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End-to-End Network Performance

Definition

the performance of a network path linking two end systems

Metrics

round-trip time (RTT), or one-way delay (OWD)

available bandwidth (ABW)

...
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Internet Services rely on End-to-end Performance
Measurements

Content Delivery Networks

User requests are directed to
nearby and/or well-connected
servers.

P2P Overlay Networks

Peers fetch data from nearby
and/or well-connected peers.
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Intelligent Peer Selection

Internet

smallest RTT

highest ABW

P2P Applications

reduce cross-domain traffic

improve download rate
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Network Performance Acquisition

How to acquire network performance on large networks?
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Learning to Predict Network Performance
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Statistical Inference by Machine Learning

Questions and Answers

Q: Which model is suitable?

A: matrix completion by matrix factorization

Q: Which and how many paths have to be monitored?

A: a few randomly selected paths (1 ∼ 2% for 2500 nodes)
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Related Work

Tomography-based Approaches

TOM Chen et al. SIGCOMM 2004

Network Kriging Chua et al. JSAC 2006

NetQuest Song et al. SIGMETRICS 2006

Model-based Approaches

Euclidean Embedding
I GNP Ng et al. TON 2002

I Vivaldi Dadeck et al. SIGCOMM 2004

Matrix Factorization
I IDES Mao et al. JSAC 2005
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Related Work: Tomography-Based Approaches

Idea

Infer link performance from a few path measurements.

Limitations

require routing information

only applicable to additive metrics (RTT, packet loss rate)
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Euclidean Embedding
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Related Work: Model-Based Approaches

Matrix Factorization

25 20 32 23
25 27 20 25 31

23 25 27 33
20 27 20 10

20 18 21 29
27 21 33

31 18 19 39
43 31 33 39

X

≈ U

︷︸︸︷r columns

× V T =

26 39 19 35 25 28 41
24 29 6 18 6 23 30
39 29 27 19 33 13 30
19 6 24 19 6 18 34
35 18 19 20 20 25 16
23 6 25 6 20 19 34
28 23 13 16 25 22 44
41 30 30 34 16 34 44

X̂
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X

≈ U

︷︸︸︷r columns

× V T =

26 39 19 35 25 28 41
24 29 6 18 6 23 30
39 29 27 19 33 13 30
19 6 24 19 6 18 34
35 18 19 20 20 25 16
23 6 25 6 20 19 34
28 23 13 16 25 22 44
41 30 30 34 16 34 44

X̂

Advantages:

no routing information

no geometric constraints

also applicable to non-additive metrics (available bandwidth)
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Contributions

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

3. Qualitative Representations of Network Performance

represent network performance by binary classes

represent network performance by ordinal ratings
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A Matrix Completion View
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Connections to Recommender Systems

movie1 movie2 movie3 movie4 movie5 movie6

user1 5 3 4 1 ? 2
user2 5 3 4 1 5 ?
user3 5 ? 4 1 5 3
user4 1 3 2 5 1 4
user5 4 ? 4 4 4 ?

Resemblance, analogy

Network nodes are “users”.

Network performance is a “preference” measure.

Peer selection is a “friend” recommendation task!

Why is matrix completion possible?
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Why is Matrix Completion Possible?

Feasibility

Matrix entries are correlated.

The correlations induce low rank.

n × n matrix of rank r < n
I only r linearly independent

columns or rows

You don’t need all n × n entries!

X

Theorem

A n × n matrix of rank r < n can be exactly or accurately
recovered from just O(nr logn) randomly observed entries.

Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of
Computational Mathematics.9 pp.717--772. 2009.
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Correlations between Network Measurements

Link sharing across network paths

Topology: simple core Routing

Abilene network generated by Orbis
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Low Rank of the Internet
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Empirical Justification

Meridian RTT matrix of 2255× 2255

PlanetLab ABW matrix of 201× 201
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Observation

Performance matrices are approximately low rank.
I A perfect recovery is impossible.
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Observation

A rank-r dominant component exists.
I It is a fairly accurate approximation to the original matrix.
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Low Rank of the Internet
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RTT

ABW

Observation

Rank r cannot be determined a priori.
I r is treated as a parameter and tuned for a given dataset.
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Low-Rank Matrix Factorization

≈

X X̂

Rank(X̂ ) ≤ r
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Low-Rank Matrix Factorization

≈

X X̂

Rank(X̂ ) ≤ r

= ×

U V T

xij x̂ij

ui

vT
j

≈ = uiv
T
j
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Stochastic Gradient Descent (SGD)

min
∑

ij∈Ω

l(xij , uiv
T
j )

l : loss function

Ω : the set of observed entries

X̂

uiv
T
j = x̂ij ≈ xij

X≈
x̂ij xij

U
ui

V T

vT
j

1 pick xij at random

2 update ui , vj by gradient
descent

ui = ui − η
∂l(xij , uiv

T
j )

∂ui

vj = vj − η
∂l(xij , uiv

T
j )

∂vj

(η is the learning rate.)

3 repeat until convergence
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ReCap: Formulation as Matrix Completion

Network Performance Prediction

A matrix completion view

Connections to recommender systems

Feasibility and low-rank characteristic

Matrix factorization by Stochastic Gradient Descent (SGD)

Question

How should this problem be solved on networks?
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Contributions

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

3. Qualitative Representations of Network Performance

represent network performance by binary classes

represent network performance by ordinal ratings
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Decentralized Network Performance Prediction

≈ ×

U V T

3

1 2
45

6 7

8

X

Constraints

No central server collects and processes the measurements.

No matrices (X , U, V ) are explicitly constructed.
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Design

Row vectors (ui ,vi ) are stored at node i .

Measurements are collected and processed locally.

Network nodes exchange messages.
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Metrics of Interest

round-trip time (RTT) available bandwidth (ABW)

sender receiver

Ping packets

ACKs

RTT=100ms

sender receiver

probe UDP packets

ABW=100Mbps

inferred by sender inferred by receiver
symmetric asymmetric

Message exchange is adapted for RTT and for ABW.
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Basic Process for RTT
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(u1, v1)

(u2, v2)

(u3, v3)(u4, v4)

Node 1 joins the network and initializes (u1, v1) randomly.
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Basic Process for ABW
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Node 1 joins the network and initializes (u1, v1) randomly.
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Basic Process for ABW
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ProbeABW(u1)

Node 1 probes node 2 for the ABW and sends u1.
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Basic Process for ABW
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Update u1
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Prediction of Network Performance
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Decentralized Matrix Factorization by Stochastic Gradient Descent

DMFSGD

Each node selects k neighbors to communicate with.
I k = 10 for small networks (as many as 200 nodes);
I k = 32 for large networks (as many as 2500 nodes, < 2%).

Each node collaborates with one neighbor at a time.
I probe measurements;
I perform SGD updates.

Rank-10 factorization
I r = 10 in all experiments due to sparse measurements

Advantages

simple and computationally lightweight

suitable for large-scale dynamic measurements

adaptable to various metrics
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Experiments and Evaluations

RTT Datasets

Harvard P2psim Meridian

nodes 226 1740 2500

source Ledlie et al. Dabek et al. Wong et al.
NSDI 2007 SIGCOMM 2004 SIGCOMM 2005

Vivaldi: Competitor for RTT Prediction

Euclidean embedding

simulation of a spring system

energy minimization by Hooke’s law

the same architecture as DMFSGD

adopted in Azureus (now Vuze)

Dabek et al., Vivaldi: a decentralized network coordinate system, SIGCOMM 2004.
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Comparison of Prediction Accuracy

Median Absolute Error (MAE) = medianij(|dij − d̂ij |)

P2PSim Meridian Harvard

Vivaldi 13.4ms 9.2ms 5.8ms
DMFSGD 11.5ms 9.0ms 1.1ms

DMFSGD outperforms Vivaldi almost always.
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ReCap: Decentralized Solution

DMFSGD

Decentralized Architecture

Basic Processing for RTT and ABW

Experiments on RTT Prediction

DMFSGD works well for available bandwidth prediction.

28 / 39



ReCap: Decentralized Solution

DMFSGD

Decentralized Architecture

Basic Processing for RTT and ABW

Experiments on RTT Prediction

DMFSGD works well for available bandwidth prediction.

28 / 39



DMFSGD for Available Bandwidth Prediction

ABW measurement based on self-induced congestion

time

ra
te

ABW

time

probe UDP train

T T/γ

Pathload PathChirp

High cost

Problems even if we only measure 1% paths on large networks.

29 / 39



Contributions

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

3. Qualitative Representations of Network Performance

represent network performance by binary classes

represent network performance by ordinal ratings
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Qualitative Representations of Network Performance

Binary classes

“good” or “bad”

Ordinal ratings

,...,
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Characteristics of Qualitative Representations

7 Classes/Ratings are less fine-grained.

3 Class/Rating information is sufficient to applications.
I Peer selection: “good enough” is often enough.

3 Classes/Ratings unify different metrics.
I Performance takes a few discrete values.

3 Class/Rating information can be encoded in a few bits.

3 Class/Rating measurements are cheap.
I Classes/Ratings are coarse and stable.
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Class/Rating Measurement

Thresholding

partition the range into several bins;

map a metric value to a bin.

5 4 3 2 1

100ms 200ms 300ms 400ms

1 2 3 4 5

25Mbps 50Mbps 75Mbps 100Mbps

RTT ABW

Choice of Threshold(s)

data analysis

50% percentile for binary classification

{20%, 40%, 60%, 80%} percentiles for ordinal rating
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Performance Class/Rating Prediction by DMFSGD

≈ ×

U V T
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Experiments and Evaluations

Datasets

Harvard Meridian HP-S3

nodes 226 2500 231

metric RTT RTT ABW

source Ledlie et al. Wong et al. Ramasubramanian et al.
NSDI 2007 SIGCOMM 2005 SIGMETRICS 2009

Confusion Matrix

Diagonal entries are correct predictions.

Off-diagonal entries are confusions or wrong predictions.

Accuracy = # correct
# data

Predicted
“Good” “Bad”

Actual
“Good” correct% confusion%
“Bad” confusion% correct%
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Confusion Matrix for Meridian

Binary Classification

Accuracy=85%
Predicted

“Good” “Bad”

Actual
“Good” 88% 12%
“Bad” 18% 82%

Ordinal Rating

Accuracy=56%
Predicted

1 2 3 4 5

Actual

1 78% 18% 3% 1% 0
2 8% 59% 30% 5% 0
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

36 / 39



Confusion Matrix for Meridian

Binary Classification

Accuracy=85%
Predicted

“Good” “Bad”

Actual
“Good” 88% 12%
“Bad” 18% 82%

Ordinal Rating

Accuracy=56%
Predicted

1 2 3 4 5

Actual

1 78% 18% 3% 1% 0
2 8% 59% 30% 5% 0
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

36 / 39



Confusion Matrix for Meridian

Binary Classification

Accuracy=85%
Predicted

“Good” “Bad”

Actual
“Good” 88% 12%
“Bad” 18% 82%

Ordinal Rating

Accuracy=56%
Predicted

1 2 3 4 5

Actual

1 78% 18% 3% 1% 0
2 8% 59% 30% 5% 0
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

36 / 39



Confusion Matrix for Meridian

Binary Classification

Accuracy=85%
Predicted

“Good” “Bad”

Actual
“Good” 88% 12%
“Bad” 18% 82%

Ordinal Rating

Accuracy=56%
Predicted

1 2 3 4 5

Actual

1 78% 18% 3% 1% 0
2 8% 59% 30% 5% 0
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

36 / 39



Confusion Matrix for Meridian

Binary Classification

Accuracy=85%
Predicted

“Good” “Bad”

Actual
“Good” 88% 12%
“Bad” 18% 82%

Ordinal Rating

Accuracy=56%
Predicted

1 2 3 4 5

Actual

1 78% 18% 3% 1% 0
2 8% 59% 30% 5% 0
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

36 / 39



ReCap: Qualitative Representations of Network
Performance

Binary classification and ordinal rating

Advantages

Class/Rating measurement

Experiments on binary classification and ordinal rating
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Conclusion: Features of DMFSGD

A general framework for network performance prediction

Soundness
I founded on recent advances in matrix completion

Flexibility
I deal with various metrics (RTT, ABW, ...)
I deal with metric values, performance classes and ratings

A unique feature of DMFSGD!

Simplicity
I easy to implement
I no infrastructure
I computationally lightweight
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Thank you!
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