplane.eu/svn/private/software/probe-local-storage
https://www.ict-mplane.eu/sites/default/files//public/public-page/probe-local-storage//899probe-local-storage-r1287.tgz
https://www.ict-mplane.eu/sites/default/files//public/public-page/probe-local-storage//899probe-local-storage-r1287.tgz
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

Home › SOFTWARE › youtube-probe

The probe module downloads a YouTube video (specified by the 11-character video_id), performs a lightweight playback
emulation (frame header parsing), and calculates the following metrics:

Metric Description

rebuffer.counter number of video stalls during playback emulation

delay.buffering.ms total time spent buffering (initial and rebufferings)

octets.layer7 number of video bytes downloaded

delay.download.ms total video download duration

delay.urlresolve.ms time needed to resolve video URL (by youtube-dl module)

delay.srvresponse.ms delay of 1st reply packet after HTTP request

bandwidth.min.bps worst bitrate (of 1sec intervals during the download)

bandwidth.max.bps best bitrate (of 1sec intervals during the download)

bandwidth.avg.bps average video download bitrate

 The probe terminates playback emulation when the download is complete, i.e. usually it finishes sooner than the video
duration (the probe supports bandwidth throttling via the underlying CURL library).

The probe queries the FLV (YouTube format code 5) version version of the video, as it is the only format all YouTube videos
are available in. Extending the probe to support the new DASH format promoted by YouTube is underway.
Table Comparison of YouTube media encoding options on Wikipedia describes more details on the FLV and other YouTube
video formats.

The software contains an FLV processing module that originates from the public domain flvlib, ported to python3 and
enhanced by NETvisor.

youtube-probe is available on github, temporarily as a branch of the mPlane protocol Reference Implementation project.

Quick start:
First, check and satisfy the following software dependencies youtube-probe relies on:

pyCURL module (ver. 7.19.3.1 tested) is used to download the video content

youtube-dl (ver. 2014.04.04.7 tested) python module and CLI is used to obtain the URL for the YouTube video id

all dependencies required by the mPlane Reference Implementation framework

pyton3.3 with the following modules:

pyyaml

tornado

Testing the probe natively (not via the mPlane interface)

The yp-test utility is provided for testing the probe directly, providing a very simple CLI:

Usage: yp-test.py [<video-id>=riyXuGoqJlY]

YouTube Download Test Client

Options:
 -h, --help show this help message and exit
 -b BWLIMIT, --bwlimit=BWLIMIT
 limit download bandwidth to BW kBps
 -v, --verbose be more verbose, each -v increases verbosity

A test run for a sample video with bandwidth throttling:

youtube-probe View Edit Revisions Log

Description:

Building an Intelligent Measurement Plane for the InternetMy account Log out

https://www.ict-mplane.eu/
https://www.ict-mplane.eu/public/software
http://en.wikipedia.org/wiki/YouTube#Video_technology
https://github.com/szemtiv/flvlib
https://github.com/fp7mplane/protocol-ri/tree/youtube-probe
http://pycurl.sourceforge.net/
https://github.com/rg3/youtube-dl
https://www.ict-mplane.eu/public/youtube-probe
https://www.ict-mplane.eu/node/332/edit
https://www.ict-mplane.eu/node/332/revisions
https://www.ict-mplane.eu/node/332/log
https://www.ict-mplane.eu/
https://www.ict-mplane.eu/user
https://www.ict-mplane.eu/user/logout

(mplane)tiv@mplane:~/youtube-probe$ python yp-test.py -b 25000 EJQsBL6vEk4
[INFO] 0.007 Limiting pycurl bandwidth to 25000
[INFO] 0.007 YouTubeClient of video_id EJQsBL6vEk4, metrics: {'delay.srvresponse.ms': 0, 'octets.layer7': 0,
'bandwidth.min.bps': 0, 'rebuffer.events': 0, 'bandwidth.avg.bps': 0, 'bandwidth.max.bps': 0, 'delay.buffering.ms': 0,
'delay.urlresolve.ms': 0, 'delay.download.ms': 0}
[INFO] 0.008 Query for media URL
[INFO] 1.572 URL extacted, starting download
[INFO] 1.829 Player starts BUFFERING
[INFO] 3.867 3 seconds of media buffered, starting playout
[INFO] 3.867 Player starts PLAYING, buffered: 3.971 secs
[INFO] 62.092 Player stalled at 58.225 secs of media
[INFO] 62.092 Player starts REBUFFERING
[INFO] 63.227 3 seconds of media buffered, starting playout
[INFO] 63.227 Player resumes PLAYING, buffered: 3.058 secs
[INFO] 102.467 Player stalled at 97.464 secs of media
[INFO] 102.467 Player starts REBUFFERING
[INFO] 104.815 3 seconds of media buffered, starting playout
[INFO] 104.815 Player resumes PLAYING, buffered: 3.937 secs
[INFO] 158.336 Player stalled at 150.984 secs of media
[INFO] 158.336 Player starts REBUFFERING
[INFO] 159.608 3 seconds of media buffered, starting playout
[INFO] 159.608 Player resumes PLAYING, buffered: 3.165 secs
[INFO] 196.646 Player stalled at 188.021 secs of media
[INFO] 196.646 Player starts REBUFFERING
[INFO] 199.165 3 seconds of media buffered, starting playout
[INFO] 199.165 Player resumes PLAYING, buffered: 3.938 secs
[INFO] 224.015 Download finished
Done: YouTubeClient of video_id EJQsBL6vEk4, metrics: {'delay.srvresponse.ms': 256.65926933288574, 'octets.layer7': 5542407,
'bandwidth.min.bps': 0.0, 'rebuffer.events': 4, 'bandwidth.avg.bps': 199328.9885519995, 'bandwidth.max.bps': 393216.0,
'delay.buffering.ms': 9.3124361038208, 'delay.urlresolve.ms': 1564.445972442627, 'delay.download.ms': 222442.58761405945}

New features supported by the mPlane project
The probe was developed entirely within the mPlane project.

mPlane proxy interface
youtube-probe supports the native mPlane probe interface

Official version
May 15th, 2014, frozen release for D2.2 [tarball]

Development version available on github at https://github.com/fp7mplane/protocol-ri/tree/youtube-probe

File:
 900protocol-ri-youtube-probe.zip

The information available on this website is property of the contributing authors from the mPlane Consortium (project FP7-ICT-318627) and does not

necessarily reflect the view of the European Commission. The information in this website is provided "as is", and no guarantee or warranty is given that

the information is fit for any particular purpose. The user uses the information at its sole risk and liability.

https://www.ict-mplane.eu/sites/default/files//public/public-page/youtube-probe//900protocol-ri-youtube-probe.zip
https://github.com/fp7mplane/protocol-ri/tree/youtube-probe
https://www.ict-mplane.eu/sites/default/files//public/public-page/youtube-probe//900protocol-ri-youtube-probe.zip
http://ec.europa.eu/research/fp7/index_en.cfm
http://www.europa.eu/

