Network Fingerprinting: TTL-based Router Signatures

Yves Vanaubel¹, Jean-Jacques Pansiot², Pascal Merindol² and Benoit Donnet¹

 $^{1}\mathrm{ULg}$ (Belgium), $^{2}\mathrm{UDS}$ (France)

March 12, 2014

Summary

- ▶ Motivations
- ▶ TTL-based router signatures
- ► Measurement campaign
- ▶ Signatures distribution and consistency
- ▶ Use cases
- ► Conclusions

Motivations

Network fingerprinting

Action of grouping network devices into (disjoint) classes. Equivalent to nmap but for routers instead of host OSes.

Signature

Set of information collected thanks to the fingerprinting.

- ▶ Understanding the characteristics of the Internet:
 - ▶ hardware distribution (CISCO, Juniper, etc.)
 - routing operating systems distribution (IOS, OS-XR, JUNOS, JUNOSE, etc.)
 - abnormal behaviors
 - vulnerabilities
 - **.**..
- ► Topology discovery
- **...**

Time To Live (TTL)

- ► Field in the IP header (avoid routing loops)
- ▶ Maximum number of hops for an IP packet

```
Type of Service
            Total Length
Flags
   Identification
             Fragment Offset
     Time to Live
      Protocol
            Header Checksum
      Source Address
Destination Address
Options
```

TLL - Initial Value

- ▶ Should be initialized to 64 (RFC 1700)
- ▶ However, in practice, the initial value of the TTL (iTTL) may depend on:
 - ▶ the hardware (CISCO, Juniper, ...)
 - the operating system
 - ▶ the protocol used for the message (ICMP, UDP, ...)
 - ▶ the type of the message (information packets versus errors)

Idea:

Solicit routers with several probes in order to receive n different types of (ICMP) replies, infer their initial TTL value and derive a signature of the type

$$\langle iTTL_1, iTTL_2, iTTL_3, ..., iTTL_n \rangle$$

ICMP Messages

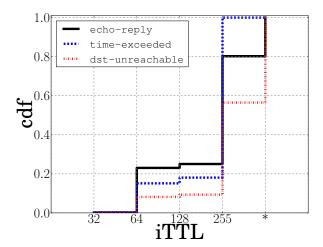
- ▶ We consider three types of ICMP messages:
 - 1. Time-exceeded messages (obtained with traceroute)
 - 2. Echo-reply messages (obtained with ping)
 - Destination-unreachable messages (obtained with UDP probes sent to a very high destination port)
- ▶ Initial values of TTLs used by nodes: 32, 64, 128, 255

Initial TTL Value: Inference

Initial TTL inference:

Smallest integer in $\{32,\,64,\,128,\,255\}$ larger than the received value

In the example:


- ▶ 63 in the TTL field of the ICMP response
- ▶ 64 is the corresponding inferred iTTL

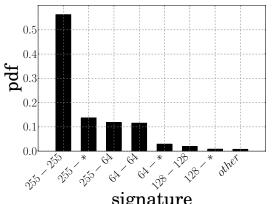
Measurement Campaign

- ▶ Measurement campaign on the PlanetLab platform
- ▶ 1M of destinations from CAIDA data
- ▶ 200 vantage points (VP), i.e. 5000 destinations/VP
- ▶ Each IP on a trace pinged 6 times
- ▶ Scamper with paris-traceroute
- ▶ About 8h of probing per VP
- ▶ About 3 days of campaign due to the PlanetLab instabilities
- ▶ 335,646 unique IPs collected with 13,437,896 traceroute replies
- ▶ Marginal probing cost overhead (14,803,614 ping replies)

Initial TTL Value: Distribution

Generic Router Signature Construction Algorithm

- ▶ For each destination:
 - 1. Send traceroute probes to detect the nodes on the path
 - 2. Foreach received ICMP time-exceeded message:
 - Check if the corresponding node was not already probed
 - ▶ Infer the first iTTL of the signature
 - ▶ Send other types of probes (Ping, UDP, ...)
 - ▶ Infer the other iTTLs based on the responses


TTL-based Router Signatures

- ▶ Consists in a n-tuple of initial TTLs
- As a first try, n = 2 (marginal gain with UDP probes):

<Time-exceeded, Echo-reply>

- ▶ Signature diversity: in theory up to $4 \times 5^{n-1}$, n: # probes
- ▶ The symbol * means an absence of iTTL (no answer to the corresponding probe). The signature is **incomplete**
- \triangleright Examples: <255-255>, <255-*>, <255-128>, ...

Signatures Distribution

signature

Cisco	<255-255>
Juniper (Junos)	<255-64>
Juniper (JunosE)	<128-128>
Brocade, Alcatel and Linux boxes	<64-64>

Table: Some router manufacturer mapping examples

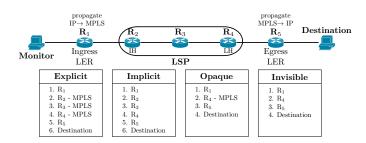
Signatures Consistency

Assumption:

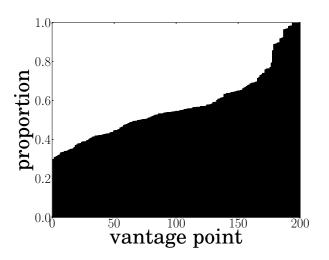
The signature associated to a given IP address is unique

- ▶ Considering only IP addresses probed by at least two VPs...
- ... a signature may be (for a given IP address):
 - ► Coherent: signatures always the same (in 95.92%)
 - ▶ Weakly incoherent: signatures sometimes complete, but also sometimes incomplete (in 4.94%) (e.g. <255-255> and <255-∗>)
 - ▶ Incoherent: complete signatures but different (in 0.14%)

Signatures Consistency


- ▶ In the vast majority, coherent signatures.
- ▶ Causes of the (rare) inconsistency:
 - our initial TTL inference?
 - ► anycast?
 - ► middleboxes?
- ▶ Possibility to complete weakly incoherent signatures (e.g. $<255-*> \Rightarrow <255-255>$)
- \Rightarrow Our assumption is correct:

The signature associated to a given IP address is unique



MPLS use case

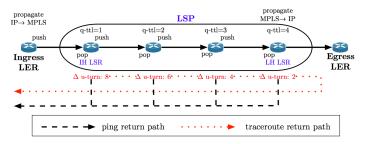
- ▶ Donnet et al.: "Revealing MPLS tunnels obscured from traceroute" ACM SIGCOMM CCR, 2012.
- ▶ Measurement-based classification of MPLS tunnels (traceroute)
 - ▶ TTL-propagate \times RFC4950:

Proportion of MPLS tunnels

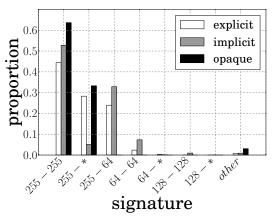

► From about half of the VPs, at least half of the paths reveal MPLS tunnels

Proportion of MPLS tunnels

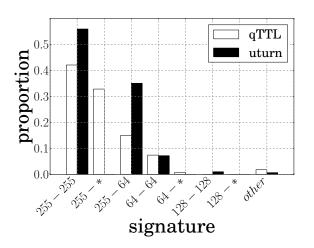
- ▶ Proportion of IP addresses in
 - ▶ explicit tunnels: 14.23%
 - ▶ implicit tunnels: 25.51%
 - ▶ opaque tunnels: 0.33%
 - ▶ all MPLS tunnels: 30.37%
- ▶ Some addresses belongs to different types of tunnels
- ▶ MPLS seems well deployed in the Internet today


MPLS Repartition: Global TTL-overview

- ▶ The increase of Juniper routers seems significant
- ▶ Decrease of signature <64-64>
- ▶ Decrease of signature <255-255> while <255-∗> and <255-64> increase their share


MPLS: Implicit tunnels discovery

▶ Inference methods: q-TTL and Uturn


MPLS Repartition: Refined view

▶ Signatures distribution in the different tunnel classes:

▶ Opaque tunnels : only one signature : <255-255> (and <255-*> but may be completed)

MPLS implicit tunnels: TTL-overview

- ▶ Only slight differences due to technique definition
 - Our Uturn heuristic does not show abnormal behavior

Use Cases

- ▶ Checking if a set of network devices is heterogeneous
- ▶ Understanding the architecture of an AS
- ▶ (In)validation of measurement hypotheses (e.g. MPLS tunnels discovery)
- ▶ Helping alias resolution (clustering approach)
- **.**..

Conclusion

- ▶ Each IP (router?) has a unique TTL-based fingerprint
- ▶ The distribution of signatures is already valuable with 2 iTTLs
- ▶ Work still in progress: refine the signatures distribution
- ▶ Help alias resolution and so IP network mapping
- ▶ Help to improve any active probing methods and analysis such as MPLS discovery and quantification

Thank you!