A Lightweight Network Proximity Service Based
On Neighborhood Models

Yongjun Liao, Wei Du and Guy Leduc
Research Unit in Networking (RUN), University of Licge, Belgium

Abstract—This paper proposes a network proximity service
based on the neighborhood models used in recommender systems.
Unlike previous approaches, our service infers network proximity
without trying to recover the latency between network nodes. By
asking each node to probe a number of landmark nodes which
can be servers at Google, Yahoo and Facebook, etc., a simple
proximity measure is computed and allows the direct ranking
and rating of network nodes by their proximity to a target node.
The service is thus lightweight and can be easily deployed in
e.g. P2P and CDN applications. Simulations on existing datasets
and experiments with a deployment over PlanetLab showed
that our service achieves an accurate proximity inference that
is comparable to state-of-the-art latency prediction approaches,
while being much simpler.

I. INTRODUCTION

The knowledge of network proximity is critical to achieve
Quality-of-Service (QoS) guarantees for end users. For exam-
ple, in Peer-to-Peer (P2P) applications and Content Distribu-
tion Networks (CDNs), it is desired to direct user requests to
a peer or a server that is nearby and thus with a connection
of small latencies. In this paper, network latency refers only
to round-trip time (RTT).

To exploit the proximity information in large distributed
systems, a practical challenge is the efficient acquisition be-
cause active probing of network latency for all paths in a
large network is infeasible due to the quadratic complexity.
This issue has been well studied, resulted in a rich line of
research on network proximity inference based on latency
measurements on a few paths [1], [2], [3]. In particular, a
recent progress is that the inference of network latencies can
be cast as a matrix completion problem whereby a partially
observed matrix is to be completed [4], [5], [6]. Here, the
matrix contains latencies between network nodes with some
of them known and the others unknown, shown in Figure
1(a). We then observed a similarity between network inference
and the problem of recommender systems which studies the
prediction of preferences of users to items [7], shown in
Figure 1(b). If we consider network latency as a preference
measure between nodes, then peer and server selection is just a
recommendation task. This observation enables us to leverage
the rapid advances in machine learning and investigate the
applicability of various solutions to recommender systems
for network inference. Our previous studies have shown that

This work was supported by the EU under project FP7-ICT mPlane.
Yongjun Liao now is with LIP Lab, IXXI, ENS de Lyon, France and Wei
Du is with CITI Lab, INSA-Lyon, France.

12345678

'y
00 ~1 D U W N =

(a) A matrix completion view of latency inference.
In the matrix, the blue entries contain measured path
latencies, represented by directed edges in the graph,
and the green entries are missing.

| iteml item2 item3 item4 item5
userl 5 3 4 1 ?
user2 5 3 4 1 5
user3 5 ? 4 1 5
user4 1 3 2 5 1
user> 4 ? 4 4 4

(b) An example of recommender system.

Fig. 1. Connection between network inference and recommender systems.

a class of matrix factorization techniques are suitable and
achieved good results that are known to be acceptable for
recommendation tasks [6].

Alternatively, neighborhood models are also widely used in
recommender systems which exploit the similarities between
users and between items [8]. For example, two users are con-
sidered similar if they rate a set of items similarly. Meanwhile,
two items are considered similar if they are given similar
ratings by a set of users. Thus, two kinds of recommendations
can be made to a user: liked items by similar users and items
that are similar to the liked items by that user. In this paper,
we develop a lightweight network proximity service based on
neighborhood models whereby, if two nodes have similar
proximity to a number of common nodes, the two nodes are
likely to be close to each other. Different from previous work,
our approach infers proximity without recovering network
latencies. A simple proximity measure is computed and can
be exploited for ranking and rating network paths which is
useful in e.g. P2P and CDN applications for peer and server
selection. The approach is highly scalable and involves only
the latency measurement by PING from each node to a small
number of pre-selected landmark nodes which can be servers
at Google, Yahoo and Facebook, etc. Simulations on existing

datasets and experiments with a deployment on a real network,
namely PlanetLab, showed that our approach provided accu-
rate proximity services that are comparable to state-of-the-art
latency inference approaches, while being much simpler.

The rest of the paper is organized as follows. Section II
summarizes related work on network proximity inference.
Section III introduces our network proximity services based
on neighborhood models. Section IV and V describe results
of both simulations and the deployment on PlanetLab. Section
VI gives the conclusion.

II. RELATED WORK

Most related work inferred proximity by estimating laten-
cies between network nodes. For example, GNP [1] inferred
RTTs by embedding network nodes into a metric space and
Vivaldi [2] decentralized the inference based on Euclidean
embedding by removing the landmarks in GNP. Likewise,
IDES [3] and DMFSGD [4] solved the inference problem by
matrix factorization in a centralized and decentralized manner
respectively. We refer interested readers to [9] for a survey
of network latency prediction. In general, existing approaches
employ a common framework that fits a prediction model
by using some optimization scheme and a small number of
latency measurements. For the decentralized processing in
networks, message exchanges are performed between network
nodes [2], [4].

While interesting, the most popular application for latency
prediction has always been peer and server selection in P2P
networks and CDNs. In such a recommendation task, the
absolute latency values are only exploited to rank network
nodes by their proximity to a target node. Thus, it is useful to
develop simpler approaches to do ranking directly without try-
ing to recover latency. This paper describes a novel approach
based on the idea in neighborhood models for recommender
systems which allows just that. The biggest advantage of
our approach is its simplicity which, unlike previous latency
prediction approaches, requires no optimization of any kind.
By asking each node to probe a number of landmark nodes, a
simple proximity measure is computed and allows the ranking
of network nodes without recovering latencies. Note that our
service is different from other landmark-based systems such as
GNP and IDES in that we need no control over the landmark
nodes. In addition, this paper also studies the impacts of the
dynamic measurement and of the selection of the landmarks,
showing that our proximity service is stable and insensitive
to the latency dynamics and to the random selection of the
landmarks.

III. NETWORK PROXIMITY SERVICE
A. Measuring Network Proximity

Instead of measuring latencies between network nodes, we
require each node to probe the latencies to a number of
landmark nodes and the latency measurements are put in a
feature vector which is attached to each node, illustrated in
Figure 2. Let v; = [v;1, . .., vix]T be the feature vector of node
1, where v;; is the latency between node 4 and landmark j and

NN
!E Yahoo server: 46.228.47.115

.‘
‘E Google server: 173.194.65.104

~‘
.E BBC server: 212.58.246.95

Fig. 2. Network proximity service.

k is the number of landmarks. The landmark nodes can be any
IP addresses on the Internet such as content servers in Google,
Yahoo and Facebook or news and university web servers which
stay alive stably and respond to the PING measurement. Note
that anycast IP addresses such as Google public DNS servers
at 8.8.8.8 and 8.8.4.4 need to be avoided.

A similarity/dissimilarity measure between the feature vec-
tors of two nodes can then be computed using e.g. the
correlation, the L2 or L1 norm and the cosine of the included
angle, etc., among which the L1 norm is chosen due to its
robustness to noisy and outlier measurements [10], given by

k
1
Pij =3 E lvar — vji]- ()
=1

pij is a proximity measure, although it does not inform us
about the actual latency between 7 and j. Intuitively, when p;;
is small, i.e. 4 and j have similar latencies to the landmarks,
chances are that ¢ and j are close to each other. This is exactly
the idea in neighborhood models for recommender systems.

Thus, the proximity measure carries information that can be
exploited to rank network nodes. For example, if p;; < py,
then we can guess that ¢ is closer to j than to [, i.e. the latency
between ¢ and j is smaller than that between 4 and [. Obvi-
ously, proximity inference based on p;; is less accurate than
based on measured latencies. However, a proximity service
based on active probing would require O(n?) measurements
for a network of n nodes which does not scale well. In
contrast, our new service reduces the measurement overhead
from O(n?) to O(kn), with k likely to be independent of n.
In addition, comparing to state-of-the-art latency prediction
approaches, our proximity service is much simpler and re-
quires no computation for learning a prediction model such as
Euclidean embedding for Vivaldi [2] and matrix factorization
for DMFSGD [4]. We will show in Section IV and V that, on
ranking network nodes according to the proximity, our service
achieved comparable accuracies to Vivaldi and DMFSGD.

Note that it is possible that a node has a poor connection
to all landmarks, i.e. min(v;) is larger than a threshold. We
consider such cases as that the node has a poor connection to
the entire Internet, due probably to a poor Internet access link,
and turn the proximity measure between that node and any
other node in the network to a large constant. This prevents
nodes with poor Internet connections from being labeled as
close to each other.

B. Landmark Selection

It is easy to see that the proximity measure depends on
both the locations and the numbers of the landmark nodes.
In practice, we can check the suitability of the landmarks by
computing statistics such as variance of the latencies. There
are two considerations.

o For node 4, v; is more informative about its location if
some latencies in v; are small and some are large, i.e.
1 is close to some landmarks and far away from some
others. Thus, the lack of variance in v; is generally a
good indicator of the poor choice of the landmarks for
node i. If many nodes have small variance in their feature
vectors, a likely reason is that many landmarks are in the
same region and close to each other.

e For each landmark, we can also construct a feature vector
containing latencies from each node to the landmark. Let
vE = [v1i,...,vn)T be the feature vector for landmark
i. Similarly, the lack of variance in v} is also a good

indicator that landmark 7 is not suitable to serve as a

landmark for the nodes in the network, which happens

when the landmark has an anycast IP address'.

Essentially, we can construct a matrix containing latencies
between nodes and landmarks, denoted by V' = [v1,...,v,],
and it is desired that the variance in both the rows and the
columns in V are large. If we have a set of landmarks from
which we choose a few, we can design a selection algorithm
that maximizes the variances in V. Empirically, we found that
if the landmarks are well distributed all over the world, the
variances in V are generally large enough and a good network
proximity service can be achieved using a small number of
randomly selected landmarks, shown in Section IV.

We performed a test on PlanetLab on June 2nd, 2014
that from 592 live nodes we pinged an anycast Google
public DNS server at 8.8.8.8, a unicast Google Web server
at 173.194.65.104 and a unicast DNS server at 209.210.172.9
and received latencies to all three servers from 310 nodes,
shown in Figure 3. We can see that both the mean and the
variance of the latencies to 8.8.8.8 are much smaller, which
is expected as 8.8.8.8 corresponds to 28 servers at different
locations. Note that among all the latencies to 8.8.8.8, only 12
are larger than 100ms and the latencies from all 11 Chinese
nodes are larger than 180ms?. This suggests that even an
anycast I[P may provide useful proximity information about
nodes in particular areas. For example, a node is unlikely to
be in China if its latency to 8.8.8.8 is smaller than 100ms.
By choosing the right landmarks, we may design a location
classifier that pinpoints a network node to a small region.

! Another possible reason is that most nodes in the network are close to
each other. This is a trivial situation which we rule out in this paper.

2The only other node with a latency to 8.8.8.8 greater than 100ms is lim-
planetlab-2.univ-reunion.fr. The mean latency is 213ms and the variance is
4ms. The node is in the University of La Réunion located in a French island
in the Indian Ocean.

- —— 8888
..... 173.194.65.104
‘‘‘‘‘‘ 209.210.172.9

Distribution

- N2 S
S et N iz e

50 100 150 200 250 300 350

Latency (ms)

Fig. 3. Distributions of RTT to an anycast Google public DNS server at
8.8.8.8, a unicast Google Web server at 173.194.65.104 and a unicast DNS
server at 209.210.172.9.

C. Service Architecture and Applications

Our network proximity service is thus simple, scalable and
lightweight. The only overhead is k latency measurements
to the pre-selected landmarks at each node. For distributed
systems with a centralized control, a tracker node is deployed
to which each node registers its feature vector. The tracker
node calculates the proximity between nodes and recommends
nearby peers or servers for a node. In a fully decentralized
architecture with no central node to gather information, each
node keeps its own feature vector and searches for nearby
peers and servers using a gossip protocol [11].

Potential applications include peer selection for P2P ap-
plications and server selection for CDNs. To calculate the
proximity between users and servers in a CDN scenario, both
users and servers have to probe the landmarks to get feature
vectors, which is difficult to assume in the CDN case. Instead,
given the symmetry of the RTT measurements, we can probe
the users and the servers from the landmarks, assuming that
the proximity service has its own landmarks. The feature
vectors can then be built by fetching the measurements from
the landmarks. Besides, the proximity service can also be
exploited to cluster network nodes.

IV. SIMULATIONS ON EXISTING DATASETS

We performed simulations on the following datasets:
e Meridian contains static RTTs between 2500 DNS
servers obtained from the Meridian project [12].
o P2PSim contains static RTTs between 1740 DNS servers
obtained from the P2PSim project [13].
o Harvard contains dynamic RTTs between 226 PlanetLab
nodes collected in 4 hours [14].
In these datasets, as we only have RTTs between nodes in the
networks, we randomly select a number of nodes as landmarks
and the feature vector of each node consists of RTTs to those
selected nodes. For the Harvard dataset, we extracted the static
RTTs by computing the mean RTT between each pair of nodes
and used them in the first two subsections for evaluating the
ranking and rating accuracy. The dynamic RTTs in the Harvard
dataset are used to evaluate the stability of the proximity
measure only in the last subsection.

A. Ranking of Network Proximity

We first evaluate the ranking of network proximity using the
Spearman’s rank correlation coefficient which is defined as the
Pearson correlation coefficient between the ranked variables

[15]. For two sequences X and Y, the raw data X; and Y;
are converted to the ranks z; and y; in the sequence, and the
Spearman’s rank correlation coefficient is computed as
@i —2) (v —)

Vi(zi — 2)*(yi — §)?

p is between 1 and —1, and the larger it is, the more the
ranks of X and Y are positively correlated. Thus, we evaluate
the ranking accuracy by calculating the Spearman’s rank
correlation coefficient between the proximity measures by our
service and the true latencies between network nodes. In other
words, the two sequences X and Y are our proximity measures
and the true latencies, and we wish a high p value so that their
rankings match each other.

As the landmarks are randomly selected from all nodes in
the network, we are interested in the impacts of the number of
landmarks on the accuracy of proximity inference. We tested
k = 10, 20, 30 and 60 respectively, with 10 runs of random
landmark selection for each k, and the mean rank correlation
coefficients and the standard deviations for each dataset are
shown in Table I. It can be seen that the rank correlation
improves with the increase of the landmark number £ and that
the ranking results are stable and not sensitive to the random
selection of the landmarks in the network. Overall, ranking
of network proximity is more accurate on the Harvard dataset
than on the other two, due probably to its small size of the
network, i.e. 226 nodes.

We then compare our proximity service with two popular la-
tency prediction approaches, namely Vivaldi [2] and DMFSGD
[4], [5], [6]. The former predicts RTTs based on Euclidean
embedding and the latter does so based on matrix factor-
ization. Both employ the same architecture that each node
probes and exchanges messages with k randomly selected
neighboring nodes in the network. In contrast, our service
based on neighborhood models only probes k landmarks, with
no requirement of message exchanges between nodes. To make
the comparison fair, we set & = 32 so that all methods
have the same measurement overhead. Note that £ = 32
is the default setting in Vivaldi and DMFSGD. We ran the
simulations for 10 times with random landmark and neighbor
selection for our service, DMFSGD and Vivaldi respectively.
The rank correlation for DMFSGD and Vivaldi is calculated
by comparing the ranks of the predicted RTTs and of the true
RTTs using eq. 2. The mean rank correlation coefficient and
its standard deviation for each method is shown in Table II. It
can be seen that our service achieved comparable results with
DMFSGD and Vivaldi.

p)

B. Rating of Network Proximity

We then evaluate the rating of network proximity that turns
a proximity measure into an ordinal number in the range of
{1,5}. Ordinal rating is a loose version of ranking that labels
a measure as rank 1 if it is among the top 20 percent smallest,
as rank 2 if between top 20 and top 40 percent, and so on.
While less informative, the advantage of rating over ranking
is that rating measures are more stable over time. Thus, we

compare the ratings of the proximity measures returned by
our service with the ratings of the true latencies, evaluated by
using the same criterion, Root Mean Square Error (RMSE),
as in [6], given by

RMSE = 3)
The smaller the RMSE, the better. We also compare our
service with DMFSGD and Vivaldi. DMFSGD can directly
predict ratings of RTTs, as described in [6]. For Vivaldi, we
turn the predicted RTTs into ratings.

As above, we ran the simulations for 10 times with random
landmark and neighbor selection for our service, DMFSGD
and Vivaldi respectively, and calculated the mean RMSE and
its standard deviation for each method, shown in Table III. It
can be seen that on Merdian and P2PSim, DMFSGD is the
best, while on Harvard, our service based on neighborhood
models is the best. Overall, on the rating performance, our
service achieved results at least comparable to Vivaldi.

Table IV shows the confusion matrices by our service. In
these matrices, each column represents the predicted ratings,
while each row represents the actual ratings. Thus, the di-
agonal entries represent the percentage of the correct pre-
diction, and the off-diagonal entries represent the percentage
of “confusions” or mis-ratings. For example, the entry at
(2,2) represents the percentage of the rating-2 paths which
are correctly predicted as rating-2, and the entry at (2,3)
represents the percentage of the rating-2 paths which are
wrongly predicted as rating-3, i.e. the confusions from rating-
2 to rating-3. It can be seen that while there are mis-ratings,
most of them have a small error of |z;; — &;;| = 1, marked
as shaded entries in the confusion matrices. This means that
the mis-ratings are under control. For example, a rating-5 path
may be wrongly predicted as 4, but seldom as 3, 2 or 1, since
the entries at (5, 3), (5,2) and (5,1) in all confusion matrices
are small.

C. Stability over Latency Dynamics

We further evaluate the impact of the latency dynamics on
the stability of our service using the Harvard dataset which
contains 2,492, 546 dynamic RTTs with timestamps collected
in 4 hours from PlanetLab [14]. In the dataset, about 94.0%
of the paths between pairs of nodes are measured between 40
and 60 times.

In the experiment, we assume that each node probes the
landmarks once and the first RTT measurement from each
node to each landmark is put in the feature vector of the node.
Thus, the proximity measures between nodes are computed
using the latency information acquired in the beginning of
the simulation which are not updated over time. We then
evaluate how the ranking and rating accuracy is affected by the
dynamics of the true RTTs in the dataset. To this end, we ran
the simulations with the RTTs between nodes updated using
the timestamps in the dataset and computed the Spearman’s
rank correlation coefficient p and the RMSE over time (in
every three minutes) between the proximity measures and

TABLE I
IMPACT OF k ON RANKING ACCURACY.

p mean std p mean std p mean std
§ k=10 0.784 0.017 E k=10 0.786 0.038 'g k=10 0.942 0.020
B k=20 0.802 0.010 L k=20 0.813 0.026 z k=20 0.948 0.008
ﬁ k=30 0.809 0.008 Q k=30 0.820 0.016 :‘E k=30 0.952 0.006
k=60 0.819 0.003 k=60 0.828 0.011 k=60 0.952 0.003
TABLE II
COMPARISON OF RANKING ACCURACY.
= P mean std £ p mean std - p mean std
g Neighborhood 0.811 0.007 & Neighborhood 0.819 0.020 § Neighborhood 0.952 0.006
5} DMFSGD 0.823 0.001 & DMFSGD 0.889 0.002 5 DMFSGD 0.910 0.003
= Vivaldi 0.807 0.002 R Vivaldi 0.834 0.002 T Vivaldi 0.868 0.002
TABLE IIT
COMPARISON OF RATING ACCURACY.
g RMSE mean std £ RMSE mean std - RMSE mean std
5 Neighborhood 0.943 0.014 & Neighborhood 0.922 0.058 § Neighborhood 0.570 0.028
5 DMFSGD 0.860 0.003 & DMFSGD 0.667 0.004 5 DMFSGD 0.601 0.009
= Vivaldi 0.945 0.003 A Vivaldi 0.879 0.003 T Vivaldi 0.704 0.007
TABLE IV
CONFUSION MATRICES.
Meridian 1 2 3 4 5 P2PSim 1 2 3 4 5 Harvard 1 2 3 4 5
1 81% 14% 4% 1% 0% 1 54% 26% 10% 10% 0% 1 77% 21% 2% 0% 0%
2 13% 58% 20% 7% 2% 2 40% 37% 16% 6% 1% 2 23% 57% 19% 1% 0%
3 3% 21% 38% 26% 12% 3 6% 34% 49% 10% 1% 3 0% 21% 64% 13% 2%
4 1% 5% 27% 39% 27% 4 0% 3% 24% 54% 18% 4 0% 3% 15% 70% 15%
5 1% 2% 12% 27% 58% 5 0% 0% 0% 20% 79% 5 0% 0% 0% 17% 83%
the true, updated RTTs (turned into rating when computing .
the RMSE), shown as the curve of p for Neighborhood 0
and of RMSE for Neighborhood respectively in Figure 4. In BT T
o, . . = 08! ——p for dynamic RTT
addition, we also calculated the ranking correlation p over = Dz '.7.7%{?Egy?lgf’f\‘?&ﬁ?ﬂ-l.wd
time between the RTTs in the beginning of the simulation o
(the first measurement between each pair of nodes) and the 0 e NN N o

true, updated RTTs. This measure reflects the dynamics of the
RTT measurements in the dataset, shown as the p for dynamic
RTT curve in Figure 4. It can be seen that the RTTs in the
dataset are fairly stable, with the rank correlation over time
never smaller than 0.95. In such cases, our service is able to
provide accurate proximity inference, i.e. a rank correlation
around 0.9 and a RMSE around 0.7, without updating the
feature vector of each node for 4 hours. Note that if we do
update the latencies in the feature vector of each node by a
running mean, i.e. the mean of 10 most recent measurements,
we only improve the accuracy slightly by less than 5%, at the
cost of more probes to the landmarks.

V. DEPLOYMENT ON PLANETLAB

We deployed our network proximity service on PlanetLab
to test the performance when using landmarks other than those
in the network.

A. Experimental Setup

We first identified the IPs that can be used as landmarks.
The first landmark set, so called the DNS set, contains the

10 20 30 40 50 60 70 80
time (x 3 minutes)

Fig. 4. Impact of latency dynamics on proximity inference. The curve of p
for dynamic RTT represents the rank correlation over time between the RTTs
in the beginning of the simulation and the updated RTTs. The curve of p
for Neighborhood represents the rank correlation between the non-updated
proximity measures and the true, updated RTTs, and that of RMSE for
Neighborhood represents the RMSE between the ratings of the non-updated
proximity measures and of the true, updated RTTs.

DNS servers in the P2PSim dataset in which we found 792
out of 1740 alive and reachable. The second landmark set,
so called the WEB set, contains the web servers at Google,
Yahoo and Facebook. To extract the IPs, we pinged from
each PlanetLab node to www.google.com, www.yahoo.com
and www.facebook.com. As these service providers direct user
requests to nearby servers, the PINGs returned us the IPs of
147 Google, 11 Yahoo, 69 Facebook web servers. Unlike the
DNS set the IPs in which are largely distinct from each other,
the WEB set contains similar IPs such as 74.125.237.17 and
74.125.237.18. Thus, we clustered the IPs in the WEB set by

their first 24 bits, resulted in 58 Google, 11 Yahoo and 31
Facebook IP clusters. In the experiments on the DNS set, the
k landmarks are randomly selected from all 792 DNS servers,
whereas on the WEB set, we first select randomly k IP clusters
and each node then selects randomly an IP from each selected
IP cluster.

The deployment of our service is simple and involves only
the RTT measurement by PING from PlanetLab nodes to land-
mark nodes. For the purpose of evaluation, we also collected
RTTs between PlanetLab nodes. During our experiment period
between June 8th and June 12th, 2014, we were able to reach
between 306 and 327 PlanetLab nodes. We confirm that the
RTTs on PlanetLab are fairly stable, as shown in Section I'V-C.

B. Comparison with DMFSGD and Vivaldi

As above, we compared our service based on neighborhood
models with DMFSGD and Vivaldi, with & = 32 for all
methods. For our service, we tested random landmark selection
from the DNS and WEB set as well as from the PlanetLab
nodes, called Neighborhood DNS, Neighborhood WEB and
Neighborhood respectively. For each method, 10 runs of
random landmark/neighbor selection were carried out using
measurements collected at some time in our experiment period.
We calculated the means and the standard deviations of the
ranking correlation and the RMSE by comparing the results of
each method with the true RTTs, shown in Table V. Note that
the experiments were repeated using measurements at different
times and the results were found consistent due to the stability
of the RTTs on PlanetLab. It can be seen that, while worse
than DMFSGD and Vivaldi, our service still achieved decent
accuracies on ranking and rating of network proximity. It is
worth noting that the accurate RTT prediction by DMFSGD
and Vivaldi comes at the cost of 10 to 20 message exchanges
between each pair of neighboring nodes. In contrast, our
service is the most lightweight, with each node probing a
few pre-selected landmarks only once in the beginning of the
service and with no computation required.

Note that the small standard deviations in Table V show
the insensitivity of our service to random landmark selection
when deployed on real networks such as PlanetLab. Thus,
our experiments in this and previous section suggest that
empirically, random landmark selection is sufficient as long
as the landmark nodes are well distributed all over the world.
In such situations, each latency measurement from a node to
a landmark provides useful information about the location of
the node.

VI. CONCLUSION

This paper presents a lightweight network proximity service
that labels nodes with similar proximity to landmark nodes
as being close to each other. The service allows the ranking
and rating of network proximity which can be exploited
for peer and server selection in P2P and CDN applications.
Comparing to state-of-the-art latency prediction approaches
such as DMFSGD and Vivaldi, the biggest advantage of our
service is its simplicity. The only overhead in our service is

TABLE V
COMPARISON OF RANKING AND RATING ACCURACY ON PLANETLAB.

P mean std
Neighborhood DNS 0.894 0.027
Neighborhood WEB 0.886 0.029
Neighborhood 0.903 0.021
DMFSGD 0.936 0.013
Vivaldi 0.939 0.014

RMSE mean std
Neighborhood DNS 0.709 0.034
Neighborhood WEB 0.722 0.038
Neighborhood 0.701 0.044
DMFSGD 0.622 0.020
Vivaldi 0.641 0.022

a small number of PING measurements, and there is neither
computation nor message exchange between network nodes
required. Extensive simulations and real deployments show
that our service can achieve accurate and stable proximity
inference with a few randomly selected landmarks. Unlike
many other landmark-based systems such as GNP and IDES,
the landmarks in our service can be any Internet servers over
which we have no experimental control.

REFERENCES

[1] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. of IEEE INFOCOM, 2002, pp.
170-179.

[2] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. of ACM SIGCOMM, Portland, OR,
USA, Aug. 2004, pp. 15-26.

[31 Y. Mao, L. Saul, and J. M. Smith, “IDES: An Internet distance
estimation service for large networks,” IEEE Journal On Selected Areas
in Communications, vol. 24, no. 12, pp. 2273-2284, Dec. 2006.

[4] Y. Liao, W. Du, P. Geurts, and G. Leduc, “DMFSGD: A decentral-
ized matrix factorization algorithm for network distance prediction,”
IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1511-1524,
oct 2013.

[5] , “Decentralized prediction of end-to-end network performance
classes,” in Proc. of CoNEXT, Tokyo, Japan, 2011.

[6] W. Du, Y. Liao, N.Tao, P. Geurts, X.Fu, and G. Leduc, “Rating network
paths for locality-aware overlay construction and routing,” IEEE/ACM
Transactions on Networking, vol. 23, no. 5, oct 2015.

[7]1 Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30-37, 2009.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” in Proc. of the International
World Wide Web Conference - WWWI10, Hong Kong, May 2001.

[9]1 B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network coordi-

nates systems, design, and security,” IEEE Communication Surveys and

Tutorial, vol. 12, no. 4, pp. 488-503, 2010.

C. Hennig and M. Kutlukaya, “Some thoughts about the design of loss

functions,” REVSTAT-Statistical Journal, vol. 5, no. 1, pp. 19-39, 2007.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey

and comparison of peer-to-peer overlay network schemes,” IEEE Com-

munications Surveys and Tutorials, vol. 7, pp. 72-93, 2005.

B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight network lo-

cation service without virtual coordinates,” in Proc. of ACM SIGCOMM,

Philadelphia, Pennsylvania, USA, Aug. 2005, pp. 85-96.

K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency

between arbitrary Internet end hosts,” in Proc. of the ACM/SIGCOMM

Internet Measurement Workshop, Marseille, France, Nov. 2002, pp. 5—

18.

J. Ledlie, P. Gardner, and M. 1. Seltzer, “Network coordinates in the

wild,” in Proc. of USENIX Symposium on Networked Systems Design

and Implementation, Cambridge, Apr. 2007, pp. 22-35.

C. M. Bishop, Pattern Recognition and Machine Learning. New York,

NJ, USA: Springer-Verlag, 2006.

(10]

(11]

[12]

[13]

[14]

[15]

