
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

mPlane Architecture SpecificaƟon

Author(s): ETH B. Trammell (ed.)
POLITO M. Mellia, A. Finamore, S. Traverso
NETVISOR T. Szemethy, B. Szabó
FHA R. Winter, M. Faath
ENST D. Rossi
ULG B. Donnet
TI F. Invernizzi
ALBL D. Papadimitriou

Document Number: D1.3
Revision: 1.0
Revision Date: 31 Oct 2013
Deliverable Type: RTD
Due Date of Delivery: 31 Oct 2013
Actual Date of Delivery: 31 Oct 2013
Nature of the Deliverable: (R)eport
DisseminaƟon Level: Public

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Abstract:

This document defines the mPlane architecture and the interface provided between mPlane clients and components. The
protocol is divided into layers: an informaƟonmodel for mPlane messages -- measurement capabiliƟes, specificaƟons, results,
and event noƟficaƟons; serializaƟon representaƟons using JSON, YAML, and XML, and session protocol bindings using SSH and
HTTP over TLS.

Keywords: architecture, use case, scenario, measurement, plaƞorm

Plane 2 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.
The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Contents

Disclaimer. 3

Document change record. 7

1 Introduction. 8
1.1 Architectural principles. 9

2 Architecture Terminology and Speciϐication. 10
2.1 Components . 10

2.1.1 Probe . 10
2.1.2 Repository. 10
2.1.3 Client . 10
2.1.4 Supervisor. 11
2.1.5 Reasoner . 11

2.2 Information Model Terminology . 12
2.2.1 Element and Primitive . 12
2.2.2 Schema . 13
2.2.3 Capability . 13
2.2.4 Speciϐication . 13
2.2.5 Result . 13
2.2.6 Verb . 14
2.2.7 Notiϐication . 14

3 mPlane Protocol Information Model Speciϐication. 15
3.1 Statements . 15

3.1.1 Statement Type and Verb . 15
3.1.2 Parameters section . 16
3.1.3 Results and Resultvalues sections . 17
3.1.4 Metadata section . 17
3.1.5 Link . 17
3.1.6 Support for indirect export . 18

3.2 Notiϐications . 18
3.2.1 Notiϐication type and verb . 18
3.2.2 Receipt . 19
3.2.3 Redemption . 19

Plane 4 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.2.4 Indirection . 19
3.2.5 Withdrawal . 19
3.2.6 Interrupt . 20
3.2.7 Exception . 20

3.3 Reference Message Sequences . 20
3.3.1 Direct and Reverse Query . 21
3.3.2 Delayed Query. 21
3.3.3 Initiating Indirect Export . 21
3.3.4 Canceling Indirect Export . 22
3.3.5 Notes on Message Flow Initiation and Capability Withdrawal . 23
3.3.6 Notes on Error Reporting and Recovery . 24

4 mPlane Protocol Message Representations. 25
4.1 JSON . 25
4.2 YAML . 25
4.3 XML . 26
4.4 Text-CSV. 26
4.5 Representing Element Values . 26
4.6 Representing Parameter Constraints . 27

5 mPlane Session Protocol Bindings. 28
5.1 Hypertext Transfer Protocol (HTTP) over Transport Layer Security (TLS) 28

5.1.1 Capability push, Speciϐication pull . 28
5.1.2 Capability pull, Speciϐication push . 29
5.1.3 Capability push, Speciϐication push . 30

5.2 Secure Shell (SSH) . 30
5.3 Component and Client Discovery . 30

6 Core Type System Speciϐication. 31
6.1 Primitives . 31
6.2 Element naming and matching rules . 31
6.3 External element mappings . 32
6.4 Core elements . 32
6.5 Elements supporting reference implementation. 33
6.6 Link section URL schemes . 33
6.7 Export section URL schemes . 33

Plane 5 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

7 Conclusions. 35

A Notes on Interoperability with LMAP. 36

B Reference Implementation Requirements. 37
B.1 Component Reference Implementation Requirements. 37
B.2 Additional Supervisor Reference Implementation Requirements . 38

Plane 6 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Document change record

Version Date Author(s) Description
0.1 29 May 2013 B. Trammell

(ETH) ed.
deϐine structure

0.2 27 Sep 2013 B. Trammell
(ETH) ed.

ϐirst complete revision

0.3 18 Oct 2013 B. Trammell
(ETH) ed.

frontmatter completion

0.5 22 Oct 2013 B. Trammell
(ETH) ed.

comments from Barcelona plenary

1.0 31 Oct 2013 B. Trammell
(ETH) ed.

comments post-Barcelona plenary

Plane 7 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

1 IntroducƟon

This document deϐines the initial revision of the mPlane architecture for coordination of hetero-
geneous network measurement components: probes and repositories that measure, analyze, and
store aspects of the network. The architecture is deϐined in terms of a single protocol, described
in this document, used between clients (which request measurements and analyses) and compo-
nents (which perform them). Sets of components are organized into measurement infrastructures
by association with a supervisor, which acts as both a client (to the components it supervises)
and a component (to the clients it serves). This arrangement is shown in ϐigure 1.1 and further de-
scribed in the rest of the document; the ``capability -- speciϐication -- result'' cycle in this diagram
comprises the mPlane protocol.

probe repository

supervisor

client

capability -
specification -

result

capability -
specification -

result

indirect export

capability -
specification -

result

reasoner

Figure 1.1: Architecture overview

This architecture is drawn from the set of ϐirst principles described and elaborated in the next sec-
tion, and from the requirements and scenarios considered in D1.1.
Since themPlane protocol is essentiallymodular, consisting of an informationmodel, separatemes-
sage representations, and separate session protocol bindings, this deliverable builds the descrip-
tion of the mPlane protocol from the bottom up. First, section 2 deϐines the terminology used to
deϐine the architecture. Section3deϐines the informationmodel for the coremPlanemessage types:
statements and notiϐication. Section 4 deϐines representations of this infomodel in JSON, YAML, and
XML. Section 5 deϐines bindings to HTTP over TLS and SSH as session protocols for transporting
mPlane messages.
These sections, taken together, deϐine the mechanics of the mPlane protocol. The key to measure-
ment interoperability using mPlane is not this protocol so much as it is the types used to deϐine the

Plane 8 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

measurements and the results. The set of elements fromwhich these types can be built is described
in section 6. The complete deϐinition of the type system is out of scope for this document, drawing
from workpackages 2, 3, and 4, and will be maintained by the project as a live registry.
Note that this deliverable reϐlects the status of the mPlane architecture and protocol as of the pub-
lication date. Future developments (e.g. changes to support unforeseen requirements arising dur-
ing pilot integration, modiϐications for interoperability with existing measurement platforms and
emerging standards such as LMAP (see Appendix A)) may result in revisions to the architecture
and protocol speciϐication and the reference implementation thereof. Up-to-date references to the
reference implementation and protocol speciϐication will be available on the mPlane website.

1.1 Architectural principles

In elaborating the architectural principles described in D1.1, a key realization we came to in early
discussions about the architecture was that when components advertise their capabilities, distinc-
tions among those components at an architectural level are somewhat artiϐicial. We have main-
tained the distinction between probes and repositories in this document where it is informative,
and to align with initial architectural guidance given in the description of work, but a key thing to
realize about the mPlane architecture is that everything is a component.
Given the heterogeneity of the measurement tools and techniques applied, and the heterogeneity
of componentmanagement, especially in large-scalemeasurement infrastructures, reliably stateful
management and control would imply signiϐicant overhead at the supervisors and/or signiϐicant
measurement control overhead on the wire to maintain connectivity among components and to
resynchronize the system after a partial disconnection event or component failure.
A second architectural principle is thereby state distribution: by explicitly acknowledging that
each control interaction is best-effort in any case, and keeping explicit information about eachmea-
surement in all messages relevant to that measurement, the state of the measurements is in effect
distributed among all components, and resynchronization happens implicitly as part ofmessage ex-
change. The failure of a component during a large scale measurement can therefore be accounted
for after the fact.
This emphasis on distributed state and heterogeneity, along with the ϐlexibility of the representa-
tions and session protocols usedwith the platform,makes themPlane protocol applicable to awide
rangeof scales, fromresource- and connectivity-limitedprobes such as smartphones and customer-
premises equipment (CPE) like home routers up to large-scale backbonemeasurement devices and
repositories backed by database and compute clusters.
mPlane deϐines a self-describing, error- and delay-tolerant remote procedure call protocol: each
capability exposes an entry point in the API provided by the component; each statement embodies
an API call; and each result returns the results of an API call. The ϐinal key principle in the mPlane
architecture, which allows it to be applied to the problem of heterogeneous measurement interop-
erability, is type primacy. A measurement is completely described by the type of data it produces,
in terms of schemas composed of elements. The key to measurement interoperability in mPlane is
therefore the deϐinition of a type registry, the core elements of which are deϐined in this deliverable.

Plane 9 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

2 Architecture Terminology and SpecificaƟon

The following terms are used to describe the elements of the mPlane architecture.

2.1 Components

A component is any entity which implements the mPlane protocol speciϐied within this document,
i.e., advertises its capabilities and accepts speciϔicationswhich request the use of those capabilities.
The measurements, analyses, storage facilities and other services provided by a component are
completely deϐined by its capabilities.

In the following subsections, we describe the characteristics of speciϐic kinds of mPlane compo-
nents; arrangements among types of components are shown in Figure 1.1.

2.1.1 Probe

A probe is a component that performs measurements. It either returns the results of these mea-
surements directly to the component requesting them, or forwards them indirectly via a speciϐied
second protocol to another component or collector.

2.1.2 Repository

A repository is a component that provides access to a data source. It may provide read-only access
(e.g. as in interface to an external data source, such as the global domain name system or BGP
information from routing looking glasses), or read-write access (storing data received fromProbes,
and providing retrieval and analysis of that stored data.)

Note that some measurement components, especially those based on passive measurement and
employing a local data store, share qualities of both probes and repositories.

2.1.3 Client

A client is anything which uses the mPlane protocol to consume services provided by one or more
components. Within the architecture, this term has two distinct meanings. In any given interaction
over the mPlane protocol, the client is the entity which receives capabilities from, and sends spec-
iϐications to, a component. In an infrastructure of mPlane components managed by a a supervisor
(see below), the client is the entity on whose behalf the supervisor acts: it receives capabilities
from, and sends speciϐications to, the supervisor.

Unless otherwise noted, ``client'' in this speciϐication refers to the ϐirst sense of this deϐinition.

Plane 10 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

2.1.4 Supervisor

A supervisor collects capabilities from a set of components, and provides capabilities based on
these to its clients. Algorithms at the supervisor aggregate the lower-level capabilities provided
by these components into higher-level capabilities exposed to its clients. A supervisor is, in effect,
a combination of a client and a component: it acts as the client for the components in its domain,
acts as a component to its clients. With respect to a component, a supervisor is simply a type of
client.

The set of components which respond to speciϐications from a single supervisor is referred to as
an mPlane domain. Interdomain measurement is supported by federation: a local supervisor dele-
gates measurements in a remote domain to that domain's supervisor. This arrangement, shown in
ϐigure 2.1, greatly simpliϐies access control and aggregation.

Domain A

Domain B

component

local
supervisor

client

componentcomponent

remote
supervisor

Figure 2.1: Interdomain delegation in mPlane

The access control speciϐied in section 6 of D1.2 is applied to speciϐications received at the super-
visor; it is the supervisor's responsibility to decide whether a received speciϐication is authorized
before passing the resulting lower-level speciϐications down to the components in its domain.

2.1.5 Reasoner

A reasoner is a client which supports iterative measurement by learning the best subsequent mea-
surements to perform in order to drill down to the root cause of a speciϐied problem. For reasons
of implementation efϐiciency, a reasoner may be colocated with a supervisor, and may cooperate
with the supervisor to provide reasoner-enhanced capabilities to the supervisor's clients.

Plane 11 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

2.2 InformaƟon Model Terminology

Components interact with each other by exchanging statements, which are the unit of messaging in
the mPlane protocol. Statements deϐine what a component can or should do, or what the results of
an action were. The schemas deϐining the measurement described by a statement are expressed in
terms of elements.
In the following subsections, we deϐine these terms in more detail. The relationships among infor-
mation model entities are shown in Figure 2.2.

Type Registry

Statement

Capability Specification Result

Schema Element

Receipt

Notification

Primitive

Parameter

nil !nil

ResultValue

nil !nilvalue=

Figure 2.2: Information model: Statements, Elements, and Primitives

2.2.1 Element and PrimiƟve

An element is a name for a particular type of data with a speciϐic semantic meaning; it is analogous
to an IPFIX Information Element[2], or a named column in a relational database. Elements have
a primitive type, which deϐines the values the element can take and the representation thereof.
Element primitive types supported by mPlane include the following:

• string: a sequence of UTF-8 encoded characters

• natural: an unsigned integer

• real: a real, ϐloating point number

• bool: a true or false (boolean) value

Plane 12 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

• time: a timestamp, expressed in terms of UTC

• address: an identiϐier of a network-level entity

• url: a uniform resource locator

2.2.2 Schema

Aschema is a collectionof elementsdeϐining ameasurement; it is analogous to an IPFIXTemplate[3]
or a table deϐinition in a relational database. The schema deϐining a measurement uniquely identi-
ϐies the measurement.
In order to allow for experimental measurement to be tested in the mPlane architecture without
disrupting its operation, an experimental schema can be deϐined by prepending an x- preϐix to the
measurement name. As a byproduct, experimental schema also provides the ability to lexicograph-
ically scope the different schema, that can be useful to ``hardwire'' the resolution from a schema to
a metric (e.g., in particular cases, it could be desirable to select a speciϐic implementation among
the available ones).

2.2.3 Capability

A capability is a statement of a component's ability to perform a speciϐic operation, conveyed from
a component to a client (or supervisor). It does represent a guarantee that the speciϐic operation
can or will be performed.
A capability has a set of parameters, elements for which a value is required in order to perform
the operation, which may optionally have constraints on the acceptable values. A capability also
has a set of results, elements for which values will be returned when the capability is invoked. The
parameters and results together comprise the schema of the measurement.

2.2.4 SpecificaƟon

A speciϐication is a statement that a component should perform a speciϐic operation, conveyed from
a client (or supervisor) to a component. It can be conceptually viewed as a capabilitywhose param-
eters have been ϐilled in with values.

2.2.5 Result

A result is a statement produced by a component that a particular measurement was taken and
the given values were observed, or that a particular operation or analysis was performed and a the
given values were produced. It can be conceptually viewed as a speciϐication whose results have
been ϐilled in with values.
Note that, in keeping with the stateless nature of the mPlane protocol, a result contains the full set
of parameters from which it was derived.

Plane 13 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

2.2.6 Verb

Statements have verbs, which specify the operation they describe. The special verb measure de-
scribes a measurement, as provided by a probe, noting that the identiϐication of the measurement
is implicit in the statement's schema. The special verb query likewise describes a query with an
implicit identiϐication, as measure but without the implication of starting a measurement activity.
The special verb collect speciϐies that a repository can accept data of a given type indirectly via
a speciϐied protocol. The special verb store speciϐies a repository can directly accept single data
items given as parameters via statements.
Other verbs allow components to declare non-measurement analysis operations, where the oper-
ation is not necessarily unambiguously described by the associated schema.

2.2.7 NoƟficaƟon

Anotiϐication is an asynchronousmessage in themPlane protocol; it does not share the structure or
workϐlow of a statement, and can be used in an application-speciϐic way to provide asynchronous
indication of an event at a component. Types of notiϐications used bymPlane itself includeReceipts,
Redemptions, Indirections, Withdrawals, Interruptions, and Exceptions.

Plane 14 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3 mPlane Protocol InformaƟon Model SpecificaƟon

mPlane protocol interactions consist of messages sent between components and clients. There are
two kinds of messages: statements, which assert some properties of measurements which can be,
should be, or have been performed; and notiϐications, which are used to send other information
and metainformation between components and clients.

3.1 Statements

The structure of an mPlane statement is shown in ϐigure 3.1.

Statement

type

parameters

results
resultvalues

metadata

verb

link export

additional sections

Figure 3.1: Statement Structure

3.1.1 Statement Type and Verb

Every statement has a type (one of capability, speciϔication, or result), which identiϐies which point
in the measurement workϐlow it represents; and a verb, which identiϐies the operation to which it
pertains.
Verbs supported by the core protocol include:

1. measure: take measurements described by the statement

2. collect: collect measurements described by the statement

3. store: directly store measurements contained in the statement

4. query: retrieve data from a repository described by the statement; equivalent to measure.

Plane 15 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Other verbs are application-speciϐic, and may, for instance, name speciϐic analyses available at a
repository.

3.1.2 Parameters secƟon

Statementshaveparameters: these are the elementsprovidedby the client to specify the speciϐics of
the operation to perform. The parameters section is an ordered list of these elements. For capabili-
ties, each parameter has a constraint, which deϐines the set of acceptable values for the parameter.
For speciϐications and results, each parameter has a single value.

3.1.2.1 Temporal scope

All statements must have a temporal scope, consisting of start and end parameters. These specify
the time interval during which a capability is valid, during which a speciϐication is to be run, or
during which a result was collected.
There are ϐive special time values to be used for temporal scope. −inf represents the inϐinite past,
now represents the absolute present, and+inf represents the inϐinite future.
once is a special end timemeaning ``at the natural end time of the operation''. whenever is a special
start time meaning ``at an arbitrary time to be chosen by the component''.
The special time interval [now,+inf] in a capability represents a probe which can do on-demand
measurement without any local storage; this is the default for probes. The special time interval
[−inf, now] in a capability represents a repository which can answer queries about the past but
has no probing capability; such repositories are, however, encouraged to expose the time of their
ϐirst available record in the start parameter.
The special time interval [now, once] in a speciϐication means ``immediately run the speciϐied op-
eration once then stop''. The special time interval [whenever, once] in a speciϐication means ``run
at your convenience the speciϐied operation once then stop''. once can also be used as an end time
with a speciϐic start time in the future.
The special time interval [now,+inf] in a speciϐicationmeans ``run the speciϐied operation until in-
terrupted''; it is only valid formeasurements or other operations using indirect export as in section
3.1.6.
Periodicmeasurements or actionsmaybe scheduledusing anadditionalperiodparameter. If present,
this directs the component to perform the speciϐication once every period between start and end.
Theuse of temporal scope in statements requires a reasonably precise synchronization of the clocks
of all the components interacting with each other; an accurate synchronization would also be de-
sirable for correlation with external sources of event data. This synchronization is explicitly out of
scope for themPlane project, aswe presume thatmany networkmanagement tasks already require
synchronized clocks, and refer to the state of the art in this ϐield.
mPlane components and clients should use an existing clock synchronization approach such as
NTP (for sub-second level accuracy) or a satellite-based synchronization system such as GPS (for
sub-millisecond level accuracy), according to application requirements. At a minimum, mPlane
components should synchronize their clocks to an appropriate NTP server.

Plane 16 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.1.2.2 Topological scope

Network measurements must have a topological scope; for active measurements, this consists of
a source parameter, and for passive measurements, an observer parameter. Probes which have
multiple possible vantage points expose these through multiple possible values in constraints in
their capabilities.

3.1.3 Results and Resultvalues secƟons

Statements have result values: these are the elements provided by the component containing the
results of the measurement or operation performed. In a statement, these are split into two sec-
tions.
The results section is an ordered list of elements the statement supports as results; the elements
listed here together with those in the parameters section make up the schema of the measurement
described by the statement. The results section is present in all statements.
The resultvalues section is only present in results statements, and is an ordered list of ordered lists
of values in row-major order. The resultvalues section is separated from the results section for
efϐiciency in multiple representations.

3.1.4 Metadata secƟon

Invariant information about a component (e.g., the algorithms it uses for measurement, revision
numbers of component implementation, etc.) which may be used for later analysis of the data pro-
duced by the component, but which is not part of the component's conϐiguration, may be repre-
sented in a metadata section. The metadata section is an ordered list of elements with values.
Themetadata section is optional in all statement types, but typically appears in results and capabil-
ities statements only, as it is a one-way mechanism for a component to share relevant information
about itself.

3.1.5 Link

To support callback and indirection of control, capability and speciϐication statements may have a
link section. The value of the link section is a single URL to which control information may be sent
in response to the statement.
To perform an operation advertised in a capability with a link section, a client should connect to the
component at the given URL and send a speciϐication. To send results of a measurement resulting
from a speciϐication with a link section, the component connect to the client at the given URL and
send result statements back.
If no link section is given, then statements should be sent to the same component from which the
corresponding capabilities were retrieved, and results returned to the same client, possibly in the
same connection (see section 5 for more).
URL schemes supported for link sections are listed in section 6.6.

Plane 17 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.1.6 Support for indirect export

The result statement type was designed for inline return of small amounts of (generally highly ag-
gregated or otherwise processed) result data; it is speciϐically not optimized for large-scale data
transfer. For continuous or bulk data transfer betweenmPlane components, the platform supports
indirect export instead.
To support indirect export, capability and speciϐication statementsmay have an export section. The
value of the export section is a list of one or more URLs to which results can or will be sent.
For measure capabilities (i.e., for measurement services provided by probes) a URL may consist
only of a scheme, which represents an ability to export to any repository using the named protocol;
or it may be a complete URL, if the probe has been administratively conϐigured to use only one or a
set of repositories. For collect capabilities (i.e., for collectors for a given indirect export protocol at
a repository) each URL must be complete, specifying the URL on which the collector will listen.
Export section URLs must be complete for all speciϐications.
URL schemes supported for indirect export are listed in section 6.7.

3.2 NoƟficaƟons

The structure of an mPlane notiϐication is shown in ϐigure 3.2.

Notification

type

parameters

results

verb

additional sections

token

link error

Figure 3.2: Notiϐication Structure

3.2.1 NoƟficaƟon type and verb

Like statements, notiϐications have a type and a verb.

Plane 18 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

In subsequent subsections we look at the six types of notiϐication supported by the core system:
receipt, redemption, indirection, withdrawal, interruption, and exception.

3.2.2 Receipt

Receipts are returned for speciϐicationswhich either (1)will never return results, as they started an
indirect export connection, or (2) will not return results interactively, as the operation producing
the results will have a long run time.

Receipts contain the same sections as the speciϐication they are returned for, with identical values
and verb. A component may optionally add a token section, which can be used in future redemp-
tions and interruptions by the client. The content of the token is an opaque string generated by the
component.

3.2.3 RedempƟon

A redemption is sent from a client to a component fromwhich it received a receipt for long-running
operations. The redemption may contain the ϐields of the original speciϐication, the token from the
receipt, or both, to identify the results it would like to retrieve.

The component responds with either a result (if the results are available) or another receipt (po-
tentially with a new token) if not.

A redemption may contain a link section, as in section 3.1.5; if so, the component should return the
result, when available, to the given URL.

3.2.4 IndirecƟon

An indirection is sent in a reply to a capability given to a client by a component in a component-
initiated capability advertisement via HTTP. It contains a link section, as in section 3.1.5, to send a
link to a URL from which future Speciϐications should be retrieved.

An indirection may contain a temporal scope and a period, as well; in this case, the component
should contact the client with the speciϐied period during the speciϐied time range.

3.2.5 Withdrawal

Awithdrawal is sent froma component to a client towhich it has previously sent a capability to can-
cel the capability. The withdrawal contains the same sections as the capability they withdraw, with
identical values and verb. Withdrawals are not mandatory, especially in cases where capabilities
are passivelymade available over HTTP.Withdrawalsmay also be sent in response to speciϐications
for previously but no longer available capabilities.

Plane 19 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.2.6 Interrupt

An interrupt is sent from a client to a component from which it received a receipt for long-running
operations in order to cancel the operation. The interruption may contain the ϐields of the original
speciϐication, the token from the receipt, or both, to identify the operation it would like to interrupt.

3.2.7 ExcepƟon

Exceptions are returned for speciϐications which cannot or will not be executed; and may be asyn-
chronously signaled among components to signal other error conditions. By default, components
will signal asynchronous exceptions to their supervisor.
Exceptions for non-executed or failed speciϐications contain all the sections of the failed speciϐica-
tion, with identical values and verb, like a receipt.
Exceptions additionally contain a error section; the content of the error is a human-readable error
message generated by the component. A machine-readable taxonomy of error conditions, which
would allow automated recovery and retry, may be developed for a future revision of this speciϐi-
cation.

3.3 Reference Message Sequences

Themost common sequences of messages in mPlane are queries and indirect export; each of these
canoperatenormally orwith anexception. The sequencesofmessagesused in the core interface are
shown in ϐigure 3.3, and detailed discussion of key nominal interactions is found in the subsections
below. Note in these subsections that ``client'' refers to the client from the component's point of
view: in most cases, this will be a supervisor.
The query interfaces are intended for the retrieval and transmission of small relatively volumes of
data: instantaneous active measurements from probes and results of data analysis from reposito-
ries. The indirect interfaces are intended for bulk data transport.

capability specification receipt redemption result

capability specification result

capability specification receipt interrupt

capability specification exception

capability specification receipt redemption exception

capability specification receipt interrupt exception

capability withdrawal

capability specification withdrawal

Figure 3.3: Order of messages in mPlane interface

Other message sequences may be supported depending on speciϐic application requirements.

Plane 20 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.3.1 Direct and Reverse Query

client/supervisor

component

capability specification result

Figure 3.4: Direct Query workϐlow

In a direct query (ϐigure 3.4), the client receives and stores a capability from the component. At
some later time, the client decides to make use of the capability, and sends the component a speci-
ϐication derived therefrom. The component sends back a result immediately as a reply to the spec-
iϐication.
A reverse query follows the same message sequence as a direct query: in this case, however, the
component initiates a connection to the client to publish the capability to the client, then later ini-
tiaties a connection to the client to retrieve a speciϐication, if any. Once the result of a speciϐication
is available at the component sends it back.

3.3.2 Delayed Query

In a delayed query (ϐigure 3.5), the client receives and stores a capability from the component, just
as with a direct query. At some later time the client decides tomake use of the capability, and sends
the component a speciϐication derived therefrom.
Instead of sending back a result in reply, it sends a receipt instead. The client saves the receipt and
presents is back to the component as a redemption at a later time. If the result is available, it is sent
in reply to the receipt; otherwise, a new receipt may be returned for another redemption attempt.
Clients initiating direct queries must be prepared to handle them as delayed queries, instead.

3.3.3 IniƟaƟng Indirect Export

To initiate indirect export (ϐigure 3.6), a client must coordinate with two components, the exporter
and the collector; these will typically be a probe and a repository, respectively.
Assuming the client has received capabilities from these components indicating that the exporter
can measure and export a type that is compatible with a type that the collector can collect over a
compatible protocol, it sends a speciϐication to the collector to begin collection from the exporter,
waits for an afϐirmative receipt (which should be available in the reply), then sends a speciϐication
to the exporter to begin export to the collector, and waits for an afϐirmative receipt. These receipts

Plane 21 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

client/supervisor

component

capability specification receipt redemption result

Figure 3.5: Delayed Query workϐlow

can be used to construct interrupts
The client can then retrieve analyzed or otherwise reduced data from the collector with a subse-
quent direct query.
If exceptions occur at any point, interrupts are sent to the components to cancel the indirect export,
as in the subsection below.

client/supervisor

 exporter

capability:
measure +

export
receipt

asynchronous
export

collector

capability:
collect

specification:
measure +

export

specification:
collect receipt

future
direct query

Figure 3.6: Setup of Indirect Export

3.3.4 Canceling Indirect Export

Indirect export should be set up with a speciϐic temporal scope to automatically terminate at some
point in time (see section 3.1.2.1) to avoid the problem of zombie exporters and collectors. Alter-
nately, it may be cancelled directly by the client as shown in ϐigure 3.6.

Plane 22 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

In this case, the interrupts derived from the receipts returnedby the components are sent in reverse
order.

client/supervisor

exporter

asynchronous
export

collector

receipt:
collect

receipt:
measure +

export

interrupt:
measure +

export

interrupt:
collect

X

Figure 3.7: Teardown of Indirect Export

3.3.5 Notes on Message Flow IniƟaƟon and Capability Withdrawal

When a supervisor or client is directly conϐigured with the location of a component is (e.g., in the
case of well-known passive or active probes deployed as part of a network infrastructure, or most
repositories), the capabilities can be made available as a static resource, and downloaded on de-
mand by the supervisor; the supervisor can then initiate connections and send speciϐications to
the components based on the capability. In this case, withdrawal notiϐications are not used: to
withdraw a capability, it is simply made unavailable by the component.

On the other hand, in large-scale deployments of heterogeneous componentswith variable connec-
tivity (e.g., widespread small probes on user devices and networks), the supervisor cannot discover
the components. In this case, the components are conϐigured with the location of the supervisor
(e.g., though DNS SRV records), and initiate connections to the supervisor to send capabilities and
retrieve speciϐications. In this case, the component may send a withdrawal to the supervisor to in-
dicate a capability is no longer available; this is not mandatory, and supervisors using this message
ϐlowpatternmust be robust against stale capabilities resulting from components simply disappear-
ing.

Speciϐic bindings to session protocols, with speciϐications for message ϐlow initiation, are given in
section 5.

Plane 23 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

3.3.6 Notes on Error ReporƟng and Recovery

Any component may signal an error to its client or supervisor at any time by sending an exception
notiϐication, as shown in 3.3. While the taxonomy of error messages is at this time left up to each
individual component, exceptions should be used sparingly.
Speciϐically, components which initiate connections to their supervisors should not use the excep-
tion mechanism for expected error conditions (e.g., device losing connectivity for small network-
edge probes) -- speciϐications sent to such components are expected to be best-effort. Exceptions
should also not be returned for speciϐications which would normally not be delayed but are due
to high load -- receipts should be used in this case, instead. Likewise, speciϐications which cannot
be fulϐilled because they request the use of capabilities that were once available but are no longer
should be answered with withdrawals.
Exceptions should be always be returned for speciϐications sent to repositories which cannot be
fulϐilled due to a syntactic or semantic error in the speciϐication itself.

Plane 24 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

4 mPlane Protocol Message RepresentaƟons

The mPlane protocol information model is explicitly deϐined in a representation-neutral way. We
have deϐined three serialization representations for turning these data elements into concretemes-
sages for storage and transport. Each is speciϐied for a different use case: JSON is the default rep-
resentation, chosen for parseability and efϐicienct; YAML is intended for human readability and
writability, includingdocumentation anddebugging; andXML is designed for integrationwithXML-
based systems (e.g., a future XMPP-based transport).

4.1 JSON

JSON is the preferred representation ofmPlane statements, and should beusedunless there is a rea-
son to use another representation. JSON was selected for its widespread implementation support,
ease of generation and parsing, and relative efϐiciency of representation on the wire.
All implementations of themPlane protocolmust support the JSON representation for the purposes
of interoperability.
In the JSON representation, each statement is represented as an object. Each section is represented
by the section name, with the value being the section contents; additionally, the name of the state-
ment type has the verb as a value.
The parameters section is represented as an object, mapping element name to either the parameter
value (for speciϐications and results) or to a string representing the constraints (for capabilities;
see section 4.6). The results section is represented as an array of element names. The resultvalues
section, if present, is represented as an array of arrays of values in row-major order.
In addition, the JSON representation of a statement contains one entry with the name being the
type of statement and the value being the verb.
Natural and real values are represented in JSON using native JSON representation for numbers.
Booleans are represented by the reserved words true and false. Strings and urls are represented
as JSON strings subject to JSON escaping rules. All other mPlane primitive types are represented as
in section 4.5 below.
The MIME content-type (used in HTTPS protocol bindings as in section 5.1) for mPlane messages
over YAML is application/x-mplane+json.

4.2 YAML

A YAML representation may be used in situations where human readability and writability of the
statements is important. The YAML representation is directly related to the JSON representation
in structure, such that a one-to-one translation between JSON and YAML structures will convert
mPlane statements between the two representations.
In the YAML representation, each statement is represented as an mapping from section names to
section contents, with an additional entry mapping the statement type to the verb.
The parameters section is represented as anmapping from element names to either the parameter

Plane 25 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

value (for speciϐications and results) or to a string representing the constraints (for capabilities;
see section 4.6). The results section is represented as an list of element names. The resultvalues
section, if present, is represented as an list of lists of values in row-major order.
Natural and real values are represented inYAMLusingnativeYAMLrepresentations for integers and
ϐloats, respectively. Booleans are represented by the reserved words true and false. Strings and
urls are represented as YAML strings subject to YAML escaping rules. All other mPlane primitive
types are represented as in section 4.5 below.
The MIME content-type (used in HTTPS protocol bindings as in section 5.1) for mPlane messages
over YAML is application/x-mplane+yaml.

4.3 XML

An XML representation may be used for protocols designed to transport XML (e.g. XMPP), or for
integration with other XML-based technologies.
The XML representation uses top-level elements for each statement type, with the verb as an at-
tribute, containing ``parameters'', ``results'', and ``resultvalues'' sections.
The ``parameters'' element contains ``parameter'' elements, each of which has a ``name'' attribute
containing the name of the mPlane element. The content of the ``parameter'' element is a string
representation of either the value or the constraint as in section 4.6.
The ``results'' element contains ``result'' elements, each ofwhich has a ``name'' attribute containing
the name of the mPlane element, and no content.
The ``resultvalues'' element, if present, contains ``r'' elements; each of which contains one ``v'' el-
ement for each ``result'' element in the ``results'' element; the content of each ``v'' element is the
value of the corresponding column in the row represented by its containing ``r'' element.
All mPlane types are represented as scalar string content as in section 4.5 below, subject to XML
escaping rules.
The MIME content-type (used in HTTPS protocol bindings as in section 5.1) for mPlane messages
over XML is application/x-mplane+xml.

4.4 Text-CSV

A CSV representationmay be used in situationswhere results are stored and processed as ϐiles, and
for easy integrationwith CSV-based tools. As of thiswriting, this representation remains undeϐined,
as a future work item.

4.5 RepresenƟng Element Values

When the enclosing context (JSON, YAML, XML) does not provide a native encoding for a given
mPlane primitive type, element values are represented as strings
Addresses are represented as dotted quads for IPv4 addresses as theywould be inURLs, and canon-

Plane 26 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

ical IPv6 textual addresses as in section 2.2 of RFC 4291 as updated by section 4 of RFC 5952. When
representing networks, addressesmay be sufϐixed as in CIDR notation, with a `/' character followed
by themask length in bits n, provided that the least signiϐicant 32−n or 128−n bits of the address
are zero, for IPv4 and IPv6 respectively. See sections 4.9 and 4.10 of [4] for more detail and ABNF
notation.
Timestamps are represented in RFC 3339 and ISO 8601, with two important differences. First, all
mPlane timestamps are are expressed in terms of UTC, so time zone offsets are neither required nor
supported, and are always taken to be 0. Second, fractional seconds are representedwith a variable
number of digits after an optional decimal point after the fraction. See section 4.8 of [4] for more
detail and ABNF notation.

4.6 RepresenƟng Parameter Constraints

In order to support the ϐlexible representation of constraints for parameters across all encodings,
parameter constraints are represented by strings. A parameter constraint string contains a set of
one or more allowable values or ranges of allowable values; sets are separated by commas, and
ranges by the string `...'. Ranges are only supported for natural, real, address, and timestamp
types. Allowable address ranges may also be represented by CIDR notation as deϐined in section
4.5.

Plane 27 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

5 mPlane Session Protocol Bindings

ThemPlaneprotocol informationmodel and representations aredesigned tobe sessionprotocol in-
dependent. The services mPlane requires of its session protocol(s) include reliable message trans-
port, mutual authentication, conϐidentiality, and integrity. Therefore, the mPlane protocol deϐines
bindings to two session-layer protocols for transporting mPlane messages: HTTP and SSH. While
HTTP is mandatory to implement and SSH only optional, both HTTP and SSH can be mixed in any
given mPlane infrastructure.

5.1 Hypertext Transfer Protocol (HTTP) over Transport Layer Se-
curity (TLS)

The default transport protocol for mPlane messages is HTTP over TLS with mutual authentication.
An mPlane component initiating a connection with another component acts as a TLS client, and
must present a client certiϐicate, which the responder will verify against its allowable peers be-
fore proceeding; likewise, the responder acts as a TLS server, and must present a server certiϐicate,
which the client will verify against its allowable peers before proceeding.
For components with simple authorization policies (e.g. most ad-hoc active probes exposing a sin-
gle capability), the ability to establish a connection implies authorization to continue with any ca-
pability offered by the component. For components with more complex policies, the identity of the
peer's certiϐicate may be mapped to an internal identity on which access control decisions can be
made.
Since HTTPS is not a bidirectional protocol -- clients send requests, while servers send responses
-- there are various mappings between the reference message sequences (section 3.3) and HTTPS
interactions to support the various deployment scenarios envisioned by mPlane. Note that in a
given infrastructure of mPlane components and clients, any or all of these mappings may be used.
When sending messages over HTTP, the Content-Type of the message indicates whether the mes-
sage is JSON, YAML, or XML represented. When sending exception notiϐications in HTTP response
bodies, the response should contain an appropriate 400 (Client Error) or 500 (Server Error) re-
sponse code.

5.1.1 Capability push, SpecificaƟon pull

Whena component knows theaddressof its client or supervisor (as is the casewith small, ephemeral
components attached to a well-known supervisor), capabilities can be POSTed to the client or su-
pervisor, and speciϐications pulled via GET. The sequence here is as follows:

1. The component connects to the client via HTTPS

2. The component sends a capability statement to the client in an HTTP Request

3. The client replies 200 OK and returns an indirection notiϐication, which includes a link from
which speciϐications for this capability can be retrieved.

Plane 28 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

Periodically, the component attempts to retrieve speciϐications from the client, as follows:

1. The component connects to the client via HTTPS.
2. The component GETs the URL on the client speciϐied in the indirection.
3. The client replies 200 OK and returns a speciϐication statement; this may contain a link to

which results should be later POSTed.
4. The component begins running the speciϐication if it can, or POSTs an exception to the URL

on the client speciϐied in the indirection if it cannot.

If the retrieved speciϐication is not part of an indirect export setup, the component can then later
connect to the client to send its results, as follows:

1. The component connects to the client via HTTPS.
2. The component POSTs the result to the URL on the client speciϐied in the indirection or the

speciϐication.
3. The client replies 200 OK.

5.1.2 Capability pull, SpecificaƟon push

On the other hand, when a a client or supervisor knows the address(es) of its component(s) (as
is the case with large probes and repositories), capabilities can be retrieved from the component
via GET, and speciϐications POSTed. In this case, the URL(s) from which the capabilities are to be
retrieved must be given to the client via a discovery mechanism, as in section 5.3. The sequence
here is as follows:

1. The client connects to the component via HTTPS.
2. The client requests the capability or capabilities from the component via GET on a known

URL.
3. The component replies 200 OK and returns the capability in the response body; this may

contain a link to which speciϐications should be later POSTed.

At some point in the future, the client decides to use a capability by POSTing a speciϐication to the
component as follows:

1. The client connects to the component via HTTPS.
2. The client posts a speciϐication the server via GET on a known URL.
3. The component replies 200 OK and returns either a receipt or a result in the response body.

Delayed query retrieval works similarly to the above, except that a redemption is presented to the
component instead of a speciϐication.
Note that since it runs over HTTPS GET, capability pull can be implemented using static resources
available at the known URL.

Plane 29 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

5.1.3 Capability push, SpecificaƟon push

When both the component and the client know the address of the other, these two mappings can
be mixed; i.e. both capabilities can be POSTed from the component to the client, and speciϐications
POSTed from the client to the component.

5.2 Secure Shell (SSH)

For simpler infrastructures -- speciϐically, to simplify key management -- the Secure Shell protocol
(SSH) can also be used to transport mPlane messages. In this case, either the component or the
client must have a known address, and the unknown peer initiates a SSH connection to the known
peer.
In general, there is a single user associated with the mPlane endpoint on a client or component lis-
tening on SSH formPlanemessages; by default, this is mplane. To guaranteemututal authentication
as with HTTPS over TLS, mPlane components check the presented SSH public key when deciding
whether a client is authorized, or when deciding which identity or role to assign to the client; and
mPlane clients check the presented SSH host public key when deciding whether a component is
authorized.
Once an SSH channel is established between the component and client, either peer may initiate a
message exchange with the other; the SSH channel stays connected as long as they component and
client are associated, and may be reestblished by either end if it is lost.
Since SSH provides no response code to indicate errors, Exception messages must be sent in reply
to any unexpected or unhandled mPlane message.
Since SSH provides no headers to identify the type of content associated with an object, mPlane
components and clientsmay examine the ϐirst non-whitespace character in amessage to determine
whether it is represented in XML (`<'), JSON (`{'), or YAML (anything else.)

5.3 Component and Client Discovery

Bootstrapping an mPlane infrastructure requires a component and client discovery protocol to al-
low the components and clients/supervisors to ϐind each other.
In the simplest case, components are conϐigured with the address of a supervisor to contact. For
environments where the components are expected to use a supervisor provided by the network
access provider, the deϐinition of a special DNS name (supervisor.mplane) allows simple auto-
conϐiguration.
More complex environments may use DNS-SD [1] or future extensions thereto.
The project will evaluate discovery approaches during the further development of the platform;
selection of protocols for component and client discovery will be a topic of the ϐinal architecture
deliverable.

Plane 30 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

6 Core Type System SpecificaƟon

The core type system consists of the primitives and elements used to support the basic interactions
among mPlane components and clients, and which must be supported by all mPlane components.
Additional Elements are deϐined within the scope of the scenarios to be supported by the project,
and are maintained as part of the mPlane type registry and interface reference implementation, in
progress as of this writing, to be drawn from the data types identiϐied in D1.1.

6.1 PrimiƟves

As noted in the information model terminology, mPlane supports the following primitive types, of
which the elements are instances.

• string: a sequence of UTF-8 encoded characters

• natural: an unsigned integer

• real: a real, ϐloating point number

• bool: a true or false (boolean) value

• time: a timestamp, expressed in terms of UTC

• address: an identiϐier of a network-level entity, including an address family

• url: a uniform resource locator

6.2 Element naming and matching rules

Elements are named as dot-separated sequences of name components; name componentsmay con-
tain any alphanumeric character. Whenmapping element names into contexts in which the dot has
a special meaning, underscores may be used in place of dots.
The name components in sequence are:

• experimental tag: the tag is optional, but thatmustmandatory startwith x-, the experimental
tags allows to lexicographically scope basenames and provide measurement intended to be
experimental in nature.

• basename: exactly one, the name of the property the element speciϐies or measures. All ele-
ments with the same basename have equivalent semantic meaning.

• modiϐier: zero or more, additional information differentiating elements with the same base-
name from each other. Modiϐiers may associate the element with a protocol layer, or a par-
ticular variety of the property named in the basename. All elements with the same basename
and modiϐiers refer to exactly the same property. An element with the same basename and
a subset of the modiϐiers of the other may be used as a less-speciϐic instance of the property,
depending on application requirements.

Plane 31 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

• units: zero or one, if the quantity can be measured in different units. Units additionally give
information about the precision in which a quantity or timestamp is reported.

• aggregation: zero or one, if the element is derived from multiple singleton measurements.
Supported aggregations are min, mean, max, sum, NNpct (where NN is a two-digit number 01
to 99, for percentile).

6.3 External element mappings

To the extent that external protocols deϐine elements that are equivalent to the mPlane elements,
the type registry contains mappings between the mPlane elements and the external element deϐi-
nitions. The prime example of an external element mapping is the mapping to the IANA IPFIX In-
formation Element Registry deϐined by RFC 7012 [2] and to enterprise-speciϐic IPFIX Information
Elements required by the project.

6.4 Core elements

The core elements required to support mPlane signaling are listed below:

• start (timestamp): Start time of the temporal scope of the capability, speciϐication, or re-
sult; may be expressed in units of s (seconds), ms (milliseconds), us (microseconds), or ns
(nanoseconds).

• end (timestamp): End time of the temporal scope of the capability, speciϐication, or result;
maybeexpressed inunits ofs (seconds), ms (milliseconds), us (microseconds), orns (nanosec-
onds).

• period (natural): Period of a periodic measurement; may be expressed in units of s (sec-
onds), ms (milliseconds), us (microseconds), or ns (nanoseconds).

• source.ip (address): Topological scope for probeswhich performactivemeasurements. De-
termines where the probe is and from where it can send trafϐic; for passive measurements,
indicates the source address of an IP packet or ϐlow. Has no units.

• observer.ip (address): Topological scope for probeswhich performpassivemeasurements:
determines where the probe is and from which trafϐic it can observe. Expressed in terms of
a routable network address or network preϐix for which the observed link provides access
to the Internet; useful only in the context of passive network border measurement. Has no
units.

• observer.link (string): Topological scope forprobeswhichperformpassivemeasurements:
determines where the probe is and from which trafϐic it can observe. Expressed in terms of
link name; useful only in the context of passive network backbone measurement. Has no
units.

Plane 32 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

6.5 Elements supporƟng reference implementaƟon

The reference implementation can perform two basic active measurements: ping and traceroute.
The additional elements required to support this are as follows:

• destination.ip (address): Target of an active measurement; for passive measurements,
indicates the destination address of an IP packet or ϐlow. Has no units.

• intermediate.ip (address): Address of an intermediate node along a path.

• delay.twoway.icmp (natural): Two-way (round-trip) delay measured between two end-
points measured via ICMP, as per ping. May be expressed in units of s (seconds), ms (mil-
liseconds), us (microseconds), or ns (nanoseconds).

• delay.twoway.udp (natural): Two-way (round-trip) delaymeasuredbetween twoendpoints
measured via UDP, as per traceroute. may be expressed in units of s (seconds), ms (millisec-
onds), us (microseconds), or ns (nanoseconds).

• hops.ip (natural): The number of IP hops associated with a given record; a location along a
path from a source to a destination. Has no units.

• hops.ip.max (natural): The maximum number of IP hops to report; used as a parameter to
traceroute. Has no units.

• delay.twoway.udp.count (natural): Thenumberof two-waydelay samplesper record; used
as a parameter to traceroute. Has no units.

6.6 Link secƟon URL schemes

The link section in mPlane messages directs a component or client to the client or component to
send the next message in the sequence to, if applicable; it is used for component and client dis-
covery as well as redirection. The URL schemas here identify which session binding to use when
connecting, one for each supported session protocol. There are two scmplane-https is used to
identify mPlane interfaces running over HTTP over TLS as in section 5.1 and mplane-ssh is used
to identify mPlane interfaces running over SSH as in section 5.2
Additional link section schemes are supported in capabilities in order to signal that a capabilitymay
be accessed via an external control protocol; in this case, no speciϐications or results are exchanged
via the mPlane interfaces. This mechanism is intended primarily to advertise direct access to a
repository's database. These schemes are component- and application-speciϐic.

6.7 Export secƟon URL schemes

The export section in mPlane statements directs a component to send (for the measure verb) re-
sults or to collect (for the collect verb) via a speciϐied protocol at a speciϐied URL. There are ϐive
schemas supported by the core architecture; the default indirect export protocol for interoperabil-
ity is mplane-http.

Plane 33 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

• mplane-http speciϐies indirection via HTTP and TLS: the exporter will connect to the collec-
tor and POST mPlane result statements, expecting no reply.

• mplane-ssh speciϐies indirection via SSH: the exporter will connect to the collector and send
mPlane result statements, expecting no reply.

• ipfix-tcp speciϐies IPFIX export via TCP + TLS.

• ipfix-sctp speciϐies IPFIX export via SCTP + DTLS.

• ipfix-udp speciϐies IPFIX export via UDP + DTLS.

Additional export section URL schemes are component and application speciϐic.

Plane 34 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

7 Conclusions

This documentdeϐines themPlane architecture and the interfaces betweenmPlane clients and com-
ponents, based on an information model and set of serialization and session protocol bindings. It
will serve as background for a reference implementation (see requirements in Appendix B) and
further development of the protocol. It reϐlects the state of the protocol as of the time of writing;
lessons learned during future development of the platformwill be documented in the forthcoming
ϐinal architecture speciϐication.

Plane 35 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

A Notes on Interoperability with LMAP

We note that the architecture and protocol as deϐined are quite similar to the LMAP (Large-scale
MeasurementofAccess-networkPerformance) effort presentlyunderdevelopmentwithin the IETF1.
The primary differences arise from different requirements: LMAP ismore directly focused onmea-
surement of access network performance, as the regulatory veriϐication scenario described in Sec-
tion 3.8 of Deliverable 1.1, whilemPlane has awider set of target scenarios leading to a requirement
to integrate heterogeneous measurement components across multiple scales.
However, we believe that interoperabilitywith LMAP is a goal ofmPlane, and that type-primacy and
a facility for capability advertisement as provided by mPlane may be useful in an LMAP context as
well; wewill therefore seek opportunities towork togetherwith the LMAPWorking Group, through
contribution of parts of this speciϐication to the Working Group, and/or the deϐinition of bindings
to treat LMAP Measurement Agents as mPlane Components.

1http://datatracker.ietf.org/wg/lmap/charter/

Plane 36 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

B Reference ImplementaƟon Requirements

Wehave identiϐied the following requirements for a reference implementation of the protocol spec-
iϐied in this document.

B.1 Component Reference ImplementaƟon Requirements

1. Serialize and deserialize statements between a Python class and a ϐile representation

2. Allow access to capabilities stored as ϐiles in the ϐilesystem for access via HTTP.

3. Allow posting capabilities to a supervisor or client via HTTP.

4. Allow retrieval of speciϐications from a supervisor or client via HTTP.

5. Allow speciϐications to be posted by a supervisor or client via HTTP.

6. Compare received speciϐications to stored capabilities to determine if they match. This in-
volves matching the verb and types of parameters and results, as well as verifying that actual
parameter values are permitted by the formal parameter values in the capability.

7. Allowunpacking of parameters froma speciϐication; thiswill be used by glue code to generate
conϐigurations for probes or queries for repositories.

8. Trigger amethod call on a Python object when amatching speciϐication is received/retrieved.
This is how the RI invokes the glue code that actually performs measurements on probes or
queries at repositories.

9. Reusable classes for common cases for glue code generation for the previous two items.

10. Allow the packing of results into a measurement; this will be used by glue code to generate
instantaneous results from on-demand queries or measurements.

11. Allow return of a receipt from the invocation of a measurement that can be used to control
ongoing measurements or later retrieve results.

12. Allow a receipt or result to be returned in the same HTTP transaction in which the speciϐica-
tion was posted.

13. Allow a receipt or result to be posted to a client or supervisor via HTTP.

14. Allow a result to be stored for later retrieval given a receipt via HTTP.

15. Accept user identity information from the security layer to pass to a repository implemen-
tation; for probe components, it is assumed that anyone permitted by the security layer to
access the probe has full access, at least in the initial revision.

Plane 37 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

B.2 AddiƟonal Supervisor Reference ImplementaƟon Require-
ments

1. Allow retrieval of capabilities from subordinate components.

2. Allow subordinate components to post capabilities via HTTP.

3. Allow subordinate components to revoke capabilities.

4. Trigger amethod call on aPythonobjectwhena capability is received/retrieved froma subor-
dinate component, or revoked by a subordinate component. Thismethodwill use knowledge
of the speciϐic measurement domain to determinewhat the capabilities of the supervisor are.

5. Trigger amethod call on a Python object when a speciϐication is received/retrieved; this code
should map this speciϐication to lower level speciϐications to be sent to subordinate compo-
nents.

6. Trigger a method call on a Python object when a result/receipt is received/retrieved; this
code should aggregate or otherwise compose results into a higher-level result.

Note that, as decomposition/recomposition of measurement problems are domain-speciϐic, these
are out of scope for the RI. The RIwill probably contain some stub logic here to simply act as a single
probe proxy.

Plane 38 of 39 Revision 1.0 of 31 Oct 2013

318627-mPlane D1.3
mPlane Architecture SpecificaƟon

References

[1] S. Cheshire andM. Krochmal. DNS-Based Service Discovery. RFC 6763 (Proposed Standard), Sept. 2013.
[2] B. Claise and B. Trammell. Information Model for IP Flow Information Export (IPFIX). RFC 7012 (Pro-

posed Standard), Sept. 2013.
[3] B. Claise, B. Trammell, and P. Aitken. Speciϐication of the IP Flow Information Export (IPFIX) Protocol for

the Exchange of IP Flow Information. RFC 7011 (Internet Standard), Sept. 2013.
[4] B. Trammell. Textual Representation of IPFIX Abstract Data Types. IETF Internet-Draft draft-trammell-

ipϐix-text-adt-02 (work in progress), July 2013.

Plane 39 of 39 Revision 1.0 of 31 Oct 2013

