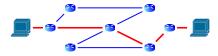
Machine Learning-based Algorithms to Infer End-to-End Network Performance Matrices

Guy Leduc with Yongjun Liao, Wei Du and Pierre Geurts

Research Unit in Networking (RUN) University of Liège, Belgium

INFORMS Telecommunications, Lisbon, March 4, 2014

End-to-End Network Performance



- 4 回 5 - 4 三 5 - 4 三 5

Definition

the performance of a network path linking two end systems

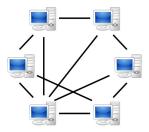
Metrics

- round-trip time (RTT), or one-way delay (OWD)
- available bandwidth (ABW)

Internet Services rely on End-to-end Performance Measurements

Content Delivery Networks

P2P Overlay Networks

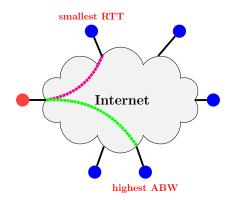


User requests are directed to nearby and/or well-connected servers.

Peers fetch data from nearby and/or well-connected peers.

< ロ > < 同 > < 回 > < 回 >

Intelligent Peer Selection



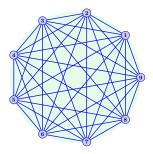
P2P Applications

- reduce cross-domain traffic
- improve download rate

ヘロン ヘロン ヘビン ヘビン

Network Performance Acquisition

How to acquire network performance on large networks?

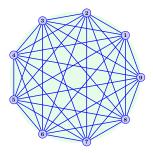


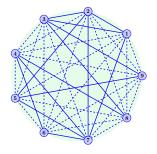
full-mesh active measurements

 $n \text{ nodes} \Rightarrow o(n^2) \text{ measurements}$

Network Performance Acquisition

How to acquire network performance on large networks?



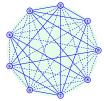


full-mesh active measurements

$$n \text{ nodes} \Rightarrow o(n^2) \text{ measurements}$$

network performance prediction

Learning to Predict Network Performance



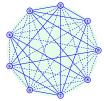
Statistical Inference by Machine Learning

Questions and Answers

- Q: Which model is suitable?
- A: matrix completion by matrix factorization
- Q: Which and how many paths have to be monitored?
- A: a few randomly selected paths (1 \sim 2% for 2500 nodes)

< ロ > < 同 > < 回 > < 回 >

Learning to Predict Network Performance



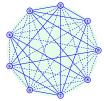
Statistical Inference by Machine Learning

Questions and Answers

- Q: Which model is suitable?
- A: matrix completion by matrix factorization
- Q: Which and how many paths have to be monitored?
- A: a few randomly selected paths $(1\sim 2\%$ for 2500 nodes)

< ロ > < 同 > < 回 > < 回 >

Learning to Predict Network Performance



Statistical Inference by Machine Learning

Questions and Answers

- Q: Which model is suitable?
- A: matrix completion by matrix factorization
- Q: Which and how many paths have to be monitored?
- A: a few randomly selected paths (1 $\sim 2\%$ for 2500 nodes)

A D N A R N A R N A R N

Related Work

(a)

Tomography-based Approaches

- TOM Chen et al. SIGCOMM 2004
- Network Kriging Chua et al. JSAC 2006
- NetQuest Song et al. SIGMETRICS 2006

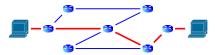
Model-based Approaches

- Euclidean Embedding
 - ► GNP Ng et al. TON 2002
 - Vivaldi Dadeck et al. SIGCOMM 2004
- Matrix Factorization
 - ► IDES Mao et al. JSAC 2005

Related Work: Tomography-Based Approaches

Idea

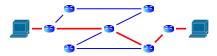
Infer link performance from a few path measurements.



Related Work: Tomography-Based Approaches

Idea

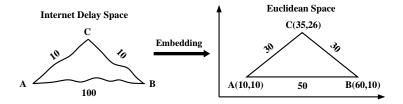
Infer link performance from a few path measurements.



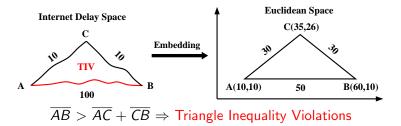
Limitations

- require routing information
- only applicable to additive metrics (RTT, packet loss rate)

Euclidean Embedding



Euclidean Embedding



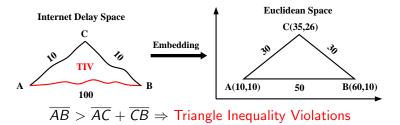
Limitations:

• subject to geometric constraints (symmetry, triangle inequalities)

(a)

9/39

Euclidean Embedding

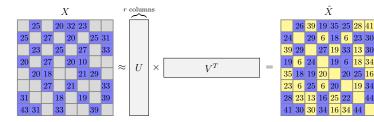


Limitations:

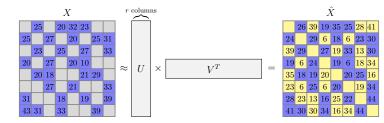
- subject to geometric constraints (symmetry, triangle inequalities)
- only applicable to additive metrics (typically RTT)

(a)

Matrix Factorization



Matrix Factorization



Advantages:

- no routing information
- no geometric constraints
- also applicable to non-additive metrics (available bandwidth)

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

3. Qualitative Representations of Network Performance

- represent network performance by binary classes
- represent network performance by ordinal ratings

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

3. Qualitative Representations of Network Performance

- represent network performance by binary classes
- represent network performance by ordinal ratings

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

(a)

- 3. Qualitative Representations of Network Performance
 - represent network performance by binary classes
 - represent network performance by ordinal ratings

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

(a)

- 3. Qualitative Representations of Network Performance
 - represent network performance by binary classes
 - represent network performance by ordinal ratings

Learning to predict end-to-end network performance

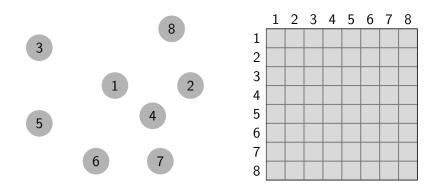
1. Formulation as Matrix Completion network performance prediction as matrix completion

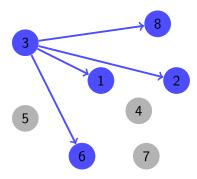
2. Decentralized Solution

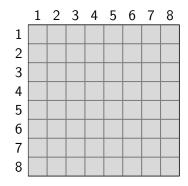
decentralized matrix factorization by stochastic gradient descent

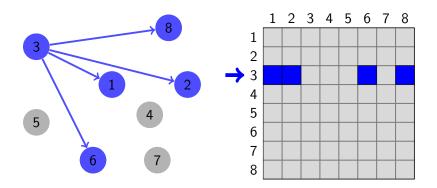
3. Qualitative Representations of Network Performance

- represent network performance by binary classes
- represent network performance by ordinal ratings

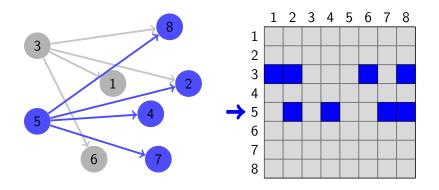




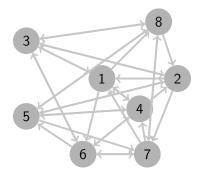


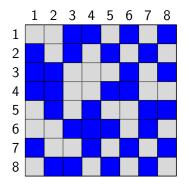


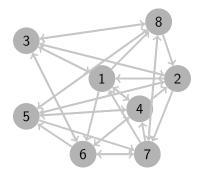
Université de Liège イロト イクト イミト モート モータへへ 11/39

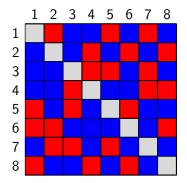


Université de Liège イロト イ 伊ト イ ミト イ ミト ミークへへ 11/39









Universite de Liège 《 □ 》 《 쿱 》 《 쿱 》 등 문 · ⑦ 즉 (~ 11 / 39

	movie1	movie2	movie3	movie4	movie5	movie6
user1	5	3	4	1	?	2
user2	5	3	4	1	5	?
user3	5	?	4	1	5	3
user4	1	3	2	5	1	4
user5	4	?	4	4	4	?

	movie1	movie2	movie3	movie4	movie5	movie6
user1	5	3	4	1	?	2
user2	5	3	4	1	5	?
user3	5	?	4	1	5	3
user4	1	3	2	5	1	4
user5	4	?	4	4	4	?

Resemblance, analogy

- Network nodes are "users".
- Network performance is a "preference" measure.
- Peer selection is a "friend" recommendation task!

	movie1	movie2	movie3	movie4	movie5	movie6
user1	5	3	4	1	?	2
user2	5	3	4	1	5	?
user3	5	?	4	1	5	3
user4	1	3	2	5	1	4
user5	4	?	4	4	4	?

Resemblance, analogy

- Network nodes are "users".
- Network performance is a "preference" measure.
- Peer selection is a "friend" recommendation task!

Why is matrix completion possible?

	movie1	movie2	movie3	movie4	movie5	movie6
user1	5	3	4	1	?	2
user2	5	3	4	1	5	?
user3	5	?	4	1	5	3
user4	1	3	2	5	1	4
user5	4	?	4	4	4	?

Resemblance, analogy

- Network nodes are "users".
- Network performance is a "preference" measure.
- Peer selection is a "friend" recommendation task!

Why is matrix completion possible?

	movie1	movie2	movie3	movie4	movie5	<i>movie</i> 6
user1	5	3	4	1	?	2
user2	5	3	4	1	5	?
user3	5	?	4	1	5	3
user4	1	3	2	5	1	4
user5	4	?	4	4	4	?

Resemblance, analogy

- Network nodes are "users".
- Network performance is a "preference" measure.
- Peer selection is a "friend" recommendation task!

Why is matrix completion possible?

_		movie1	movie2	movie3	movie4	movie5	<i>movie</i> 6
ſ	user1	5	3	4	1	(?)	2
	user2	5	3	4	1	5	?
	user3	5	?	4	1	5	3
	user4	1	3	2	5	1	4
	user5	4	?	4	4	4	?

Resemblance, analogy

- Network nodes are "users".
- Network performance is a "preference" measure.
- Peer selection is a "friend" recommendation task!

Why is matrix completion possible?

Why is Matrix Completion Possible?

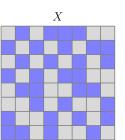
Feasibility

- Matrix entries are correlated.
- The correlations induce low rank.
- $n \times n$ matrix of rank r < n
 - only r linearly independent columns or rows

Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

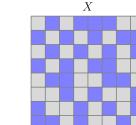
Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717-772. 2009.



(a)

Feasibility

- Matrix entries are correlated.
- The correlations induce low rank.
- $n \times n$ matrix of rank r < n
 - only r linearly independent columns or rows



イロト イポト イヨト イヨト

You don't need all $n \times n$ entries!

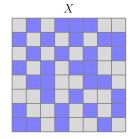
Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717-772. 2009.

Feasibility

- Matrix entries are correlated.
- The correlations induce low rank.
- $n \times n$ matrix of rank r < n
 - only r linearly independent columns or rows



イロト イポト イヨト イヨト

You don't need all $n \times n$ entries!

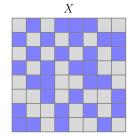
Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717-772. 2009.

Feasibility

- Matrix entries are correlated.
- The correlations induce low rank.
- *n* × *n* matrix of rank *r* < *n*
 - only r linearly independent columns or rows



イロト イポト イヨト イヨト

You don't need all $n \times n$ entries!

Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717-772. 2009.

Feasibility

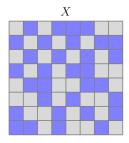
- Matrix entries are correlated.
- The correlations induce low rank.
- *n* × *n* matrix of rank *r* < *n*
 - only r linearly independent columns or rows

You don't need all $n \times n$ entries!

Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

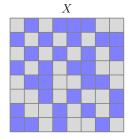
Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717-772. 2009.



イロト イポト イヨト イヨト

Feasibility

- Matrix entries are correlated.
- The correlations induce low rank.
- *n* × *n* matrix of rank *r* < *n*
 - only r linearly independent columns or rows



イロト イポト イヨト イヨト

You don't need all $n \times n$ entries!

Theorem

A $n \times n$ matrix of rank r < n can be exactly or accurately recovered from just $O(nr\log n)$ randomly observed entries.

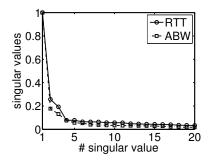
Emmanuel Candes and Benjamin Recht, Exact Matrix Completion Via Convex Optimization, Foundations of Computational Mathematics.9 pp.717--772. 2009.

Correlations between Network Measurements

Link sharing across network paths

Topology: simple core Routing Chicag Indianapolis Denver Sunnyvale Kansas City Washington Los Angeles Atlant Houston generated by Orbis Abilene network イロト イポト イヨト イヨト

14/39

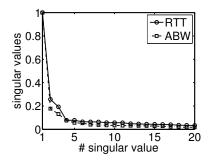


伺 ト イヨト イヨト

15/39

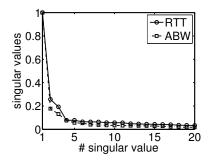
Empirical Justification

- Meridian RTT matrix of 2255×2255
- PlanetLab ABW matrix of 201 × 201



Observation

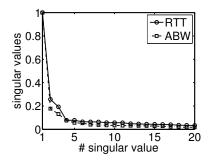
- Performance matrices are approximately low rank.
 - A perfect recovery is impossible.



Observation

- A rank-*r* dominant component exists.
 - It is a fairly accurate approximation to the original matrix.

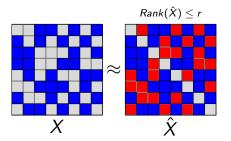
イロト イポト イヨト イヨト



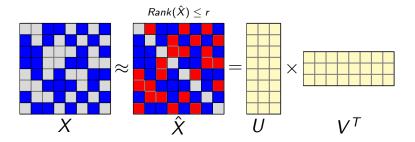
Observation

- Rank r cannot be determined a priori.
 - r is treated as a parameter and tuned for a given dataset.

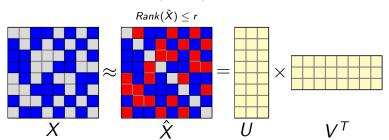
< ロ > < 同 > < 回 > < 回 >



Université de Liège イロト イグト イミト イミト ミックへで 16/39

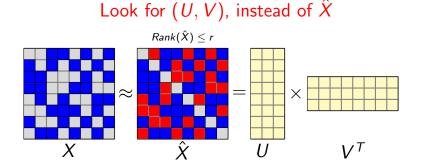


Université de Liège イロ > イクト イミト イミト そうのへへ 16/39

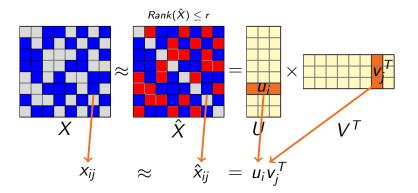


Look for (U, V), instead of \hat{X}

Universite de Litze 《 다 > 《 문 > 《 문 > 《 문 > 문 · 《 문 > 16 / 39



Stochastic Gradient Descent



16/39

Univers

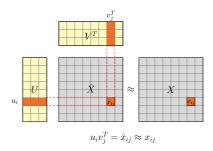
<ロ> <同> <同> < 回> < 回>

Stochastic Gradient Descent (SGD)

$$\min \sum_{ij \in \Omega} l(x_{ij}, u_i v_j^T)$$

I : loss function

 \varOmega : the set of observed entries

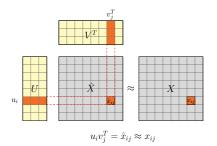


Stochastic Gradient Descent (SGD)

$$\min \sum_{ij\in\Omega} I(x_{ij}, u_i v_j^T)$$

I : loss function

 \varOmega : the set of observed entries



- pick x_{ij} at random
- update u_i, v_j by gradient descent

$$u_{i} = u_{i} - \eta \frac{\partial l(x_{ij}, u_{i}v_{j}^{T})}{\partial u_{i}}$$
$$v_{j} = v_{j} - \eta \frac{\partial l(x_{ij}, u_{i}v_{j}^{T})}{\partial v_{j}}$$

(η is the learning rate.)repeat until convergence

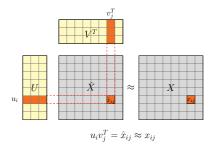
イロト イポト イヨト イヨト

Stochastic Gradient Descent (SGD)

$$\min \sum_{ij\in\Omega} I(x_{ij}, u_i v_j^T)$$

I : loss function

 \varOmega : the set of observed entries



- pick x_{ij} at random
- update u_i, v_j by gradient descent

$$u_{i} = u_{i} - \eta \frac{\partial l(x_{ij}, u_{i}v_{j}^{T})}{\partial u_{i}}$$
$$v_{j} = v_{j} - \eta \frac{\partial l(x_{ij}, u_{i}v_{j}^{T})}{\partial v_{j}}$$

(η is the learning rate.)repeat until convergence

イロト イポト イヨト イヨト

ReCap: Formulation as Matrix Completion

Network Performance Prediction

- A matrix completion view
- Connections to recommender systems
- Feasibility and low-rank characteristic
- Matrix factorization by Stochastic Gradient Descent (SGD)

ReCap: Formulation as Matrix Completion

Network Performance Prediction

- A matrix completion view
- Connections to recommender systems
- Feasibility and low-rank characteristic
- Matrix factorization by Stochastic Gradient Descent (SGD)

Question

• How should this problem be solved on networks?

Contributions

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

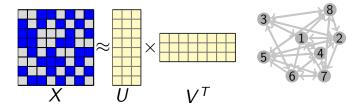
decentralized matrix factorization by stochastic gradient descent

< ロ > < 同 > < 回 > < 回 >

19/39

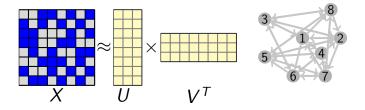
3. Qualitative Representations of Network Performance

- represent network performance by binary classes
- represent network performance by ordinal ratings

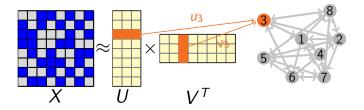


Constraints

- No central server collects and processes the measurements.
- No matrices (X, U, V) are explicitly constructed.

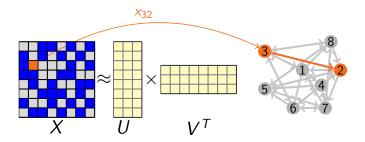


Design



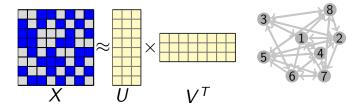
Design

• Row vectors (u_i, v_i) are stored at node *i*.



Design

- Row vectors (u_i, v_i) are stored at node *i*.
- Measurements are collected and processed locally.

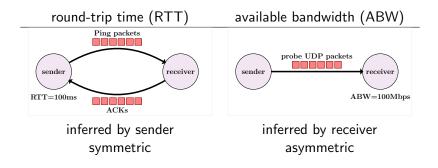


Design

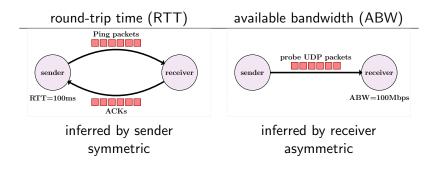
- Row vectors (u_i, v_i) are stored at node *i*.
- Measurements are collected and processed locally.
- Network nodes exchange messages.

イロト イポト イヨト イヨト

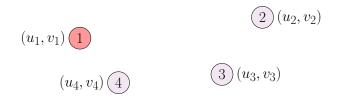
Metrics of Interest



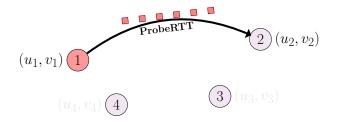
Metrics of Interest



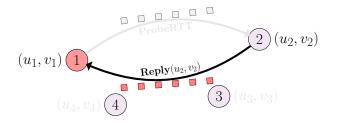
Message exchange is adapted for RTT and for ABW.



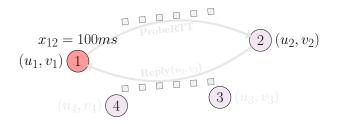
Node 1 joins the network and initializes (u_1, v_1) randomly.



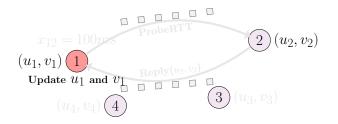
Node 1 probes node 2 for the RTT.



Node 2 replies and sends (u_2, v_2) to node 1.

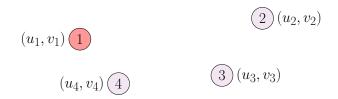


Node 1 computes RTT_{12} .



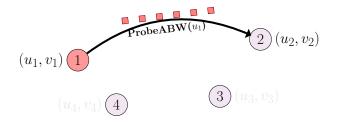
Node 1 updates (u_1, v_1) .

Basic Process for ABW



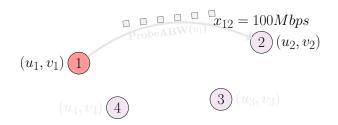
Node 1 joins the network and initializes (u_1, v_1) randomly.

Basic Process for ABW



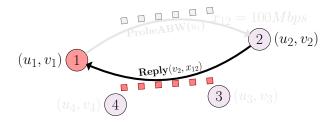
Node 1 probes node 2 for the ABW and sends u_1 .

Basic Process for ABW



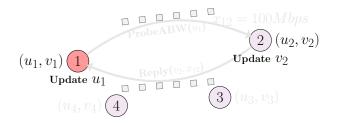
Node 2 computes ABW_{12} .

Basic Process for ABW



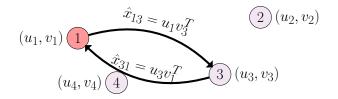
Node 2 replies and sends (ABW_{12}, v_2) to node 1.

Basic Process for ABW



Node 1 updates u_1 and node 2 updates v_2 .

Prediction of Network Performance



DMFSGD

- Each node selects *k* neighbors to communicate with.
 - k = 10 for small networks (as many as 200 nodes);
 - ▶ k = 32 for large networks (as many as 2500 nodes, < 2%).
- Each node collaborates with one neighbor at a time.
 - probe measurements;
 - perform SGD updates.
- Rank-10 factorization
 - r = 10 in all experiments due to sparse measurements

Advantages

- simple and computationally lightweight
- suitable for large-scale dynamic measurements
- adaptable to various metrics

DMFSGD

- Each node selects *k* neighbors to communicate with.
 - k = 10 for small networks (as many as 200 nodes);
 - k = 32 for large networks (as many as 2500 nodes, < 2%).
- Each node collaborates with one neighbor at a time.
 - probe measurements;
 - perform SGD updates.
- Rank-10 factorization
 - r = 10 in all experiments due to sparse measurements

Advantages

- simple and computationally lightweight
- suitable for large-scale dynamic measurements
- adaptable to various metrics

DMFSGD

- Each node selects *k* neighbors to communicate with.
 - k = 10 for small networks (as many as 200 nodes);
 - k = 32 for large networks (as many as 2500 nodes, < 2%).
- Each node collaborates with one neighbor at a time.
 - probe measurements;
 - perform SGD updates.
- Rank-10 factorization
 - r = 10 in all experiments due to sparse measurements

Advantages

- simple and computationally lightweight
- suitable for large-scale dynamic measurements
- adaptable to various metrics

DMFSGD

- Each node selects *k* neighbors to communicate with.
 - k = 10 for small networks (as many as 200 nodes);
 - k = 32 for large networks (as many as 2500 nodes, < 2%).
- Each node collaborates with one neighbor at a time.
 - probe measurements;
 - perform SGD updates.
- Rank-10 factorization
 - r = 10 in all experiments due to sparse measurements

Advantages

- simple and computationally lightweight
- suitable for large-scale dynamic measurements
- adaptable to various metrics

DMFSGD

- Each node selects *k* neighbors to communicate with.
 - k = 10 for small networks (as many as 200 nodes);
 - k = 32 for large networks (as many as 2500 nodes, < 2%).
- Each node collaborates with one neighbor at a time.
 - probe measurements;
 - perform SGD updates.
- Rank-10 factorization
 - r = 10 in all experiments due to sparse measurements

Advantages

- simple and computationally lightweight
- suitable for large-scale dynamic measurements
- adaptable to various metrics

RTT Datasets

	Harvard	P2psim	Meridian
nodes	226	1740	2500
source	Ledlie et al.	Dabek et al.	Wong et al.
	NSDI 2007	SIGCOMM 2004	SIGCOMM 2005

Vivaldi: Competitor for RTT Prediction

Euclidean embedding

- simulation of a spring system
- energy minimization by Hooke's law
- the same architecture as DMFSGD
- adopted in Azureus (now Vuze)

Dabek et al., Vivaldi: a decentralized network coordinate system, SIGCOMM 2004.

< ロト < 同ト < ヨト < ヨト

Comparison of Prediction Accuracy

$$\mathsf{M}\mathsf{e}\mathsf{d}\mathsf{i}\mathsf{a}\mathsf{n}$$
 Absolute Error ($\mathsf{M}\mathsf{A}\mathsf{E})=\mathit{m}\mathsf{e}\mathit{d}\mathsf{i}\mathsf{a}\mathsf{n}_{ij}(|\mathit{d}_{ij}-\hat{\mathit{d}}_{ij}|)$

	P2PSim	Meridian	Harvard
Vivaldi	13.4ms	9.2ms	5.8ms
DMFSGD	11.5ms	9.0ms	1.1ms

DMFSGD outperforms Vivaldi almost always.

Comparison of Prediction Accuracy

$$\mathsf{M}\mathsf{e}\mathsf{d}\mathsf{i}\mathsf{a}\mathsf{n}$$
 Absolute Error ($\mathsf{M}\mathsf{A}\mathsf{E}) = \mathit{m}\mathsf{e}\mathit{d}\mathsf{i}\mathsf{a}\mathsf{n}_{ij}(|\mathit{d}_{ij} - \hat{\mathit{d}}_{ij}|)$

	P2PSim	Meridian	Harvard
Vivaldi	13.4ms	9.2ms	5.8ms
DMFSGD	11.5ms	9.0ms	1.1ms

DMFSGD outperforms Vivaldi almost always.

Comparison of Prediction Accuracy

$$\mathsf{M}\mathsf{e}\mathsf{d}\mathsf{i}\mathsf{a}\mathsf{n}$$
 Absolute Error ($\mathsf{M}\mathsf{A}\mathsf{E})=\mathit{m}\mathsf{e}\mathit{d}\mathsf{i}\mathsf{a}\mathsf{n}_{ij}(|\mathit{d}_{ij}-\hat{\mathit{d}}_{ij}|)$

	P2PSim	Meridian	Harvard
Vivaldi	13.4ms	9.2ms	5.8ms
DMFSGD	11.5ms	9.0ms	1.1ms

DMFSGD outperforms Vivaldi almost always.

ReCap: Decentralized Solution

DMFSGD

- Decentralized Architecture
- Basic Processing for RTT and ABW
- Experiments on RTT Prediction

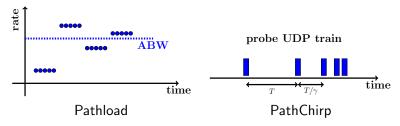
ReCap: Decentralized Solution

DMFSGD

- Decentralized Architecture
- Basic Processing for RTT and ABW
- Experiments on RTT Prediction
- DMFSGD works well for available bandwidth prediction.

DMFSGD for Available Bandwidth Prediction

ABW measurement based on self-induced congestion



High cost

Problems even if we only measure 1% paths on large networks.

Université Université 네 ▷ 《 문 〉 《 문 〉 《 문 〉 문 · · · 오 · · · 29 / 39

Contributions

Learning to predict end-to-end network performance

1. Formulation as Matrix Completion

network performance prediction as matrix completion

2. Decentralized Solution

decentralized matrix factorization by stochastic gradient descent

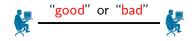
< ロ > < 同 > < 回 > < 回 >

3. Qualitative Representations of Network Performance

- represent network performance by binary classes
- represent network performance by ordinal ratings

Qualitative Representations of Network Performance

Binary classes



Ordinal ratings

イロト イポト イヨト イヨト

31/39

X Classes/Ratings are less fine-grained.

✓ Class/Rating information is sufficient to applications.

- ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.
- ✓ Class/Rating information can be encoded in a few bits.
- Class/Rating measurements are cheap.
 - Classes/Ratings are coarse and stable.

X Classes/Ratings are less fine-grained.

✓ Class/Rating information is sufficient to applications.

- ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.
- ✓ Class/Rating information can be encoded in a few bits.
- Class/Rating measurements are cheap.
 - Classes/Ratings are coarse and stable.

X Classes/Ratings are less fine-grained.

✓ Class/Rating information is sufficient to applications.

- ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.
- ✓ Class/Rating information can be encoded in a few bits.
- ✓ Class/Rating measurements are cheap.
 - Classes/Ratings are coarse and stable.

X Classes/Ratings are less fine-grained.

✓ Class/Rating information is sufficient to applications.

- ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.

✓ Class/Rating information can be encoded in a few bits.

✓ Class/Rating measurements are cheap.

Classes/Ratings are coarse and stable.

X Classes/Ratings are less fine-grained.

- ✓ Class/Rating information is sufficient to applications.
 - ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.
- ✓ Class/Rating information can be encoded in a few bits.
- ✓ Class/Rating measurements are cheap.
 - Classes/Ratings are coarse and stable.

X Classes/Ratings are less fine-grained.

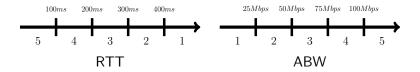
- ✓ Class/Rating information is sufficient to applications.
 - ▶ Peer selection: "good enough" is often enough.
- Classes/Ratings unify different metrics.
 - Performance takes a few discrete values.
- ✓ Class/Rating information can be encoded in a few bits.

- ✓ Class/Rating measurements are cheap.
 - Classes/Ratings are coarse and stable.

Class/Rating Measurement

Thresholding

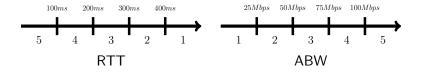
- partition the range into several bins;
- map a metric value to a bin.



Class/Rating Measurement

Thresholding

- partition the range into several bins;
- map a metric value to a bin.

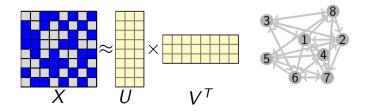


Choice of Threshold(s)

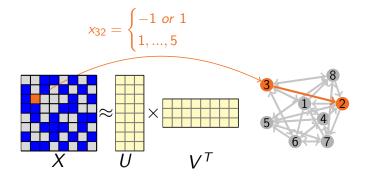
data analysis

- 50% percentile for binary classification
- {20%, 40%, 60%, 80%} percentiles for ordinal rating

Performance Class/Rating Prediction by DMFSGD



Performance Class/Rating Prediction by DMFSGD



Université de Liège イロ > イクト イミト イミト ミックへへ 34 / 39

Datasets

	Harvard	Meridian	HP-S3
nodes	226	2500	231
metric	RTT	RTT	ABW
source	Ledlie et al.	Wong et al.	Ramasubramanian et al.
	NSDI 2007	SIGCOMM 2005	SIGMETRICS 2009

Datasets

	Harvard	Meridian	HP-S3
nodes	226	2500	231
metric	RTT	RTT	ABW
source	Ledlie et al.	Wong et al.	Ramasubramanian et al.
	NSDI 2007	SIGCOMM 2005	SIGMETRICS 2009

- Diagonal entries are correct predictions.
- Off-diagonal entries are confusions or wrong predictions.

$Accuracy = \frac{\# \ correct}{\# \ data}$		Predicted	
		"Good"	"Bad"
Actual	"Good"	correct%	confusion%
	"Bad"	confusion%	correct%

Datasets

	Harvard	Meridian	HP-S3
nodes	226	2500	231
metric	RTT	RTT	ABW
source	Ledlie et al.	Wong et al.	Ramasubramanian et al.
	NSDI 2007	SIGCOMM 2005	SIGMETRICS 2009

- Diagonal entries are correct predictions.
- Off-diagonal entries are confusions or wrong predictions.

$Accuracy = \frac{\# \ correct}{\# \ data}$		Predicted	
		"Good"	"Bad"
Actual	"Good"	correct%	confusion%
Actual	"Bad"	confusion%	correct%

Datasets

	Harvard	Meridian	HP-S3
nodes	226	2500	231
metric	RTT	RTT	ABW
source	Ledlie et al.	Wong et al.	Ramasubramanian et al.
	NSDI 2007	SIGCOMM 2005	SIGMETRICS 2009

- Diagonal entries are correct predictions.
- Off-diagonal entries are confusions or wrong predictions.

$Accuracy = \frac{\# \ correct}{\# \ data}$		Predicted	
		"Good"	"Bad"
Actual	"Good"	correct%	confusion%
Actual	"Bad"	confusion%	correct%

Datasets

	Harvard	Meridian	HP-S3
nodes	226	2500	231
metric	RTT	RTT	ABW
source	Ledlie et al.	Wong et al.	Ramasubramanian et al.
	NSDI 2007	SIGCOMM 2005	SIGMETRICS 2009

- Diagonal entries are correct predictions.
- Off-diagonal entries are confusions or wrong predictions.

$Accuracy = \frac{\# \ correct}{\# \ data}$		Predicted		
		"Good"	"Bad"	
Actual	"Good"	correct%	confusion%	
	"Bad"	confusion%	correct%	

Binary Classification

Accuracy=85%		Predicted		
		"Good"	"Bad"	
Actual	"Good"	88%	12%	
	"Bad"	18%	82%	

Ordinal Rating

Accuracy=56%		Predicted					
		1	2	3	4	5	
	1	78%	18%	3%	1%	0	
	2	8%	59%	30%	5%	0	
Actual	3	1%	18%	60%	20%	1%	
	4	1%	3%	33%	59%	4%	
	5	1%	1%	12%	59%	27%	

э

Binary Classification

Accuracy= <mark>85%</mark>		Predicted		
		"Good"	"Bad"	
Actual	"Good"	88%	12%	
	"Bad"	18%	82%	

Ordinal Rating

Accuracy=56%		Predicted					
		1	2	3	4	5	
	1	78%	18%	3%	1%	0	
	2	8%	59%	30%	5%	0	
Actual	3	1%	18%	60%	20%	1%	
	4	1%	3%	33%	59%	4%	
	5	1%	1%	12%	59%	27%	

э

Binary Classification

Accuracy=85%		Predicted		
		"Good"	"Bad"	
Actual	"Good"	88%	12%	
	"Bad"	18%	82%	

Ordinal Rating

Accuracy=56%		Predicted					
		1	2	3	4	5	
	1	78%	18%	3%	1%	0	
Actual	2	8%	59%	30%	5%	0	
	3	1%	18%	60%	20%	1%	
	4	1%	3%	33%	59%	4%	
	5	1%	1%	12%	59%	27%	

э

Binary Classification

Accuracy=85%		Predicted		
		"Good"	"Bad"	
Actual	"Good"	88%	12%	
	"Bad"	18%	82%	

Ordinal Rating

Accuracy=56%		Predicted					
		1	2	3	4	5	
	1	78%	18%	3%	1%	0	
Actual	2	8%	59%	30%	5%	0	
	3	1%	18%	60%	20%	1%	
	4	1%	3%	33%	59%	4%	
	5	1%	1%	12%	59%	27%	

э

Binary Classification

Accuracy=85%		Predicted		
		"Good"	"Bad"	
Actual	"Good"	88%	12%	
	"Bad"	18%	82%	

Ordinal Rating

Accuracy=56%		Predicted					
		1	2	3	4	5	
	1	78%	18%	3%	1%	0	
	2	8%	59%	30%	5%	0	
Actual	3	1%	18%	60%	20%	1%	
	4	1%	3%	33%	59%	4%	
	5	1%	1%	12%	59%	27%	

э

ReCap: Qualitative Representations of Network Performance

- Binary classification and ordinal rating
- Advantages
- Class/Rating measurement
- Experiments on binary classification and ordinal rating

Conclusion: Features of DMFSGD

A general framework for network performance prediction

- Soundness
 - founded on recent advances in matrix completion
- Flexibility
 - deal with various metrics (RTT, ABW, ...)
 - deal with metric values, performance classes and ratings

イロト イポト イヨト イヨト

38 / 39

A unique feature of DMFSGD!

- Simplicity
 - easy to implement
 - no infrastructure
 - computationally lightweight

Thank you!

Research supported by

- FP7 ECODE project
- FP7 mPlane project

Related Publications

- Liao et al, DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction, IEEE/ACM Transactions on Networking, vol. 21, nb. 5, Oct. 2013, pp. 1511-1524.
- Liao et al, Decentralized Prediction of End-to-End Network Performance Classes, ACM CoNEXT 2011, Tokyo, Japan.
- Liao et al, Network Distance Prediction Based on Decentralized Matrix Factorization, IFIP Networking 2010, best paper award, Chennai, India.

