
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

Final Requirements, Architecture, Access Control &
Data ProtecƟon, Interface SpecificaƟons

Author(s): POLITO M. Mellia, A. Finamore
SSB S. Pentassuglia, G. De Rosa
TI F. Invernizzi
EURECOM M. Milanesio
ENST D. Rossi
NEC S. Niccolini
TID I. LeonƟadis
NETVISOR T. Szemethy, B. Szabó
FHA R. Winter, M. Faath
ULG B. Donnet
ETH B. Trammell (ed.), M. Kühlewind
A-LBELL D. Papadimitriou

Document Number: D1.4
Revision: 1.0
Revision Date: 31 Oct 2014
Deliverable Type: RTD
Due Date of Delivery: 31 Oct 2014
Actual Date of Delivery: 31 Oct 2014
Nature of the Deliverable: (R)eport
DisseminaƟon Level: Public

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Abstract:

This document specifies the mPlane architecture and protocol. The protocol is divided into layers: an informaƟon model for
mPlanemessages –measurement capabiliƟes, specificaƟons, results, and event noƟficaƟons; a serializaƟon of this informaƟon
model using JSON, and a session protocol binding using HTTP over TLS.

Keywords: architecture, use case, scenario, measurement, plaƞorm

Plane 2 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Contents

Disclaimer. 3

1 mPlane Protocol Speciϐication. 6

2 mPlane Architecture. 7
2.1 Principles . 7
2.2 Components and Clients . 7

2.2.1 Probes and Repositories. 8
2.3 Supervisors and Federation . 8
2.4 Workϐlows . 8

3 Protocol Information Model. 10
3.1 Element Registry . 10

3.1.1 Structured Element Names . 11
3.1.2 Primitive Types . 12

3.2 Message Types . 12
3.2.1 Capability and Withdrawal . 12
3.2.2 Speciϐication and Interrupt . 13
3.2.3 Result . 13
3.2.4 Receipt and Redemption . 13
3.2.5 Indirection . 13
3.2.6 Exception . 14
3.2.7 Envelope . 14

3.3 Message Sections . 14
3.3.1 Message Type and Verb . 15
3.3.2 Version . 15
3.3.3 Registry . 15
3.3.4 Label . 16
3.3.5 Temporal Scope (When) . 16
3.3.6 Parameters . 19
3.3.7 Metadata . 20
3.3.8 Result Columns and Values . 20
3.3.9 Export . 20
3.3.10 Link . 21

Plane 4 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3.3.11 Token . 21
3.3.12 Contents . 22

3.4 Message Uniqueness and Idempotence . 22
3.4.1 Message Schema . 22
3.4.2 Message Identity . 22

4 Representations and Session Protocols. 24
4.1 JSON representation . 24

4.1.1 Textual representations of element values . 24
4.2 mPlane over HTTPS. 25

4.2.1 Access Control. 25
4.3 mPlane over SSH. 26
4.4 Example mPlane Capabilities and Speciϐications . 26

5 Workϐlows. 29
5.1 Client-Initiated . 29

5.1.1 Capability Discovery . 30
5.2 Component-Initiated . 30

5.2.1 Callback Control . 31
5.3 Indirect Export . 33
5.4 Error Handling in mPlane Workϐlows. 35

6 The Role of the Supervisor. 37
6.1 Component Registration. 38
6.2 Client Authentication . 38
6.3 Capability Composition and Speciϐication Decomposition . 38

7 An example mPlane infrastructure. 40

8 Initial Core Registry. 42

9 Data Protection and Inter-Domain cooperation. 49

10 Reference Implementation. 50

Plane 5 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

1 mPlane Protocol SpecificaƟon

This document deϐines the present revision of the mPlane architecture for coordination of hetero-
geneous network measurement components: probes and repositories that measure, analyze, and
store network measurements, data derived frommeasurements, and other ancillary data about el-
ements of the network. The architecture is deϐined in terms of a single protocol, described in this
document, used between clients (which request measurements and analyses) and components
(which perform them).
Sets of components are organized intomeasurement infrastructures by associationwith a supervi-
sor, which acts as both a client (to the components it supervises) and a component (to the clients it
serves), and provides application-speciϐic decomposition of speciϐications and composition of re-
sults. This arrangement is shown below, and further described in the rest of the document. The
capability - speciϔication - result cycle in this diagram comprises the mPlane protocol.

probe repository

supervisor

client /
reasoner

capability -
specification -

result

capability -
specification -

result

indirect export

capability -
specification -

result

Figure 1.1: General arrangement of entities in the mPlane architecture

Plane 6 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

2 mPlane Architecture

2.1 Principles

First, considering the wide variety of measurement tools we’d like to integrate into the mPlane
platform, we realized relatively early that distinctions among types of tools at an architectural level
are somewhat artiϐicial. The set of capabilities that advertise what a tool can do deϐine what that
tool is. Therefore, anything that publishes capabilities and makes services available according to
them using the protocol described in this document is a component and anything that uses those
capabilities is a client.
Given the heterogeneity of the measurement tools and techniques applied, and the heterogeneity
of componentmanagement, especially in large-scalemeasurement infrastructures, reliably stateful
management and control would imply signiϐicant overhead at the supervisors and/or signiϐicant
measurement control overhead on the wire to maintain connectivity among components and to
resynchronize the system after a partial disconnection event or component failure.
A second architectural principle is therefore state distribution: by explicitly acknowledging that
each control interaction is best-effort in any case, and keeping explicit information about eachmea-
surement in all messages relevant to that measurement, the state of the measurements is in effect
distributed among all components, and resynchronization happens implicitly as part of message
exchange. The failure of a component during a large scale measurement can therefore be detected
and corrected afterwards. Concretely, this implies that each capability, speciϐication, and result
must contain enough information to intepret in isolation.
This emphasis on distributed state and heterogeneity, along with the ϐlexibility of the represen-
tation and session protocol used by the platform, makes the mPlane protocol applicable to a wide
rangeof scales, fromresource- and connectivity-limitedprobes such as smartphones and customer-
premises equipment (CPE) like home routers up to large-scale backbonemeasurement devices and
repositories backed by database and compute clusters.
mPlane deϐines a self-describing, error- and delay-tolerant remote procedure call protocol: each
capability exposes an entry point in the API provided by the component; each speciϐication em-
bodies an API call; and each result returns the results of an API call.
The ϐinal key principle in the mPlane architecture, which allows it to be applied to the problem
of heterogeneous measurement interoperability, is type primacy. A measurement is completely
described by the type of data it produces, in terms of schemas composed of elements. The key to
measurement interoperability in mPlane is therefore the deϐinition of a element registry.

2.2 Components and Clients

A component is any entity which implements themPlane protocol speciϐied within this document,
advertises its capabilities and accepts speciϐications which request the use of those capabilities.
The measurements, analyses, storage facilities and other services provided by a component are
completely deϐined by its capabilities.
Conversely, a client is any entity which implements themPlane protocol, receives capabilities pub-

Plane 7 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

lished by one or more components, and sends speciϐications to those component(s) to perform
measurements and analysis. A GUI used by a network operator to control a set of measurement
devices within its own network would be an example of an mPlane client.

2.2.1 Probes and Repositories

Measurement components can be divided into two categories: probes and repositories. Roughly,
probes perform measurements, and repositories provide access to stored measurements, analysis
of stored measurements, or other access to related external data sources. External databases and
data sources (e.g., routing looking glasses, WHOIS services, DNS, etc.) can be made available to
mPlane clients through repositories acting as gateways to these external sources, as well.
Probes and repositories can cooperate, with probes sending newmeasurements to the repositories
for subsequent queries for analysis. However, this categorization is very rough: what a component
can do is completely described by its capabilities, and some components may combine properties
of both probes and repositories.

2.3 Supervisors and FederaƟon

An entity which implements both the client and component interfaces can be used to build and fed-
erate infrastructures of mPlane components. This supervisor is responsible for collecting capabil-
ities from a set of components, and providing capabilities based on these to its clients. Application-
speciϐic algortihms at the supervisor aggregate the lower-level capabilities provided by these com-
ponents into higher-level capabilities exposed to its clients.
The set of components which respond to speciϐications from a single supervisor is referred to as
an mPlane domain. Interdomain measurement is supported by federation among supervisors: a
local supervisor delegates measurements in a remote domain to that domain’s supervisor.
Since a supervisor allows the aggregation of control, it is in the general case expected to implement
access control based on the identity information provided by the secure session protocol (HTTPS
or TLS) used for communication between the supervisor and its clients.
Note that, since the logic for aggregating control and data for a given application is very speciϐic to
that application, there is no generic supervisor implementation provided with the mPlane Refer-
ence Implementation.
Within an mPlane domain, a special client known as a reasoner may control automated or semi-
automated iteration of measurements, working with a supervisor to iteratively run measurements
using a set of components to perform root cause analysis. While the reasoner is key to the mPlane
project, it is architecturallymerely another client, though itwill oftenbe colocatedwith a supervisor
for implementation convenience.

2.4 Workflows

A workϐlow is a sequence of messages exchanged between clients and components to perform
measurements. In the nominal sequence, a capability leads to a speciϐication leads to a result. All

Plane 8 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

the paths through the sequence of messages are shown in the diagram below; message types are
described in the following section in detail. In the ϐigure below, solid lines mean a message is sent
in reply to the previous message in sequence (i.e. a component sends a capability, and a client
replies or follows with a speciϐication), and dashed lines mean a message is sent as a followup (i.e.,
a component sends a capability, then sends a withdrawal to cancel that capability).

Capability Specification Result

Receipt Redemption

InterruptWithdrawal

Indirection

Figure 2.1: Potential sequences of messages in the mPlane protocol

Separate from the sequence of messages, the mPlane protocol supports three workϐlow patterns:

• Client-initiated in which clients connect directly to components at known, stable, routable
URLs. Client-initiated workϐlows are intended for use between clients and supervisors, for
access to repositories, and for access to probes embedded within a network infrastructure.

• Component-initiated inwhich components initiate connections to clients. Component-initiated
workϐlows are intended for use between components without stable routable addresses and
supervisors, e.g. for small probes on embedded devices, mobile devices, or software probes
embedded in browsers on personal computers behind network-address translators (NATs)
or ϐirewalls which prevent a client from establishing a connection to them.

• Indirect export in which one component is directed to send results to another component
using an external protocol, generally from a probe to a repository or between repositories.
Since the mPlane Result message is not particularly well-suited to the bulk transfer of high-
volume results, thisworkϐlow is intended to be the primarymethod formoving large amounts
of data from probes to repositories.

Within a given mPlane domain, these workϐlow patterns can be combined to facilitate complex in-
teractions among clients and components according to the requirements imposed by the applica-
tion and the deployment of components in the network.

Plane 9 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3 Protocol InformaƟon Model

ThemPlaneprotocol ismessage-oriented, built on the representation- and session-protocol-independent
exchange of messages between clients and components.

3.1 Element Registry

An element registrymakes up the vocabulary bywhichmPlane components and clients can express
the meaning of parameters, metadata, and result columns for mPlane statements. A registry is
represented as a JSON (RFC 7159 [2]) object with the following keys:

• registry-format: currently mplane-0, determines the revision and supported features of the
registry format.

• registry-uri: the URI identifying the registry. The URI must be dereferenceable to retrieve
the canonical version of this registry.

• registry-revision: a serial number startingwith 0 and incrementedwith each revision to the
content of the registry.

• includes: a list of URLs to retrieve additional registries from. Included registries will be eval-
uated in depth-ϐirst order, and elements with identical names will be replaced by registries
parsed later.

• elements: a list of objects, each of which has the following three keys:

– name: The name of the element.
– prim: The name of the primitive type of the element, from the list of primitives below.
– desc: An English-language description of the meaning of the element.

It is worth recalling that JSON RFC 7159mandates literals to be lowercase. With respect tomPlane,
the use of JSON implies that key of any (key,value) pair serialized in JSON formatmust be lowercase;
mPlane additionally encourages, whenever possible1, the value to be lowercase as well.
An example registry with two elements and no includes follows:

{ "registry-format": "mplane-0",
"registry-uri", "http://ict-mplane.eu/registry/core",
"registry-revision": 0,
"includes": [],
"elements": [

{ "name": "full.structured.name",
"prim": "string",
"desc": "A representation of foo..."

},
{ "name": "another.structured.name",

"prim": "string",
1Notice that this may not be possible for some value representing URLs that have case-sensitive path components;

and may not be suitable when the value contains human-destined descriptions.

Plane 10 of 51 Revision 1.0 of 31 Oct 2014

http://tools.ietf.org/html/7159
http://tools.ietf.org/html/7159

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

"desc": "A representation of bar..."
},

]
}

Fully qualiϐied element names consist of the element’s name as an anchor after theURI fromwhich
the element came, e.g. http://ict-mplane.eu/registry/core#full.structured.name. Ele-
ments within the type registry are considered globally equal based on their fully qualiϐied names.
However, within a given mPlane message, elements are considered equal based on unqualiϐied
names.

3.1.1 Structured Element Names

To ease understanding of mPlane type registries, element names are by default structured; that is,
an element name is made up of the following structural parts in order, separated by the dot (‘.’)
character:

• basename: exactly one, the name of the property the element speciϐies or measures. All ele-
ments with the same basename describe the same basic property. For example, all elements
with basename ‘source’ relate to the source of a packet, ϐlow, active measurement, etc.; and
elements with basename ‘delay” relate to the measured delay of an operation.

• modiϐier: zero or more, additional information differentiating elements with the same base-
name from each other. Modiϐiers may associate the element with a protocol layer, or a par-
ticular variety of the property named in the basename. All elements with the same basename
and modiϐiers refer to exactly the same property. Examples for the delay basename include
oneway and twoway, differentiating whether a delay refers to the path from the source to the
destination or from the source to the source via the destination; and icmp and tcp, describing
the protocol used to measure the delay.

• units: zero or one, present if the quantity can be measured in different units.
• aggregation: zero or one, if the property is a metric derived from multiple singleton mea-
surements. Supported aggregations are:

• min: minimum value
• max: maximum value
• mean: mean value
• sum: sum of values
• NNpct (where NN is a two-digit number 01-99): percentile
• median: shorthand for and equivalent to 50pct.
• count: count of values aggregated

WhenmappingmPlane structurednames into contexts inwhichdots have specialmeaning (e.g. SQL
column names or variable names in many programming languages), the dots may be replaced by
underscores (’_’). Whenusing external type registries (e.g. the IPFIX InformationElementRegistry),
element names are not necessarily structured.
We anticipate the future development of an mplane-1 revision of the registry formatwhich directly
supports simpler expression of structured names.

Plane 11 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3.1.2 PrimiƟve Types

The mPlane protocol supports the following primitive types for elements in the type registry:

• string: a sequence of Unicode characters
• natural: an unsigned integer
• real: a real (ϐloating-point) number
• bool: a true or false (boolean) value
• time: a timestamp, expressed in terms of UTC. The precision of the timestamp is taken to be
unambiguous based on its representation.

• address: an identiϐier of a network-level entity, including an address family. The address
family is presumed to be implicit in the format of themessage, or explicitly stored. Addresses
may represent speciϐic endpoints or entire networks.

• url: a uniform resource locator

3.2 Message Types

Workϐlows in mPlane are built around the capability - speciϔication - result cycle. Capabilities, spec-
iϐications, and results are kinds of statements: a capability is a statement that a component can
perform some action (generally a measurement); a speciϐication is a statement that a client would
like a component to perform the action advertised in a capability; and a result is a statement that a
component measured a given set of values at a given point in time according to a speciϐication.
Other types of messages outside this nominal cycle are referred to as notiϐications. Types of no-
tiϐications include Withdrawals, Interrupts, Receipts, Redemptions, Indirections, and Exceptions.
These notify clients or components of conditions within the measurement infrastructure itself, as
opposed to directly containing information about measurements or observations.
Messages may also be grouped together into a single envelopemessage. Envelopes allowmultiple
messages to be representedwithin a singlemessage, for examplemultiple Results pertaining to the
same Receipt; and multiple Capabilities or Speciϐications to be transferred in a single transaction
in the underlying session protocol.
The following types of messages are supported by the mPlane protocol:

3.2.1 Capability and Withdrawal

A capability is a statement of a component’s ability andwillingness to performa speciϐic operation,
conveyed froma component to a client. It does not represent a guarantee that the speciϐic operation
can or will be performed at a speciϐic point in time.
A withdrawal is a notiϐication of a component’s inability or unwillingness to perform a speciϐic
operation. It cancels a previously advertised capability. A withdrawal can also be sent in reply to a
speciϐication which

Plane 12 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3.2.2 SpecificaƟon and Interrupt

A speciϐication is a statement that a component should perform a speciϐic operation, conveyed
from a client to a component. It can be conceptually viewed as a capability whose parameters have
been ϐilled in with values.
An interrupt is a notiϐication that a component should stop performing a speciϐic operation, con-
veyed from client to component. It cancels a previously sent speciϐication.

3.2.3 Result

A result is a statement produced by a component that a particularmeasurementwas taken and the
givenvalueswereobserved, or that aparticular operationor analysiswasperformedanda the given
values were produced. It can be conceptually viewed as a speciϐication whose result columns have
been ϐilled in with values. Note that, in keeping with the stateless nature of the mPlane protocol, a
result contains the full set of parameters from which it was derived.
Note that not every speciϐicationwill lead to a result being returned; for example, in case of indirect
export, only a receipt which can be used for future interruption will be returned, as the results will
be conveyed to a third component using an external protocol.

3.2.4 Receipt and RedempƟon

A receipt is returned instead of a result by a component in response to a speciϐicationwhich either:

• will never return results, as it initiated an indirect export, or
• will not return results immediately, as the operation producing the results will have a long
run time.

Receipts have the same content speciϐication they are returned for. A component may optionally
add a token section, which can be used in future redemptions or interruptions by the client. The
content of the token is an opaque string generated by the component.
A redemption is sent from a client to a component for a previously received receipt to attempt
to retrieve delayed results. It may contain only the token section, or all sections of the received
receipt.

3.2.5 IndirecƟon

An indirection is returned instead of a result by a component to indicate that the client should
contact another component for the desired result.

Plane 13 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3.2.6 ExcepƟon

An exception is sent from a client to a component or from a component to a client to signal an
exceptional condition within the infrastructure itself.

3.2.7 Envelope

An envelope is used to contain other messages. Message containment is necessary in contexts
in which multiple mPlane messages must be grouped into a single transaction in the underlying
session protocol. It is legal to group any kind of message, and to mix messages of different types, in
an envelope. However, in the current revision of the protocol, envelopes are primarily intended to
be used for three distinct purposes:

• To return multiple results for a single receipt or speciϐication if appropriate (e.g., if a speciϐi-
cation has run repeated instances of a measurement on a schedule).

• To group multiple capabilities together within a single message (e.g., all the capabilities a
given component has).

• To group multiple speciϐications into a single message (e.g., to simultaneously send a mea-
surement speciϐication along with a callback control speciϐication).

3.3 Message SecƟons

Each message is made up of sections, as described in the subsection below. The following table
shows the presence of each of these sections in each of the message types supported by mPlane:
“req.” means the section is required, “opt.” means it is optional; see the subsection on eachmessage
section for details.

Section Capability Speciϐication Result Receipt Envelope

Verb req. req. req. req.
Content Type req.
version req. req. req. req. req.
registry req. req. req. opt.
label opt. opt. opt. opt. opt.
when req. req. req. req.
parameters req./token req. req. opt./token
metadata opt./token opt. opt. opt./token
results req./token req. req. opt./token
resultvalues req.
export opt. opt. opt. opt.
link opt.

Plane 14 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Section Capability Speciϐication Result Receipt Envelope

token opt. opt. opt. opt.
contents req.

Withdrawals take the same sections as capabilities, and redemptions and interrupts take the same
sections as receipts; see the subsection on the token section, below.

3.3.1 Message Type and Verb

The verb is the action to be performed by the component. The following verbs are supported by
the base mPlane protocol, but arbitrary verbs may be speciϐied by applications:

• measure: Perform a measurement
• query: Query a database about a past measurement
• collect: Receive results via indirect export
• callback: Used for callback control in component-initated workϐlows

In the JSON representation of mPlane messages, the verb is the value of the key corresponding to
the message’s type, represented as a lowercase string (e.g. capability, specification, result
and so on).
Roughly speaking, probes implement measure capabilities, and repositories implement query and
collect capabilities. Of course, any single component can implement capabilities with multiple
different verbs.
Within the Reference Implementation, the primary difference between measure and query is that
the temporal scope of a measure speciϐication is taken to refer to when themeasurement should be
scheduled, while the temporal scope of a query speciϐication is taken to refer to the time window
(in the past) of a query.
Envelopes have no verb; instead, the value of the envelope key is the kind ofmessages the envelope
contains, or message if the envelope contains a mixture of different unspeciϐied kinds of messages.

3.3.2 Version

The version section contains the version of the mPlane protocol to which the message conforms,
as an integer serially incremented with each new protocol revision. This section is required in all
messages. This document describes version 1 of the protocol.

3.3.3 Registry

The registry section contains the URL identifying the element registry used by this message, and
from which the registry can be retrieved. This section is required in all messages containing ele-
ment names (statements, and receipts/redemptions/interrupts not using tokens for identiϐication;

Plane 15 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

see the token section below).
The default core registry for mPlane is identiϐied by http://ict-mplane.eu/registry/core.

3.3.4 Label

The label section of a statement contains a human-readable label identifying it, intended solely for
usewhen displaying information aboutmessages in user interfaces. Results, receipts, redemptions,
and interrupts inherit their label from the speciϐication from which they follow; otherwise, client
and component software can arbitrarily assign labels . The use of labels is optional in all messages,
but as labels do greatly ease human-readability of arbitrary messages within user interfaces, their
use is recommended.
mPlane clients and components should never use the label as a unique identiϐier for a message, or
assume any semantic meaning in the label – the test of message equality and relatedness is always
basedupon the schemaandvalues as in the sectiononmessageuniqueness and idempotencebelow.

3.3.5 Temporal Scope (When)

The when section of a statement contains its temporal scope.
A temporal scope refers to when ameasurement can be run (in a Capability), when it should be run
(in a Speciϐication), or when it was run (in a Result). Temporal scopes can be either absolute or
relative, and may have an optional period, referring to how often single measurements should be
taken.
The general form of a temporal scope (in BNF-like syntax) is as follows:

simple-when = <singleton> | # A single point in time
<range> | # A range between two points in time
<range> ' / ' <duration> # A range with a period

singleton = <iso8601> | # absolute singleton
'now' # relative singleton

range = <iso8601> ' ... ' <iso8601> | # absolute range
<iso8601> ' + ' <duration> | # relative range
'now' ' ... ' <iso8061> | # definite future
'now' ' + ' <duration> | # relative future
<iso8601> ' ... ' 'now' | # definite past
'past ... now' | # indefinite past
'now ... future' | # indefinite future
<iso8601> ' ... ' 'future' | # absolute indefinite future
'past ... future' | # forever

duration = [<n> 'd'] # days
[<n> 'h'] # hours
[<n> 'm'] # minute

Plane 16 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

[<n> 's'] # seconds

iso8601 = <n> '-' <n> '-' <n> [' ' <n> ':' <n> ':' <n> ['.' <n>]

All absolute times are always given in UTC and expressed in ISO8601 format with variable preci-
sion.
In capabilities, if a period is given it represents the minumum period supported by the measure-
ment; this is done to allow rate limiting. If no period is given, the measurement is not periodic. A
capability with a period can only be fulϐilled by a speciϐication with period greater than or equal
to the period in the capability. Conversely, a capability without a period can only be fulϐilled by a
speciϐication without a period.
Within a result, only absolute ranges are allowed within the temporal scope, and refers to the time
range of the measurements contributing to the result.
So, for example, an absolute range in time might be expressed as:
when: 2009-02-20 13:02:15 ... 2014-04-04 04:27:19
A relative range covering three and a half days might be:
when: 2009-04-04 04:00:00 + 3d12h
In a Speciϐication for running an immediate measurement for three hours every seven and a half
minutes:
when: now + 3h / 7m30s
In a Capability noting that a Repository can answer questions about the past:
when: past ... now.
In a Speciϐication requesting that a measurement run from a speciϐied point in time until inter-
rupted:
when: 2017-11-23 18:30:00 ... future

3.3.5.1 RepeaƟng Measurements

Within speciϐications, the temporal scope can be extended to support repeated measurement. A
repeated speciϐication is conceptually equivalent to a speciϐication that is sent from the client to the
component once, then retained at the component and initiated multiple times.
The general form of a temporal scope in a repeated speciϐication is as follows (BNF-like syntax):

repeated-when = 'repeat' <outer-when> | # implicit inner scope of now
'repeat' <outer-when> '{' <inner-when> '}' | # simple range/period

'repeat' <range> 'cron' <crontab> '{' <inner-when> '}' # with crontab

outer-when = <range> ' / ' <duration>

inner-when = 'now' |
'now' ' + ' <duration> |
'now' ' + ' <duration> / <duration>

Plane 17 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

crontab = <seconds> <minutes> <hours> <days-of-month> <days-of-week> <months>

seconds = '*' | <seconds-or-minutes-list>
minutes = '*' | <seconds-or-minutes-list>
seconds-or-minutes-list = <n> [',' <seconds-or-minutes-list>] # 0<=n<60

hours = '*' | <hours-list>
hours-list = <n> [',' <hour-list>] # 0<=n<24

days-of-month = '*' | <days-of-month-list>
days-of-month-list = <n> [',' <days-of-month-list>] # 0<n<=31

days-of-week = '*' | <days-of-week-list>
days-of-week-list = <n> [',' <days-of-week-list>] # 0<=n<=7

0 = Sunday, 1 = Monday, ..., 7 = Sunday

months = '*' | <months-list>
months-list = <n> [',' <months-list>] # 0<n<=12

when = <simple-when> | <repeated-when>

A repeated speciϐication consists of an outer temporal speciϐication that governs how often and for
how long the speciϐication will repeat, and an inner temporal speciϐication which applies to each
individual repetition. The inner temporal speciϐiation must always be relative to the current time,
i.e. the time of initiated of the repeated speciϐication. If the inner temporal speciϐication is omitted,
the speciϐication is presumed to have the relative singleton temporal scope of now.
A repeated speciϐication can have a cron-like schedule. In this case the outer temporal speciϐication
only consists of a range scope to determine the time frame in which the cron-like schedule is valid.
The crontab states the seconds, minutes, hours, days of the week, days of the month, and months
at which the speciϐication will repeat. An asterisk means to repeat at all legal values for that ϐield.
The speciϐication is only repeated if all ϐields match.
Submitting a repeated speciϐication will still result in a single receipt, or in multiple results. These
multiple results, resulting either directly froma single repeated speciϐication, or from the a redemp-
tion of a receipt resulting from a repeated speciϐication, are grouped in an envelope message.
For example, a repeated speciϐication to take measurements every second for ϐive minutes, repeat-
ing once an hour indeϐinitely would be:
when: repeat now ... future / 1h { now + 5m / 1s }

This repeated speciϐication is equivalent to the repeated submission of the same speciϐication with
a temporal scope of when: { now + 5m / 1s } once an hour until the speciϐication is cancelled
with an interrupt notiϐication.
As a second example, a repeated speciϐication to takemeasurements every second for ϐive minutes,
repeating every half hour within a speciϐic timeframe would be:
when: repeat 2014-01-01 13:00:00 ... 2014-06-01 14:00:00 / 30m { now + 5m / 1s }

Plane 18 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Likewise, this repeated speciϐication is equivalent to the submission of the same speciϐicationwith a
temporal scope of when: { now + 5m / 1s } at 2014-01-01 13:00:00, 2014-01-01 13:30:00,
2014-01-01 14:00:00, 2014-01-01 14:30:00, and so on =, until (and including) 2014-06-01
13:30:00 and 2014-06-01 14:00:00.
A repeated speciϐication taking singleton measurements every hour indeϐinitely with an implicit
inner temporal speciϐication:
when: repeat now ... future / 1h
equivalent to submitting a speciϐication with the temporal scope now hourly forever until inter-
rupted.
A crontab speciϐication which is repeated on the ϐirst Monday of eachmonthmeasuring every hour
on that day for 5minuteswould be: when: repeat now ... future cron 0 0 * 1,2,3,4,5,6,7
1 * { now + 5m }
A repeated speciϐication to take measurements each day of the year at midnight would be: when:
repeat now ... future cron 0 0 0 * * *

3.3.6 Parameters

The parameters section of a message contains an ordered list of the parameters for a given mea-
surement: values which must be provided by a client to a component in a speciϐication to convey
the speciϐics of themeasurement to perform. Each parameter in anmPlanemessage is a key-value
pair, where the key is the name of an element from the element registry. In speciϐications and
results, the value is the value of the parameter. In capabilities, the value is a constraint on the
possible values the component will accept for the parameter in a subsequent speciϐication.
Four kinds of constraints are currently supported for mPlane parameters:

• No constraint: all values are allowed. This is signiϐied by the special constraint string ‘*’.
• Single value constraint: only a single value is allowed. This is intended for use for capabilities
which are conceivably conϐigurable, but for which a given component only supports a sin-
gle value for a given parameter due to its own out-of-band conϐiguration or the permissions
of the client for which the capability is valid. For example, the source address of an active
measurement of a single-homed probe might be given as ‘source.ip4: 192.0.2.19’.

• Set constraint: multiple values are allowed, and are explicitly listed, separated by the ‘,’ char-
acter. For example, a multi-homed probe allowing two potential source addresses on two
different networks might be given as ‘source.ip4: 192.0.2.19, 192.0.3.21’.

• Range constraint: multiple values are allowed, between two ordered values, separated by the
special string ‘...’. Range constraints are inclusive. A measurement allowing a restricted
range of source ports might be expressed as ‘source.port: 32768 ... 65535’

• Preϐix constraint: multiple values are allowed within a single network, as speciϐied by a net-
work address and a preϐix. A preϐix constraint may be satisϐied by any network of host ad-
dress completely containedwithin the preϐix. An example allowing probing of any hostwithin
a given /24 might be ‘destination.ip4: 192.0.2.0/24’.

Parameter and constraint values must be a representation of an instance of the primitive type of
the associated element.

Plane 19 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

3.3.7 Metadata

The metadata section containsmeasurementmetadata: key-value pairs associatedwith a capabil-
ity inherited by its speciϐication and results. Metadata can also be thought of as immutable parame-
ters. This is intended to represent information which can be used tomake decisions at the client as
to the applicability of a given capability (e.g. details of algorithms used or implementation-speciϐic
information) as well as to make adjustments at post-measurement analysis time when contained
within results.
An example metadata element might be ‘measurement.identifier: qof’, which identiϐies the
underlying tool taking measurements, such that later analysis can correct for known peculiarities
in the implementation of the tool. Another example might be ‘location.longitude = 8.55272’,
which while not particularly useful for analysis purposes, can be used to draw maps of measure-
ments.

3.3.8 Result Columns and Values

Results are represented using two sections: results which identify the elements to be returned
by the measurement, and resultvalues which contains the actual values. results appear in all
statements, while resultvalues appear only in result messages.
The results section contains an ordered list of result columns for a given measurement: names
of elements which will be returned by the measurement. The result columns are identiϐied by the
names of the elements from the element registry.
The resultvalues section contains an ordered list of ordered lists (or, rather, a two dimensional
array) of values of results for a given measurement, in row-major order. The columns in the result
values appear in the same order as the columns in the results section.
Values for each column must be a representation of an instance of the primitive type of the associ-
ated result column element.

3.3.9 Export

The export section contains a URL or partial URL for indirect export. Its meaning depends on the
kind and verb of the message:

• For capabilities with the collect verb, the export section contains the URL of the collector
which can accept indirect export for the schema deϐined by the parameters and results
sections of the capability, using theprotocol identiϐiedby theURL’s schema. If theURL schema
is mplane-http, result messages matching the capability can be directly sent to the collector
at the given URL via HTTP POST. Otherwise, the binding between elements in the capability’s
registry and representations of these elements in the export protocol is protocol-speciϐic.

• For capabilities with any verb other than collect, the export section contains either the
URL of a collector to which the component can indirectly export results, or a URL schema
identifying a protocol over which the component can export to arbitrary collectors.

• For speciϐicationswith any verb other than collect, the export section contains theURL of a

Plane 20 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

collector to which the component should indirectly export results. A receipt will be returned
for such speciϐiations.

If a component can indirectly export or indirectly collect using multiple protocols, each of those
protocols must be identiϐied by its own capability; capabilities with an export section can only be
used by speciϐications with a matching export section.
The special export schema mplane-http implies that the exporter will POST mPlane result mes-
sages to the collector at the speciϐied URL. All other export schemas are application-speciϐic, and
the mPlane protocol implementation is only responsible for ensuring the schemas and protocol
identiϐiers match between collector and exporter.

3.3.10 Link

The link section contains the URL to which messages in the next step in the workϐlow (i.e. a spec-
iϐication for a capability, a result or receipt for a speciϐication) can be sent, providing indirection.
The link URL must currently have the schema mplane-http, and refers to posting of messages via
HTTP POST.
If present in a capability, the client must POST speciϐications for the given capability to the com-
ponent at the URL given in order to use the capability, as opposed to simply posting them to the
known or assumed URL for a component. If present in a speciϐication, the component must POST
results for the given speciϐication back to the client at the URL given, as opposed to . See the section
on workϐlows below for details.
If present in an indirection message returned for a speciϐication by a component, the client must
send the speciϐication to the component at the URL given in the link in order to retrieve results or
initiate measurement.

3.3.11 Token

The token section contains an arbitrary string bywhich amessagemay be identiϐied in subsequent
communications in an abbreviated fashion. Unlike labels, tokens are not necessarily intended to
be human-readable; instead, they provide a way to reduce redundancy on the wire by replacing
the parameters, metadata, and results sections in messages within a workϐlow, at the expense of
requiring more state at clients and components. Their use is optional.
Tokens are scoped to the association between the component and client in which they are ϐirst
created.
If a capability contains a token, it may be subsequently withdrawn by the same component using a
withdrawal containing the token instead of the parameters, metadata, and results sections.
If a speciϐication contains a token, it may be answered by the component with a receipt containing
the token instead of the parameters, metadata, and results sections. A speciϐication containing a to-
kenmay likewise be interrupted by the client with an interrupt containing the token. A component
must not answer a speciϐication with a token with a receipt or result containing a different token,
but the token may be omitted in subsequent receipts and results.

Plane 21 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

If a receipt contains a token, it may be redeemed by the same client using a redemption containing
the token instead of the parameters, metadata, and results sections.

3.3.12 Contents

The contents section appears only in envelopes, and is an ordered list of messages. If the enve-
lope’s kind identiϐies amessage kind, the contentsmay contain onlymessages of the speciϐied kind,
otherwise if the kind is message, the contents may contain a mix of any kind of message.

3.4 Message Uniqueness and Idempotence

Messages in the mPlane protocol are intended to support state distribution: capabilities, speci-
ϐications, and results are meant to be complete declarations of the state of a given measurement.
In order for this to hold, it must be possible for messages to be uniquely identiϐiable, such that
duplicate messages can be recognized. With one important exception (relative temporal scopes),
messages are idempotent. The receipt of a duplicate message at a client or component is a null
operation.

3.4.1 Message Schema

The combination of elements in the parameters and results sections, together with the registry
fromwhich these elements are drawn, is referred to as a message’s schema. The schema of a mea-
surement can be loosely thought of as the deϐinition of the table, rows of which the message repre-
sents.
The schema contributes not only to the identity of amessage, but also to the semantic intepretation
of the parameter and result values. Themeanings of element values inmPlane are dependent on the
other elements present in the message; in other words, the key to interpreting an mPlane message
is that the unit of semantic identity is a message. For example, the element ‘destination.ip4’ as
a parameter means “the target of an given active measurement” when together with an elements
describing an active metric (e.g. ‘delay.twoway.icmp.us’), but “the destination of the packets in
a ϐlow” when together with other elements in result columns describing a passively-observed ϐlow.
The interpretation of the semantics of an entire message is application-speciϐic. The protocol does
not forbid the transmissionofmessages representing semanticallymeaningless or ambiguous schemas.

3.4.2 Message IdenƟty

A message’s identity is composed of its schema, together with its temporal scope, metadata, pa-
rameter values, and indirect export properties. Concretely, the full content of the registry, when,
parameters, metadata, results, andexport sections taken together comprise themessage’s iden-
tity.

Plane 22 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

One convenience feature complicates this somewhat: when the temporal scope is not absolute,mul-
tiple speciϐications may have the same literal temporal scope but refer to different measurements.
In this case, the current time at the client or component when a message is invoked must be taken
as part of the message’s identity as well. Implementations may use hashes over the values of the
message’s identity sections to uniquely identify messages; e.g. to generate message tokens.

Plane 23 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

4 RepresentaƟons and Session Protocols

The mPlane protocol is built atop an abstract data model in order to support multiple represen-
tations and session protocols. The canonical representation supported by the present reference
implementation involves JSON (RFC 7159 [2]) objects transported via HTTP (RFC 7230 [4]) over
TLS (RFC 5246 [3])(HTTPS).

4.1 JSON representaƟon

In the JSON representation, anmPlanemessage is a JSON object, mapping sections by name to their
contents. The name of the message type is a special section key, which maps to the message’s verb,
or to the message’s content type in the case of an envelope.
Each section name key in the object has a value represented in JSON as follows:

• version : an integer identifying the mPlane message version.
• registry : a URL identifying the registry from which element names are taken.
• label : an arbitrary string.
• when : a string containing a temporal scope, as described in the “Temporal Scope” subsection
above.

• parameters : a JSON object mapping (non-qualiϐied) element names, either to constraints or
to parameter values, as appropriate, and as described in the “Parameters” subsection above.

• metadata : a JSON object mapping (non-qualiϐied) element names to metadata values.
• results : an array of element names.
• resultvalues : an array of arrays of element values in row major order, where each row
array contains values in the same order as the element names in the results section.

• export : a URL for indirect export.
• link : a URL for message indirection.
• token : an arbitrary string.
• contents : an array of objects containing messages.

4.1.1 Textual representaƟons of element values

Each primitive type is represented as a value in JSON as follows, following the Textual Representa-
tion of IPFIX Abstract Data Types [8].
Natural and real values are represented in JSON using native JSON representation for numbers.
Booleans are represented by the reserved words true and false.
Strings and URLs are represented as JSON strings subject to JSON escaping rules.
Addresses are represented as dotted quads for IPv4 addresses as theywould be inURLs, and canon-
ical IPv6 textual addresses as in section 2.2 of RFC 4291 [5] as updated by section 4 of RFC 5952 [6].
When representing networks, addresses may be sufϐixed as in CIDR notation, with a ‘/’ character
followed by the mask length in bits n, provided that the least signiϐicant 32 − n or 128 − n bits of
the address are zero, for IPv4 and IPv6 respectively.

Plane 24 of 51 Revision 1.0 of 31 Oct 2014

http://tools.ietf.org/html/7159
http://tools.ietf.org/html/7230
http://tools.ietf.org/html/5246
http://tools.ietf.org/html/rfc7373
http://tools.ietf.org/html/rfc7373
http://tools.ietf.org/html/4291
http://tools.ietf.org/html/5952

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Timestamps are represented in RFC 3339 [7] and ISO 8601 [1], with two important differences.
First, all mPlane timestamps are are expressed in terms of UTC, so time zone offsets are neither
required nor supported, and are always taken to be 0. Second, fractional seconds are represented
with a variable number of digits after an optional decimal point after the fraction.

4.2 mPlane over HTTPS

The default session protocol for mPlane messages is HTTP over TLS with mandatory mutual au-
thentication. This grants conϐidentiality and integrity to the exchange of mPlanemessages through
a link security approach, and is transparent to the client. HTTPover TLSwas chosen in part because
of its ubiquitous implementation on many platforms.
An mPlane component may act either as a TLS server or a TLS client, depending on the workϐlow.
When an mPlane client initiates a connection to a component, it acts as a TLS client, and must
present a client certiϐicate, which the component will verify against its allowable clients andmap to
an internal identity for making access control decisions before proceeding. The component, on the
other hand, acts as a TLS server, and must present a server certiϐicate, which the client will verify
against its accepted certiϐicates for the component before proceeding. When anmPlane component
initiates a connection to a client (or, more commonly, the client interface of a supervisor), this ar-
ragmenent is reversed: the component acts as a TLS client, the client as a TLS server, and mutual
authentication is still mandatory.
SinceHTTPS is not abidirectional protocol (i.e., clients send requests,while servers send responses),
while mPlane envisions a bidirectional message channel, it is necessary to specify mappings be-
tween this bidirectional message channel and the sequence of HTTPS requests and responses for
each deployment scenario. These mappings are given in theWorkϐlows section below. Note that in
a given mPlane domain, any or all of these mappings may be used simultaneously.
When sending mPlane messages over HTTPS, the Content-Type of the message indicates the mes-
sage representation. TheMIME Content-Type formPlanemessages using JSON representation over
HTTPS is application/x-mplane+json. When sending exceptions in HTTP response bodies, the
response should contain an appropriate 400 (Client Error) or 500 (Server Error) response code.
Whensending indirections, the response should contain anappropriate300 (Redirection) response
code. Otherwise, the response should contain response code 200 OK.

4.2.1 Access Control

For componentswith simple authorizationpolicies (i.e., manyprobes), the ability to establish a con-
nection (which implies veriϐication of a client certiϐicate) further implies authorization to continue
with any capability offered by the component. For components with more complex policies (i.e.,
many repositories) the identity of the peer’s certiϐicate is mapped to an internal identity on which
access control decisions can be made. For access control purposes, the identity of an mPlane client
or component is based on the Distinguished Name extracted from the certiϐicate, which uniquely
and securely identiϐies the entity carrying it.
In an mPlane infrastructure containing a supervisor, each component trusts its supevisor com-
pletely, and accepts every message that can be identiϐied as coming from the supervisor. Access

Plane 25 of 51 Revision 1.0 of 31 Oct 2014

http://tools.ietf.org/html/3339

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

control enforcement takes place on the supervisor, using a RBAC approach: the identity of the
clients connecting to it are mapped to a role based on the DN extracted from their certiϐicate. Each
role has access only to a subset of the whole set of capabilities provided by that to a supervisor, as
composed from the capabilities offered by the associated components, according to its privileges.
Therefore, any client will only has access to capabilities at the supervisor that it is authorized to
execute. The same controls are enforced on speciϐications.

4.3 mPlane over SSH

Though not presently implemented by the reference implementation, the mPlane protocol speciϐi-
cation is designed such that it can also use the Secure Shell (SSH) protocol as a session layer. In the
SSH binding, a connection initiator (SSH client) identiϐies itself with an RSA, DSA, or ECDSA pub-
lic key, which is bound to a speciϐic identity, and the connection responder (SSH server) identiϐies
itself with a host public key. As with TLS certiϐicates, these are mapped to an internal identity on
which access control decisions can be made.
Once an SSH connection is established, mPlanemessages can be exchanged bidirectionally over the
channel.
Access control in SSH is performed as in the HTTPS case, except that SSH public keys are mapped
to identities at each component.
Implementation and further speciϐication of SSH as a session layer is a matter for future work.

4.4 Example mPlane CapabiliƟes and SpecificaƟons

To illustrate howmPlanemessages are encoded, we consider ϐirst two capabilities for a very simple
application – ping – as mPlane JSON capabilities. The following capability states that the compo-
nent can measure ICMP two-way delay from 192.0.2.19 to anywhere on the IPv4 internet, with a
minumum delay between individual pings of 1 second, returning aggregate statistics:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate",
"when": "now ... future / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

Plane 26 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

In contrast, the following capabilitywould return timestamped singletondelaymeasurements given
the same parameters:

{
"capability": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-singletons",
"when": "now ... future / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "*"},
"results": ["time",

"delay.twoway.icmp.us"]
}

A speciϐication is merely a capability with ϐilled-in parameters, e.g.:

{
"specification": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate",
"token": "0f31c9033f8fce0c9be41d4942c276e4",
"when": "now + 30s / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.2.33"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",
"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"]

}

Results are merely speciϐications with result values ϐilled in and an absolute temporal scope:

{
"result": "measure",
"version": 0,
"registry": "http://ict-mplane.eu/registry/core",
"label": "ping-aggregate",
"token": "0f31c9033f8fce0c9be41d4942c276e4",
"when": "2014-08-25 14:51:02.623 ... 2014-08-25 14:51:32.701 / 1s",
"parameters": {"source.ip4": "192.0.2.19",

"destination.ip4": "192.0.2.33"},
"results": ["delay.twoway.icmp.us.min",

"delay.twoway.icmp.us.mean",

Plane 27 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

"delay.twoway.icmp.us.50pct",
"delay.twoway.icmp.us.max",
"delay.twoway.icmp.count"],

"resultvalues": [[23901,
29833,
27619,
66002,
30]]

}

Plane 28 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

5 Workflows

Asnotedabove,mPlaneprotocol supports threepatternsofworkϐlow: client-initiated, component-
initiated, and indirect export. These workϐlow patterns can be combined into complex interac-
tions among clients and components in an mPlane infrastructure. In the subsections below, we
illustrate these workϐlows as they operate over HTTPS.
In this section, the following symbols have the following meanings:

Symbol Description

C Capability
Ccb Callback Capability
Ce Export Capability
Cc Collect Capability
S Speciϐication
Scb Callback Speciϐication
Se Export Speciϐication
R Result
Rc Receipt
Rd Redemption
Ex External protocol for indirect export
I Interrupt

Colors are as elsewhere in the document: blue for capabilities and capability-relatedmessages, red
for speciϐications, and black for results.

5.1 Client-IniƟated

Client-initiatedworkϐlowsare appropriate for stationary components, i.e., thosewith stable, routable
addresses, which can therefore act as HTTPS servers. This is generally the case for supervisors,
large repositories, repositories acting as gateways to external data sources, and certain large-scale
or public probes. The client-initiated pattern is illustrated below:
Here, the client opens an HTTPS connection the the component, and GETs a capability message, or
an envelope containing capability messages, at a knownURL. It then subsequently uses these capa-
bilities by POSTing a speciϐication, either to a known URL or to the URL given in the link section of
the capability. The HTTP response to the POSTed speciϐication contains either a result directly, or
contains a receipt which can be redeemed later by POSTing a redemption to the component. This
latter case is illustrated below.
In a client-initiated workϐlow with a delayed result, the client is responsible for polling the compo-
nentwith a redemption at the appropriate time. Formeasurements (i.e. speciϐicationswith the verb

Plane 29 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

ComponentClient

C

S POST
S

R
R

C
GET

Figure 5.1: Client-initiated workϐlow

‘measure’), this time is known as it is deϐined by the end of the temporal scope for the speciϐication.
Note that in client-initiatedworkϐlows, clientsmay store capabilities fromcomponents for later use:
theremay be a signiϐicant delay between retrieval of capabilities and transmission of speciϐications
following from those capabilities. It is not necessary for a client to check to see whether a given
capability it has previously retrieved is still valid.

5.1.1 Capability Discovery

For direct client-initiated workϐlows, the URL(s) from which to GET capabilities is a client conϐig-
uration parameter. The client-initiated workϐlow also allows indirection in capability discovery.
Instead of GETting capabilities direct from a component, they can also be retrieved from a capa-
bility discovery server containing capabilities for multiple components providing capabilities via
client-initiated workϐlows. These components are then identiϐied by the link section of each ca-
pability. The capabilities may be grouped in an envelope retrieved from the capability discovery
server, or linked to in an HTML object retrieved therefrom.
In this way, a client needs only be conϐigured with a single URL for capability discovery, instead of
URLs for each component with which it wants to communicate.
This arrangement is shown in the ϐigure below:

5.2 Component-IniƟated

Component-initiatedworkϐlows are appropriate for componentswhich do not have stable routable
addresses (i.e., are behindNATs and/or aremobile), andwhich are used by clients that do. Common
examples of such components are lightweight probes on mobile devices and customer equipment

Plane 30 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

ComponentClient

C

S POST
S

Rc

Rc

Rd
Rd

R
R

POST

C
GET

Figure 5.2: Client-initiated workϐlow with delayed result

on access networks, interacting directly with a supervisor.
In this case, the usual client-server relationship is reversed, as shown in the ϐigure below.
Here, when the component becomes available, it opens an HTTPS connection to the client and
POSTs its capabilities to a known, conϐigured URL at the supervisor. The supervisor remembers
which capabilities it wishes to use on which components, and prepares speciϐications for later re-
trieval by the client.
The component then polls the supervisor, opening HTTPS connections and attempting to GET a
speciϐication from a known URL. The client will either respond 404 Not Found if the client has
no current speciϐication for the component, or with a speciϐication to run matching a previously
POSTed capability. After completing the measurement speciϐied, the component then calls back
and POSTs the results to the supervisor at a known URL.
In this case, the component must be conϐigured with the client’s URL(s).

5.2.1 Callback Control

Callback control allows the supervisor to specify to the componentwhen it should call back, in order
to allow centralized scheduling of component-initiatedworkϐlows, aswell as to allow anmPlane in-
frastructure using component-initiated workϐlows to scale. Continuous polling of a client by thou-

Plane 31 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

capability
discovery server

C

C

ca
pa
bi
li
ti
es
.h
tm
l

Component

Client

C

S

POST

S

R
R

GET

GET

Figure 5.3: Capability discovery in client-initiated workϐlows

sands of components would put a network under signiϐicant load, and the polling delay introduces
a difϐicult tradeoff between timeliness of speciϐication and polling load. mPlane uses the callback
verbwith component-initiatedworkϐlows in order to allow the supervisor ϐine-grained control over
when components will call back.
To use callback control, the component advertises the following capability along with the others it
provides:

{
'capability': 'callback',
'version': 0,
'registry': 'http://ict-mplane.eu/registry/core',
'when': 'now ... future',
'parameters': {},
'results': []

}

Then, when the component polls the client the ϐirst time, it responds with an envelope containing

Plane 32 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Client Component

C

S

S

R

R

CPOST

POST

GET

Figure 5.4: Component-initiated workϐlow

two speciϐications: the measurement it wants the client to perform, and a callback speciϐication,
containing the time at which the client should poll again in the temporal scope; e.g. as follows:

{
'specification': 'callback',
'version': 0,
'registry': 'http://ict-mplane.eu/registry/core',
'when': '2014-09-08 12:40:00.000',
'parameters': {},
'results': []

}

Callback control is illustrated below:
Note that if the supervisor has no work for the component, it returns a single callback speciϐication
as opposed to returning 404. Note that subsequent callback control speciϐication to a component
can have different time intervals, allowing a supervisor ϐine-grained control on a per-component
basis of the tradeoff between polling load and response time.
Components implementing component-initiated workϐlows should support callback control in or-
der to ensure the scalability of large mPlane infrastructures.

5.3 Indirect Export

Many commonmeasurement infrastructures involve a large number of probes exporting large vol-
umes of data to a (much) smaller number of repositories, where data is reduced and analyzed.
Since (1) the mPlane protocol is not particularly well-suited to the bulk transfer of data and (2)

Plane 33 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Supervisor Component

S0

R

R

POST

POST

GET

CCcb CCcb

S0Scb

Scb

wait

ScbGET
Scb

Figure 5.5: Callback control in component-initiated workϐlow

ϐidelity is better ensured when minimizing translations between representations, the channel be-
tween the probes and the repositories is in this case external to mPlane. This indirect export
channel runs either a standard export protocol such as IPFIX, or a proprietary protocol unique to
the probe/repository pair. It coordinates an exporter which will produce and export data with a
collector which will receive it. All that is necessary is that (1) the client, exporter, and collector
agree on a schema to deϐine the data to be transferred and (2) the exporter and collector share a
common protocol for export.
An example arrangement is shown in the ϐigure below:
Here, we consider a client speaking to an exporter and a collector. The client ϐirst receives an ex-
port capability from the exporter (with verb measure and with a protocol identiϐied in the export
section) and a collection capability from the collector (with the verb collect andwith a URL in the
export section describing where the exporter should export), either via a client-initiated work-
ϐlow or a capability disovery server. The client then sends a speciϐication to the exporter, which
matches the schema and parameter constraints of both the export and collection capabilities, with
the collector’s URL in the export section.
The exporter initiates export to the collector using the speciϐied protocol, and replies with a re-
ceipt that can be used to interrupt the export, should it have an indeϐinite temporal scope. In the
meantime, it sends data matching the capability’s schema directly to the collector.
This data, or data derived from the analysis thereof, can then be subsequently retrieved by a client

Plane 34 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

ProbeSupervisor

Ce

POST
Se

Re

Ce Repository

CcCc

Se

R RPOST

Re

I

I

POST

Ex external
protocol Ex

or

Figure 5.6: Indirect export workϐlow

using a client-initiated workϐlow to the collector.

5.4 Error Handling in mPlane Workflows

Any component may signal an error to its client or supervisor at any time by sending an exception
message. While the taxonomyof errormessages is at this time left up to each individual component,
exceptions should be used sparingly, and only to notify components and clients of errorswhichmay
require external human intervention to correct.

Speciϐically, components in component-initiated workϐlows should not use the exception mecha-
nism for common error conditions (e.g., device losing connectivity for small network-edge probes)
– speciϐications sent to such components are expected to be best-effort. Exceptions should also
not be returned for speciϐications which would normally not be delayed but are due to high load
– receipts should be used in this case, instead. Likewise, speciϐications which cannot be fulϐilled
because they request the use of capabilities that were once available but are no longer should be
answered with withdrawals.

Plane 35 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Exceptions should always be sent in reply to messages sent to components or clients which cannot
be handled due to a syntactic or semantic error in the message itself.

Plane 36 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

6 The Role of the Supervisor

From the point of view of the mPlane protocol, a supervisor is merely a combined component and
client. The logic binding client and component interfaces within the supervisor is application-
speciϐic, as it involves the following operations according to the semantics of each application:

• translating lower-level capabilities fromsubordinate components intohigher-level (composed)
capabilities, according to the application’s semantics

• translating higher-level speciϐications from subordinate components into lower-level (de-
composed) speciϐications

• relaying or aggregating results from subordinate components to supervisor clients

The workϐlows on each side of the supervisor are independent; indeed, the supervisor itself will
generally respond to client-initiated exhanges, and use both component-initiated and supervisor-
initiated exchanges with subordinate components.
An example combination of workϐlows at a supervisor is shown below:

SupervisorClient

C

S
POST

R

C

GET

Component

C

S

S

R

R

CPOST

GET

POST

S

Rc

Rc

Rd

R

RdPOST

Figure 6.1: Example workϐlows at a supervisor

Here we see a a very simple arrangement with a single client using a single supervisor to perform
measurements using a single component. The component uses a component-initiated workϐlow to
associate with a supervisor, and the client uses a client-initiated workϐlow.

Plane 37 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

First, the component registers with the supervisor, POSTing its capabilities. The supervisor creates
composed capabilities derived from these component capabilities, and makes them available to its
client, which GETs them when it connects.
The client then initiates a measurement by POSTing a speciϐication to the supervisor, which de-
composes it into a more-speciϐic speciϐication to pass to the component, and hands the client a
receipt for a themeasurement. When the component polls the supervisor – controlled, perhaps, by
callback control as described above – the supervisor passes this derived speciϐication to the com-
ponent, which executes it and POSTs its results back to the supervisor. When the client redeems its
receipt, the supervisor returns results composed from those received from the component.
This simple example illustrates the three main responsibilities of the supervisor, which are de-
scribed in more detail below.

6.1 Component RegistraƟon

In order to be able to use components to performmeasurements, the supervisor must register the
components associated with it. For client-initiated workϐlows – large repositories and the address
of the components is often a conϐiguration parameter of the supervisor. Capabilities describing the
available measurements and queries at large-scale components can even be part of the supervi-
sor’s externally managed static conϐiguration, or can be dynamically retrieved and updated from
the components or from a capability discovery server.
For component-initiated workϐlows, components connect to the supervisor and POST capabilities
and withdrawals, which requires the supervisor to maintain a set of capabilities associated with a
set of components currently part of the mPlane infrastructure it supervises.

6.2 Client AuthenƟcaƟon

Formany components – probes and simple repositories – very simple authentication often sufϐices,
such that any client with a certiϐicate with an issuer recognized as valid is acceptable, and all capa-
bilities are available to. Larger repositories often need ϐiner grained control, mapping speciϐic peer
certiϐicates to identities internal to the repository’s access control system (e.g. database users).
In an mPlane infrastructure, it is therefore the supervisor’s responsibility to map client identities
to the set of capabilities each client is authorized to access. This mapping is part of the supervisor’s
conϐiguration.

6.3 Capability ComposiƟon and SpecificaƟon DecomposiƟon

The most dominant responsibility of the supervisor is composing capabilities from its subordi-
nate components into aggregate capabilities, and decomposing speciϐications from clients to more-
speciϐic speciϐications to pass to each component.

Plane 38 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

This operation is always application-speciϐic, as the semantics of the composition and decomposi-
tion operations depend on the capabilities available from the components, the granularity of the
capabilities to be provided to the clients. It is for this reason that the mPlane reference implemen-
tation does not provide a generic supervisor.

Plane 39 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

7 An example mPlane infrastructure

Bringing this all together, an example mPlane infrastructure, containing a client/reasoner, supervi-
sor, probe and repository components, demonstrating all common data and control ϐlows, is shown
below:

supervisor
client

interfaceCCcCeCe Se Se S

repositoryprobeprobe

client/
reasoner

Ex

indirect export

composition

registration

backchannel
direct
access

R

result
relay

component
interface

C SC

co
m

po
ne

nt
-in

iti
at

ed
w

or
kfl

ow

or

cl
ie

nt
-in

iti
at

ed
w

or
kfl

ow

splitting

Figure 7.1: Capability composition at a supervisor

Here, two probes export raw data to a repository, which performs aggregation and analysis and
presents results to a client via a supervisor.
Each probe provides an export capability (‘Ce’) stating that it can performmeasurements according
to a schema, and export them using a given protocol. The repository provides two capabilites, a
collect capability (‘Cc’) stating it can collect what the exporters export, and a query capability (‘C’)
stating it can run a certain query over the collected data.
When the supervisor receives these capabilities, its composition logic derives two capabilities from

Plane 40 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

them: one which exports measurements from the two probes to the repository, aggregates them at
the repository, and sends the results back to the client, and one which provides mediated access to
the query capability provided by the repository.
When the client wishes to run a measurement, it sends a speciϐication matching the ϐirst capability
to the supervisor, whose decomposition logic splits it into three speciϐications: one each to the
probes to run the measurements, and one to the repository to query the resulting aggregated data.
The repository then sends the result of the third speciϐication back to the supervisor, which relays
it to the client.
Note that not all interaction among components in an mPlane infrastructure must be mediated by
the supervisor: indeed, for more detailed queries of the repository, the client may directly access
the repository via a backchannel.

Plane 41 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

8 IniƟal Core Registry

The mPlane protocol is designed to have a ϐlexible deϐinition of its element registry, as described
in section 3.1. The initial core registry for use during the project, identiϐied by the url http://
www.ict-mplane.eu/registry/core, was populated following an analysis of the use cases to be
elaborated during the project in Deliverable 1.1. The elements in this registry are listed in the table
below.

Name Primitive Desciption

start time Start time of an event/ϐlow thatmay have a non-zero
duration

end time End time of an event/ϐlow that may have a non-zero
duration

time time Time at which an single event occurred
duration.s natural Duration of an event/ϐlow in seconds
duration.ms natural Duration of an event/ϐlow in milliseconds
duration.us natural Duration of an event/ϐlow in microseconds
duration.ns natural Duration of an event/ϐlow in nanoseconds
source.ip4 address Source IPv4 address of an event/ϐlow, or the IPv4 ad-

dress from which an active measurement was taken
source.ip6 address Source IPv6 address of an event/ϐlow, or the IPv6 ad-

dress from which an active measurement was taken
source.port natural Source layer 4 port of an event/ϐlow, or the port from

which packets were sent when an active measure-
ment was taken

source.interface string A locally-scoped identiϐier of an interface to which
the source of an event/ϐlow is attached, or from
which an active measurement was taken

source.device string A locally-scoped identiϐier of a source device of an
event/ϐlow, or from which an active measurement
was taken

source.as natural BGP AS number of the source of an event/ϐlow, or AS
originating an active measurement

destination.ip4 address Thedestination IPv4 address of an event/ϐlow, or the
IPv4 address of the target of an active measurement

destination.ip6 address Thedestination IPv6 address of an event/ϐlow, or the
IPv6 address of the target of an active measurement

destination.port natural The destination layer 4 port of an event/ϐlow, or the
port towhich packetswere sentwhen an activemea-
surement was taken

Plane 42 of 51 Revision 1.0 of 31 Oct 2014

http://www.ict-mplane.eu/registry/core
http://www.ict-mplane.eu/registry/core

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

destination.interface string A locally-scoped identiϐier of an interface to which
the destination of an event/ϐlow is attached, or the
target interface of an active measurement

destination.device string A locally-scoped identiϐier of a destination device of
an event/ϐlow, or the target of an active measure-
ment

destination.as natural BGP AS number of the destination of an event/ϐlow,
or AS target of an active measurement

destination.url url A URL identifying a target of an active measurement
observer.ip4 address The IPv4 address of the observation point of a pas-

sive measurement
observer.ip6 address The IPv6 address of the observation point of a pas-

sive measurement
observer.link string A locally-scoped identiϐier of the link onwhich a pas-

sive measurement was observed
observer.interface string A locally-scoped identiϐier of the interface on which

a passive measurement was observed
observer.device string A locally-scoped identiϐier of the device on which a

passive measurement was observed
observer.as natural BGPASnumberof theobserver of apassivemeasure-

ment or looking glass
intermediate.ip4 address IPv4 address of a given entity along the path of a

measurement; often scoped by hops.ip
intermediate.ip6 address IPv6 address of a given entity along the path of a

measurement; often scoped by hops.ip
intermediate.port natural Layer 4 port onwhich a ϐlow/event was observed on

a given entity along the path; used for NAPT applica-
tions

intermedate.as natural BGP AS number of a given entity along the path of a
measurement; often scoped by hops.as

octets.ip natural Count of octets at layer 3 (including IP headers) as-
sociated with a ϐlow, event, or measurement

octets.tcp natural Count of octets at layer 4 (including TCP headers) as-
sociated with a ϐlow, event, or measurement

octets.udp natural Count of octets at layer 4 (including UDP headers)
associated with a ϐlow, event, or measurement

Plane 43 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

octets.transport natural Count of octets at layer 4 (including all sub-network-
layer headers) associated with a ϐlow, event, or mea-
surement

octets.layer5 natural Count of octets at layer 5 (i.e., excluding network
and transport layer headers) associated with a ϐlow,
event, or measurement

octets.layer7 natural Count of octets at layer 7 (i.e., passed up to the appli-
cation, excluding network and transport layer head-
ers and octets in retransmitted packets) associated
with a ϐlow, event, or measurement

packets.ip natural Count of IP packets associated with ϐlow, event, or
measurement

packets.tcp natural Count of TCP segments associated with ϐlow, event,
or measurement

packets.udp natural Count of UDP segments associated with ϐlow, event,
or measurement

packets.transport natural Count of packets with a transport-layer header asso-
ciated with a ϐlow, event, or measurement

packets.layer5 natural Count of packets with non-empty transport-layer
payload associated with a ϐlow, event, or measure-
ment

packets.layer7 natural Count of packets carrying unique data at layer 7
(i.e., packets.layer5 minus retransmissions) associ-
ated with a ϐlow, event, or measurement

packets.duplicate natural Count of duplicated packets observed in a ϐlow,
event, or measurement

packets.outoforder natural Count of out-of-order packets observed in a ϐlow,
event, or measurement

packets.lost natural Count of packets observed or inferred as lost in a
ϐlow, event, or measurement

packets.unobserved natural Count of packets observed or inferred as delivered
but unobserved in a ϐlow, event, or measurement

ϐlows natural Count of unidirectional ϐlows (see RFC 7011) associ-
ated with an event or measurement

ϐlows.bidirectional natural Count of bidirectional ϐlows (see RFC 7011 and
5103) associated with an event or measurement

delay.twoway.icmp.us natural Singleton two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

Plane 44 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

delay.twoway.icmp.us.min natural Minimum two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.mean natural Mean two-way delay as in microseconds measured
by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.50pct natural Median two-way delay inmicroseconds asmeasured
by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.us.max natural Maximum two-way delay in microseconds as mea-
sured by ICMP Echo Request/Reply (see RFC 792)

delay.twoway.icmp.count natural Count of valid ICMP Echo Replies received when
measuring two-way delay using ICMP Echo Re-
quest/Reply (see RFC 792)

delay.oneway.owamp.us natural Singleton one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.min natural Minimum one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.mean natural Mean one-way delay along a path as measured by
OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.50pct natural Median one-way delay along a path as measured by
OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.us.max natural Maximum one-way delay along a path as measured
by OWAMP (see RFC 3763) in microseconds

delay.oneway.owamp.count natural Count of samples for one-way delay measurements
using OWAMP (see RFC 3763)

delay.queue.us natural Singleton measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.min natural Minimummeasured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.mean natural Mean measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.50pct natural Median measured or inferred delay attributable to
queueing along a path in microseconds

delay.queue.us.max natural Maximummeasuredor inferreddelay attributable to
queueing along a path in microseconds

delay.buffer.us natural Delay attributable to buffering at an endpoint in mi-
croseconds

delay.resolution.ms natural Delay from transaction start to completion of resolu-
tion of a name or URL to an address, in milliseconds

Plane 45 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

delay.ϐirstbyte.ms natural Delay from transaction start to receipt of ϐirst byte of
content at the initiator, in milliseconds

rtt.ms natural Round-trip time as measured or estimated at the
sender in milliseconds

rtt.us natural Round-trip time as measured or estimated at the
sender in microseconds

iat.ms natural Packet interarrival or event interoccurance time in
milliseconds

iat.us natural Packet interarrival or event interoccurance time in
microseconds

connectivity.ip boolean Assertion (or negation) that layer 3 connectivity be-
tween the identiϐied source and destination is avail-
able

connectivity.as boolean Assertion (or negation) that control plane connec-
tivity (i.e. BGP routability) between the identiϐied
source and destination is available

hops.ip natural Count of layer 3 hops or subhops along the identiϐied
path

hops.as natural Count of control-plane hops or subhops along the
identiϐied path

bandwidth.nominal.bps natural Nominal (advertised) bandwidth at a point or along
a path in bits per second

bandwidth.nominal.kbps natural Nominal (advertised) bandwidth at a point or along
a path in kilobits per second

bandwidth.nominal.Mbps natural Nominal (advertised) bandwidth at a point or along
a path in megabits per second

bandwidth.partial.bps natural Partial bandwidth attributable to a given ϐlow in bits
per second

bandwidth.partial.kbps natural Partial bandwidth attributable to a given ϐlow in kilo-
bits per second

bandwidth.partial.Mbps natural Partial bandwidth attributable to a given ϐlow in
megabits per second

bandwidth.imputed.bps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in bits per
second

bandwidth.imputed.kbps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in kilobits
per second

Plane 46 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

bandwidth.imputed.Mbps natural Bandwidth assumed to be available along a path ac-
cording to measurement and heuristics in megabits
per second

content.url url A URL identifying some content, access to which is
passively or actively measured

fps.nominal ϐloat Nominal frame rate in frames per second of the iden-
tiϐied audio/video content

fps.achieved ϐloat Achieved frame rate in framesper secondof the iden-
tiϐied audio/video content

fps.achieved.min ϐloat Minumum achieved frame rate in frames per second
of the identiϐied audio/video content

fps.achieved.mean ϐloat Mean achieved frame rate in frames per second of
the identiϐied audio/video content

fps.achieved.max ϐloat Maximum achieved frame rate in frames per second
of the identiϐied audio/video content

sessions.transport natural Count of transport-layer sessions associated with an
event

sessions.layer7 natural Count of application-layer sessions associated with
an event

cpuload real Normalized CPU load on the identiϐied device
memload real Normalized memory load on the identiϐied device
linkload real Normalized link load on the identiϐied interface or

link
bufferload real Normalized buffer load on the identiϐied device
bufferstalls natural Count of buffer stalls (imputed playback quality

degradation) associated with a ϐlow/event
snr real Signal to noise ratio in decibels, either in a radio ac-

cess network or in an audio transmission context
period.s natural DEPRECATED and to be removed before D1.4. Use

temporal scopes instead.
period.ms natural DEPRECATED and to be removed before D1.4. Use

temporal scopes instead.
period.us natural DEPRECATED and to be removed before D1.4. Use

temporal scopes instead.
period.ns natural DEPRECATED and to be removed before D1.4. Use

temporal scopes instead.

Plane 47 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

Name Primitive Desciption

measurement.identiϐier string Free-form string identifying the implementation of
themeasurement on the component; often the name
of the external program

measurement.revision natural Release or deployment serial number of the imple-
mentation of the measurement on the component

measurement.algorithm string Free-form string identifying the algorithm used for
the measurement on the component

location.latitude ϐloat The latitude of the component expressed as a ϐloat-
ing point number of degrees north of the equator

location.longitude ϐloat The longitude of the component expressed as a ϐloat-
ing point number of degrees east of the standard
meridian (on Earth, the Prime Meridian at Green-
wich)

location.altitude ϐloat The altitude of the component expressed as a ϐloat-
ing point number of meters above the standard zero
altitude (on Earth, mean sea level)

location.civil string A free-form identiϐier of the civil location (postal ad-
dress, city name, building name, etc) of the compo-
nent

Plane 48 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

9 Data ProtecƟon and Inter-Domain cooperaƟon

The privacy of user personal data in mPlane is granted from the beginning. Each probe will only
expose to the rest of the infrastructure only anonymized or aggregated data. In addition to this,
each communication is encrypted using TLS or SSH, ensuring conϐidentiality and integrity of the
data transmitted during the mPlane communications.
mPlane inter-domain communications arehandled in the samewayof other communications: since
in this case there are two supervisors interacting with each other, each supervisor will map the DN
of the external supervisor to an identity, and this identity to a role associatedwith certain privileges.
Those privileges are established on the basis of agreements stipulated between the owners (or
administrators) of the two domains.

Plane 49 of 51 Revision 1.0 of 31 Oct 2014

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

10 Reference ImplementaƟon

The reference implementation of the mPlane protocol is available on GitHub at http://github.
com/fp7-mplane/protocol-ri. It is implemented inPython3.3, additionally requiring thePyYAML
package and Tornado framework. Documentation for the reference implementation is automati-
cally generated using Sphinx, and is available at http://fp7mplane.github.io/protocol-ri/.
As of press time of this deliverable, the reference implementation implements Version 0 of the
mPlane protocol, which differs very slightly from the protocol as described in this document. The
reference implementationwas used to evaluate the features of the proposedprotocol during the de-
velopment of this speciϐication. Completion of the reference implementation for protocol version
1 will follow during the integration phase of the project.
The most recent stable reference implementation will always be available in the master branch of
the GitHub repository, while unstable development will be available in the develop branch.

Plane 50 of 51 Revision 1.0 of 31 Oct 2014

http://github.com/fp7-mplane/protocol-ri
http://github.com/fp7-mplane/protocol-ri
http://fp7mplane.github.io/protocol-ri/

318627-mPlane D1.4
Final Requirements, Architecture, Access Control & Data ProtecƟon, Interface SpecificaƟons

References

[1] ISO 8601:2000. Data elements and interchange formats — Information interchange — Representation of
dates and times. ISO, 2 edition, 2000.

[2] T. Bray. The JavaScript ObjectNotation (JSON)Data Interchange Format. RFC7159,Mar. 2014. (Proposed
Standard).

[3] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, Aug. 2008.
(Proposed Standard) Updated by RFCs 5746, 5878, 6176.

[4] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. RFC
7230, June 2014. (Proposed Standard).

[5] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291, Feb. 2006. (Proposed Stan-
dard) Updated by RFCs 5952, 6052, 7136, 7346, 7371.

[6] S. Kawamura and M. Kawashima. A Recommendation for IPv6 Address Text Representation. RFC 5952,
Aug. 2010. (Proposed Standard).

[7] G. Klyne and C. Newman. Date and Time on the Internet: Timestamps. RFC 3339, July 2002. (Proposed
Standard).

[8] B. Trammell. Textual Representation of IP Flow Information Export (IPFIX) Abstract Data Types. RFC
7373, Sept. 2014. (Proposed Standard).

Plane 51 of 51 Revision 1.0 of 31 Oct 2014

	Disclaimer
	mPlane Protocol Specification
	mPlane Architecture
	Principles
	Components and Clients
	Probes and Repositories

	Supervisors and Federation
	Workflows

	Protocol Information Model
	Element Registry
	Structured Element Names
	Primitive Types

	Message Types
	Capability and Withdrawal
	Specification and Interrupt
	Result
	Receipt and Redemption
	Indirection
	Exception
	Envelope

	Message Sections
	Message Type and Verb
	Version
	Registry
	Label
	Temporal Scope (When)
	Parameters
	Metadata
	Result Columns and Values
	Export
	Link
	Token
	Contents

	Message Uniqueness and Idempotence
	Message Schema
	Message Identity

	Representations and Session Protocols
	JSON representation
	Textual representations of element values

	mPlane over HTTPS
	Access Control

	mPlane over SSH
	Example mPlane Capabilities and Specifications

	Workflows
	Client-Initiated
	Capability Discovery

	Component-Initiated
	Callback Control

	Indirect Export
	Error Handling in mPlane Workflows

	The Role of the Supervisor
	Component Registration
	Client Authentication
	Capability Composition and Specification Decomposition

	An example mPlane infrastructure
	Initial Core Registry
	Data Protection and Inter-Domain cooperation
	Reference Implementation

