
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

Database Layer Design

Author(s): FTW Arian Bär (Ed.), Pedro Casas, Alessandro D'Alconzo
POLITO Alessandro Finamore, Marco Mellia
EURECOM Antonio Barbuzzi
SSB Gianni De Rosa
ENST Dario Rossi, Jordan Augé, Marc-Oliver Buob
NETvisor Tivadar Szemethy
TID Ilias LeonƟadis
NEC Maurizio Dusi

Document Number: D3.2
Revision: 1.0
Revision Date: 08 Nov 2013
Deliverable Type: RTD
Due Date of Delivery: 15 Nov 2013
Actual Date of Delivery: 08 Nov 2013
Nature of the Deliverable: (R)eport
DisseminaƟon Level: Public

318627-mPlane D3.2
Database Layer Design

Abstract:

This document describes the design of the database layer used in themPlane project. StarƟng from the per use case algorithms
defined in D3.1 we infer the types and format of data stored in mPlane repositories. In addiƟon, we give a descripƟon of
external data sources, which might either be mirrored inside an mPlane repository or accessed via the provided API. By the
term mPlane repository we understand a logical or physical instance, providing data access, storage or both to other mPlane
components. We conƟnue by giving a descripƟon of data indexing and in-repository data processing. The in-repository data
processing focuses on handling data streams of very high volume, conƟnuously arriving at the repository. The document
is completed, by a detailed descripƟon of the integraƟon of repositories into the general mPlane architecture by giving an
overview of the exposed capabiliƟes. This part focuses on howmPlane repositories are used by the supervisors and reasoners
fromWP4.

Keywords: databases, repositories, storage, big data

Plane 2 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.
The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Contents

Disclaimer. 3

Document change record. 6

1 Introduction. 7

2 Data Import. 9
2.1 Data frommPlane Use Cases . 9

2.1.1 Anomaly Detection . 9
2.1.2 QoE Troubleshooting . 11
2.1.3 Support Daas Troubleshooting . 12
2.1.4 Media Curation . 13
2.1.5 Measurements for Multimedia Content Delivery . 13
2.1.6 Mobile Network Troubleshooting. 15
2.1.7 Veriϐication of Service Level Agreements . 17

2.2 External Repository Access . 18
2.2.1 Network Diagnostic Tool . 18
2.2.2 Maxmind GeoIP Organization DB . 18
2.2.3 TopHat. 19
2.2.4 Mirrored Sources . 19

2.3 mPlane Import Mechanisms . 20
2.3.1 Tstat log sync. 20
2.3.2 Apache Flume . 23
2.3.3 Data Exchange with large-scale Batch Processing Systems . 24

3 Data Processing. 27
3.1 Data Indexing . 27
3.2 Materialized View Generation in DBStream . 28

3.2.1 Architecture. 28
3.2.2 Continuous Analytics Language . 30
3.2.3 Job Deϐinition Examples . 32

4 Data Access. 34
4.1 General Repository Access Mechanisms . 34

4.1.1 collect - Continuous Data Storage . 34
4.1.2 store - Single Value Storage . 35

Plane 4 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

4.1.3 query - Data Retrieval. 35
4.2 Extending Repository Access . 36

4.2.1 DBStream Extensions . 36
4.3 Repository Access Control . 37

Plane 5 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Document change record

Version Date Author(s) Description
0.1 21 Aug 2013 Arian Bär (FTW) ed. Initial draft
0.2 01 Oct 2013 Arian Bär (FTW) ed. Section 3.2 completed
0.3 08 Oct 2013 Antonio Barbuzzi

(EUR)
Sections 2.3.2 and 2.3.3 completed

0.4 09 Oct 2013 Gianni Da Rosa (SSB) Section 4.3 completed
0.5 15 Oct 2013 Alessandro Finamore

(Polito)
Sections 2.3.1, 3.1, and 2.2 completed

0.6 25 Oct 2013 Alessandro
D'Alconzo, Pedro
Casas (FTW)

ϐinal editing

0.7 29 Oct 2013 Arian Bär (FTW) ed. Final draft for review
0.8 07 Nov 2013 Arian Bär (FTW) ed. Including changes from review
1.0 08 Nov 2013 Arian Bär (FTW) ed. Final version

Plane 6 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

1 IntroducƟon

This document describes themain functionalities offered bymPlane repositories. In particular, the
document focuses on how the stored and pre-processed data is exposed and made accessible to
other mPlane components and how external data sources can be accessed.
In the mPlane architecture, the repositories form a storage and large-scale data analysis layer (re-
ferred to as repository layer) between the monitoring probes, which collect data, and the super-
visors, which access the pre-processed data for further analysis. The repository layer fulϐills two
main tasks: (i) data storage and access, and (ii) large-scale data processing. In the ϐirst case, an
mPlane repository is capable of storing the data collected by the measurement layer as well as ex-
posing the data it contains to other mPlane components, including external mirrored data sources.
In the second case, the repository is also capable of pre-processing the measurements collected by
the mPlane probes, relying both on large-scale data processing frameworks and other analysis ap-
proaches, as described later in this document. We use the term pre-processing to indicate that in
the general case, further analysis is performed on the supervision layer, using the analysis modules
and the intelligent reasoner.

Figure 1: Overview of the interactions of mPlane repositories with the measurement layer, large-
scale batch processing systems working inside the repositories layer itself, the supervision layer,
and the external repositories.

In general terms, the concept of an mPlane repository is generic, and it can be materialized by
different kinds of technologies, such as: SQL databases (e.g., DBStream), NoSQL databases (e.g.,
MongoDB), in-memory databases (e.g. VoltDB), key-value data stores (e.g., Redis), large-scale data
analysis frameworks (e.g. Hadoop), etc.. In fact, the mPlane architecture does not impose any spe-
ciϐic type of technology to be used, and the ϐinal prototype implementation foresees a variety of
solutions. What it is mandatory is that such repositories have the ability to store and expose the

Plane 7 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

data to other mPlane components.
The most well known and widely used approach for storing data is through the usage of Relational
Database Management Systems (RDMS), which are traditionally used when it comes to the storage
and efϐicient retrieval of data. Therefore, while this document presents a design which is generic
enough to support many different types of repositories, it elaborates on some particular RDMS-
based systems (namely DBStream) and large-scale data analysis frameworks (namely Hadoop) as a
uniϐied mPlane repository providing data storage, data processing, and data accessing capabilities.
Having said that, the aim of this document is to additionally describe the tasks which are common
among different data storage systems, providing hints on how an individual system can become an
mPlane repository.
This document is structured as follows: the part focuses on the storage of the data coming from
othermPlane components, additionally providing anoverviewof the datawhichwill be imported to
and stored in the repositories. The secondpart gives anoverviewof thepre-processingmechanisms
available in the repositories. The last part shows how the data is stored in the repositories and how
it is made accessible to other mPlane components.
Figure 1 presents a general overview of the different components of the repository layer, including
their interactions with other mPlane layers. Large-scale batch processing systems are shown as a
separated element from repositories since they do notmake data directly available to othermPlane
components; they might either be used together with systems like HBase or Pig on top, or data
might be imported into a RDBM System which is part of the mPlane. Section 2.3.3 further explains
and develops this concept.

Plane 8 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

2 Data Import

This chapter gives a general overview how data arrives at repositories in mPlane. The data im-
ported into repositories might later be accessed by mPlane supervisors and reasoners from WP4.
Section2.1 gives an overview of the different types of data imported and processing in repositories.
The following Section 2.2 introduces potential external data sources which might be used from
inside the mPlane. The last Section 2.3 details mechanisms which can be used to ship data from
mPlane probes to repositories.

2.1 Data from mPlane Use Cases

This section gives an overview of data from mPlane probes which is imported and processed in
mPlane repositories. The section is structured by the use cases importing the data, as deϐined in
D1.1. A description of the measurement systems providing these data, as well as a deeper explana-
tion of the measures and data sets currently available in mPlane is provided in D5.1.
A mapping from the original type names of the data sources to the mPlane type registry is given in
this section. This mapping to mPlane types only conserves the current state of type names. Since
mPlane is an active, living project, changes to mPlane type names are likely happen in the future.

2.1.1 Anomaly DetecƟon

The data used in this use case representmetrics exported by Tstat probes. Among them aremetrics
describing TCP connection information, trafϐic from popular HTTP services (e.g., YouTube, Face-
book, etc.) served by major CDNs (e.g., Google CDN, Akamai, etc.) and more detailed information
about ϐlows serving videos.
Two different log types fromTstat probes are imported into themPlane repository (e.g. DBStream)
for this use case:

log tcp reports metrics for each individual TCP connection. These include global metrics (e.g., to-
tal number of bytes/packets sent/received, start/end time, etc.), L4 metrics (e.g., number of
SYN/ACK/FIN packets, congestion window, min/max/avg/std round trip time, etc.), and L7
metrics (e.g., labels related to the application related to the trafϐic, analysis of the SSL certiϐi-
cates, etc.).

log streaming reportsmetrics related toHTTPvideo streaming services. To simplify post-processing,
someof themetrics of log tcp are replicated: e.g., bytes exchanged, trafϐic classiϐication labels,
etc. In addition many metrics related to video streaming service and the downloaded videos
(e.g., videoid, duration, size, etc.) are present in log streaming.

The data used by the anomaly detection use case will be a combination of data from log tcp and
log video. From each of the log formats only certain metrics are used. Those metrics are reported
in detail in the following tables.
The metrics from log tcp which are especially useful for the anomaly detection use case are the
following:

Plane 9 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

mPlane type Tstat name Description
client.ip4, client.ip6 Anonomized Client IP address
server.ip4, server.ip6 Server IP address
server.port Server port
start.ms TCP ϐlow start time
end.ms TCP ϐlow end time
rtt.avg.ms Average RTT Average RTT computed measuring

the time elapsed between the data
segment and the corresponding ACK.

rtt.min.ms Minimum RTT Minimum RTT observed during con-
nection lifetime.

rtt.max.ms Maximum RTT Maximum RTT observed during con-
nection lifetime.

rtt.stddev.ms Standard derivation of the RTT Standard deviation of the RTT.
rtt.sample.count RTT sample count Number of valid RTT observations.
bandwidth.partial.kbps data bytes/duration TCP ϐlow download/upload through-

put (avg)
octets.tcp data bytes Number of bytes transmitted in the

payload, including retransmissions.
octets.duplicate rexmit bytes Number of retransmitted bytes.
packets.tcp data pkts Number of segments with payload.
packets.duplicate rexmit pkts Number of retransmitted segments.
packets.outoforder out seq pkts Number of segments observed out of

sequence.
host.name Full qualiϐied domain name The full qualiϐied domain name re-

turned by the DNS server.

For video ϐlows also those additional ϐields should be present:

mPlane type Tstat name Description
rate.video.kbps Video total datarate Total data rate as indicated in pay-

load.
duration.video.s Video duration Video duration as indicated in the

payload.
width.video.px Video width Video width as indicated in the pay-

load
height.video.px Video height Video height as indicated in the pay-

load

In Repository Pre-process

As a ϐirst step, the plain Tstat logs of the above mentioned formats are imported into the mPlane
repository DBStream. There, the continuous processing engine is used to pre-process the imported
logs and generate the data format described above.

Plane 10 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Data volumes

For passive probes data volumes are clearly related to the number of monitored users. Based on
the description reported in the deliverable D5.1 [16], Tstat probes are deployed in three different
scenarios:

Fastweb probes monitor the activity of about 50,000 residential users accessing to the Internet
either using ADLS or Fiber-To-The-Home (FTTH) technologies. Depending of the amount of
trafϐic monitored by each probes, the amount of compressed output data vary from about
2.25 GB/day (i.e., 70 GB/month) up to 20 GB/day (i.e. 620 GB/month).

Politecnico di Torino scenario corresponds to a typical academic network. More than 25,000
students, administrative, professors and researchers access the Internet via wired Ethernet
LAN, or IEEE 802.11a/b/g WiFi access points. The amount of data captured is more variable
with respect to the Fastweb scenario, but it can top 3 GB/day considering a typical day of the
week, i.e., it is in the same order of the ``smaller'' Fastweb probe.

NetVISOR scenario corresponds to a networking lab in which about 50 researchers operate. The
network is also used for experimentationwith several test beds. Given the small scenario, the
amount of data capture corresponds to only about 100 MB/day (i.e., 3 GB/month).

2.1.2 QoE TroubleshooƟng

The data used in this use case are metrics exported by FireLog [11] probes, representing several
aspects of a web session.
mPlane type FireLog metrics Comments
start.ms session start Start time of a given web session.
end.ms load ts The page load event time is used as the end

time of a session.
duration.ms full load time
source.ip localaddress
source.port localport
destination.ip remoteaddress
destination.port remoteport
client.public.ip client ip by server FireLog servers also record the client's

public IP as seen from the outside.
octets.http.request http request bytes, Number of requested bytes.
octets.http.header http header bytes, Number of header bytes.
octets.http.body http body bytes, Number of body bytes.
octets.http.cache http cache bytes Number of cached bytes.
rtt.ms tcp cnxting TCP level RTT.
rtt.app.ms app rtt Application level RTT.
rtt.ping.ms ping rtt Ping RTT, actively measured, used as a ref-

erence.
uri uri Each individual object URI.
uri.session session url URL of a given web page.
load.cpu.avg CPU CPU average utilization per session.

Plane 11 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Data Volume

The amount of data depends highly on the number of users using FireLog and will be measured as
part of the implementation at a later point in time. In addition, different websites served by the
user might result into different data sizes.

2.1.3 Support Daas TroubleshooƟng

The following features are deϐined in a time-window (length-conϐigurable) basis, for each ϐlow:
mPlane type Semantic Description
start.ms TCP ϐlow start time
end.ms TCP ϐlow end time
packets.ip sum of ip packets
octets.ip sum of ip bytes
packets.tcp sum of tcp packets with pay-

load
packets.tcp does include TCP w/o
payload, so would it be possible to
have a counter tracking packets w/o
payload.

octets.tcp sum of tcp bytes
x-nec-daas.histogram TCP payload length distribu-

tion, histogram of TCP lengths
A 1441-length array with the coun-
ters of #TCP segments with a given
size.

rtt.ms per packet RTT

In Repository Pre-process

Within the repository operations can be run on a stream-processing platform to extract statistics
for each ϐlow over a time window (which can differ from the one we send data to the repository),
such as:

• Throughput per ϐlow

• Average RTT per ϐlow

• Mean and standard deviation of the (TCP-) packet sizes

The pre-processed features might be sent to a reasoner running statistical classiϐier at a later point
in time.

Data Volume

Probes send such data every second, so for each ϐlow there will be around 1500 elements * 4 bytes
each = 6KB/s.

Plane 12 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

2.1.4 Media CuraƟon

The exported data reϐlects the HTTP content requests made by the end customers of a certain ISP.
The data format has the following general structure:
<Timestamp, URL, referrer, user agent, anonymized user id, probe identifier>

The used types are described inmore detail andmapped to existing as well as newly addedmPlane
types in the following table:
mPlane type Semantic Description
time.ms Timestamp Time when the HTTP GET request is

observed.
url URL Name + GET (e.g. name:

www.domain.com and GET:
/content/photo.png --> URL =
www.domain.com/content/photo.png).

http.referrer HTTP referrer The URL contained in the referrer
ϐield of the HTTP GET request.

http.user agent HTTP user agent The user agent ϐield of the HTTP GET
request.

user.id User ID (anonymized) An ID that uniquely identiϐies the
user who requested the content.

observer.ip4, observer.device Probe identiϐier
In addition, the use case requires an active probe (Web Scraper) that acts upon request. This probe
takes as an input a URL to visit and gives as an output the content of the HTML head of the URL.

In Repository Pre-process

A set of ϐiltering algorithms will be implemented in mPlane repositories. Those algorithms will
perform tasks like: exclude a set of useless URLs (those pointing to images, css ϐiles, queries that
pass variable, etc), and retain only URLs that are of general purpose and that can be recommended
to the users of the system. It is still unclear which algorithms can run in a repository and which
algorithms will be part of the implementation of a reasoner as part of WP4. This deϐinition will
taken at a later point in time when it is more clear which streams of data are available in which
repository andwhat are the best virtual andphysical entities for pre-processing this data inmPlane.

Data Volume

For a probe aggregating around 20.000 users, based on a preliminary study on a representative day,
the expected volume should be the following: 770 rows/second on average (a peak of 1700 rows
per second was observed). Each row has a mean size of 357 characters/bytes.

2.1.5 Measurements for MulƟmedia Content Delivery

In this use case the measured data corresponds to active measurements, targeting the quality of
video streaming as perceived by the end customers. A large number of set-top-box-like probes

Plane 13 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

periodically download content from amultimedia streaming service (e.g. YouTube, HLS, etc.), were
streams typically have multiple, different quality/bandwidth alternatives.
The probes perform quality measurements (e.g. throughput) and provide results with typically 1
minute resolution. All probes are operated by a single ISP within its own, clearly deϐined network.
The following metrics are reported:
mPlane type Description
video.id ID of the video stream being monitored.
rate.video.kbps Video nominal bitrate.
request-delay.video.ms Delay of request to ϐirst byte of video.
bufferstall.video.count Buffer underrun/playout glitch events.
server.ip4, server.ip6 Server IP address.
rtt.dns.ms Server DNS resolution delay.
bandwidth.partial.kbps TCP ϐlow download throughput (avg).

In addition, for each probe, the nominal bandwidth of its connection is reported using the mPlane
type: bandwidth.nominal.kbps.
Active RTT measurements:
mPlane type Description
rtt.ms RTTmeasurements betweenprobes distributed in the ISP and

the end-customer probes.
packet.loss Packet loss measurements between probes distributed in the

ISP and the end-customer probes.
Passive measurements in the ISP network:
Passive probe(s) operated by the ISP monitor a sub-set of the streaming ϐlows being downloaded
from the end probes (potentially all of them). The passive probe(s) are deployed at key points
(e.g. backbone routers, CDN peering points) where a signiϐicantly large portion (possibly all) of
streaming trafϐic can be observed.
The measurements it reports include:
mPlane type Description
load.link Load of the link.
load.path Load of the network path.
bandwidth.partial.kbps TCP ϐlow download throughput, per ϐlow (avg).

In Repository Pre-process

The following processing tasks might be handled inside mPlane repositories.

• Identify probes with low TCP ϐlow download throughput with respect to its nominal band-
width.

• Identify probes with high ϐluctuations of TCP ϐlow download throughput.

• Correlation of throughput measurements of end user probes with ISP probe measurements.

Plane 14 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Data Volume

For each probe three records are stored insidemPlane repositories for eachminute. One record for
each of the following types:

• HTTP video streaming.

• Active RTT/loss measurements.

• Passive ISP measurements.

2.1.6 Mobile Network TroubleshooƟng

A combination of probes across various parts of the network provide the required input in order to
identify the core causes of poor mobile user experience.
The application probe provides on-demand information as perceived from the application point
of view. Currently we focus on mobile video experience. Therefore the following information is
logged.
mPlane type Description
rate.video.kbps Total data rate as indicated in payload.
duration.video.s Video duration as indicated in the payload.
video.id ID of the video stream being monitored
request-delay.video.ms delay of request to ϐirst byte of video
bufferstall.video.count number buffer underrun/playout glitch events
bufferstall.duration.ms duration of buffer underrun/playout glitch event

Themobile OS probe offers on-demand information considering the device capabilities and the de-
vice status (CPU, Memory). Furthermore, an important aspect of this probe is tomeasure the cellu-
lar network conditions (associated cell tower, signal strength, bit errors, transmit characteristics,
power state of the device, etc).
mPlane type Description
load.cpu.avg Device cpu load.
load.cpu.max Max device cpu load.
load.mem.avg Average device memory load.
snr.avg Signal strength information with the connected point.
snr.max Max signal strength information with the connected point.
snr.min Min signal strength information with the connected point.
disconnect.count Number of disconnections during ϐlow.
handover.count Number of hangovers during ϐlow.
connectivity.ip IP of used interface.
connectionpoint ID of connected interface (e.g., cell ID, or AP mac).
bandwidth.nominal.avg Nominal bandwidth of connected interface.
bandwidth.nominal.min Nominal bandwidth of connected interface.
location.lat Location information (if available).
location.lon Location information (if available).
location.accuracy Location information (if available).
device.id Device/user identiϐier.

Plane 15 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

Furthermore, the mobile probe runs a version of Tstat. All the metrics described in section 2.1.1
are also extracted per-ϔlow.
The mobile ISP probe captures, both passively and actively aggregated information at each access
point (AP) such as number of associated devices, overall trafϐic, channel utilization, etc.
mPlane type Description
device.id AP identiϐier.
load.cpu.avg Router/AP cpu load.
load.cpu.max Max Router/AP cpu load.

Per connected client (over a window that is conϐigurable)
snr.avg Signal strength information with each connected client.
snr.max Max signal strength information with each connected client.
snr.min Min signal strength information with each connected client.
connectivity.ip IP of each client.
bandwidth.nominal.avg Nominal bandwidth of connected client.
bandwidth.nominal.min Nominal bandwidth of connected client.
disconnect.count Number of disconnections during ϐlow.
octets.lost Lost packets.
octets.ip Transfer statistics.
octets.tcp Transfer statistics.
octets.udp Transfer statistics.

Wireless interface (over a window that is conϐigurable)
connected.client.count Number of connected devices to the AP.
load.link Total load of the wireless interface .
octets.lost Lost packets.
octets.ip Transfer statistics.
octets.tcp Transfer statistics.
octets.udp Transfer statistics.

Backbone connection (over a window that is conϐigurable)
load.link Total load of the wireless interface .
octets.lost Lost packets.
octets.ip Transfer statistics.
octets.tcp Transfer statistics.
octets.udp Transfer statistics.
bandwidth.nominal nominal bandwidth of the backbone.

Furthermore, as with the mobile probe, the mobile ISP also runs Tstat. All the metrics described
in section 2.1.1 are also extracted per-ϔlow. Finally, the core network and service provider probes
measure the performance of the core network and the CDN/Service provider as described in the
previous sections.

Data volume

Currently the mobile probe (and Android probe) generates approximately 800KB of compressed
data per day per devices. Uncompressed this is about 14MB/per day per device. Furthermore, the

Plane 16 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

mobile ISP/AP probe generates on average 5MB/day data.
Notice that at the moment we log almost everything. However, as we are talking about constrained
mobile devices, wewill aim not to uploadmore than 1-2MB per day per device (primarily when the
device is connected to WiFi and charging). Some unnecessary measurements will be only kept on
the phone/router/cells and get discarded later.
Finally, there are currently 15 devices and 2 routers running the probe so the total volume will be
relatively low.

2.1.7 VerificaƟon of Service Level Agreements

Themetrics reϐlect downlinkanduplink throughput andbandwidthmeasurementsperformed from
end-devices during active tests, on top of download and upload ϐile transfers from a centralized
server. In particular, for each set of tests performed on a speciϐic probe, the following metrics are
computed, and exported through the following structure:
<Probe ID, User ID, Timestamp, RTT, download throughput TCP, download throughput
UDP, download throughput HTTP, upload throughput TCP, upload throughput UDP,
upload throughput FTP, packet loss downlink, packet loss uplink, fraction downlink
failure events, fraction downlink failure events, RTT, Jitter, Link Capacity
Estimation>
The used types are described inmore detail andmapped to existing as well as newly addedmPlane
types in the following table:
mPlane type Description
bandwidth.partial.kbps Multi layer (UDP, TCP, HTTP) download/upload ϐlow through-

put (avg).
packets.lost Packet loss in downlink/uplink.
downlink.failures Transmission data failure in downlink (fraction of failed ϐile

download events).
uplink.failures Transmission data failure in uplink (fraction of failed ϐile up-

load events).
rtt.ms RTT measurements between probes and server.
delay.jitter Delay variation.
bandwidth.imputed.kbps Estimated link capacity.

Data volume

The log size is about 50 KB, and in some cases it may be up to amaximumof 200 KB.Measurements
are performed every 20minutes, and 5 consecutivemeasurement tests are exported every 2 hours.
The number of probes and the resulting data volume is as follows:

• User SLA tests: in this case, all the interested users can download the probe agent to perform
the tests; according to experience, in rash period, about 100 user probes can exportmeasure-
ment results consecutively, resulting in a top average export volume of 50MB per hour.

• ISP SLA tests: in such a case, taking the Italian ISP context where FUB actually operates, there
are 20 regions in all Italy to cover, each one with a maximum of 10 probes, one for each local

Plane 17 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

ISP. A top average export volume of 100MB per hour can be expected in this scenario.

2.2 External Repository Access

This section describes which external data sources we plan to use in mPlane and how those can be
accessed by mPlane components.

2.2.1 Network DiagnosƟc Tool

Network Diagnostic Tool (NDT) is a sophisticated network active probing framework developed
within theGooglemLab initiative [17]. It consists of several componentsbut it is basically a client/server
application. Both client and server processes are used to perform a speciϐic set of tests. The server
processes include a basic web browser (fakewww) to handle incoming web based client requests.
The server also runs a second process (web100srv) that performs the speciϐic tests needed to de-
termine what problems, if any, exist. The web100srv process then analyzes the test results and
returns these results to the client. In contrast to most other active probing platforms the collected
data are publicly available in raw format (i.e., archives stored in the Google cloud), via an SQL inter-
face, and also through an advanced web portal.
A rich set of metrics are available and data collected span across the last few years. They represent
then a very interesting source of data.

2.2.2 Maxmind GeoIP OrganizaƟon DB

To enable the study of CDNs and cloud services it is fundamental to able to classify the trafϐic not
only with the services accessed by the users, but also with the ``organization'' (e.g., Akamai, Google,
Facebook, Level3, etc.) responsible for those services. For instance, considering HTTP queries, the
contacted hostnames can contain some keywords (e.g., facebook, google, akamai, amazon, etc.)
which highlight this association. Unfortunately, the presence of such keywords is not always guar-
anteed (e.g., the service might adopt HTTPS).
Generally speaking, there is the need of a mapping function capable of associating an IP address to
the name of the organizationwhich owns it. The whoisUnix client is an example of such technology.
More interesting solutions are the Maxmind GeoIP Organization Database [15], a commercial tool
developed by Maxmind. Differently from whois, the Maxmind database maintains a static table of
(IP address, organization name) pairs which enable fast lookup operations.
Maxmind is not the only company offering databases performing such a mapping function. Other
vendors include IP2LOCATION [13], WhatIs MyIPAddress [20], WipMania [22], IPligence [14], and
Neustar [18]. All these solution share the same basic principles and unfortunately, to the best of our
knowledge, it is not knowup towhich extent they offer similar results. Nevertheless, their adoption
is strategic when targeting the study of CDNs and cloud services.
We point out that the very same service could be accessed, among many others, via TopHat as de-
scribes in Section 2.2.3. This raises the opportunity for either developing mPlane wrappers for
each speciϐic service, or for ``aggregators'' such as TopHat that already gathers data from multiple
external repositories using a single common API interface.

Plane 18 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

2.2.3 TopHat

The TopHat [6, 3]measurement servicewas developed in the context of the OneLab [9] Experimen-
tal Facility with the dual role of performing large-scale network measurements, and of supporting
testbed experimenters with measurements, beyond its original goal of monitoring the PlanetLab
Europe overlay network. TopHat supplies measurements to its users thanks to its own TDMI plat-
form, which is supplemented by drawing upon several independent specialized measurement and
monitoring infrastructures, some of which have a proven track record of excellence in providing
specializedmeasurements to the research community. TopHat is responsible for transparently col-
lecting and aggregating measurements originating from various autonomous sources. It relies on
a modular and extensible component, named Manifold, for its interconnection framework, as well
as its API and GUI interfaces.
The TopHat Dedicated Measurement Infrastructure (TDMI) is TopHat's own measurement infras-
tructure. It consists in modular probing agents that are deployed in a slice of the various PlanetLab
nodes and probe the underlying network in a distributed efϐicient manner. In addition, they probe
outwards to a number of target IP addresses that are not within PlanetLab. The aim of TDMI is to
obtain the basic information required by TopHat. It implements such algorithms as Paris Tracer-
oute to remove the artifacts arising from the presence of load balancers in the Internet topology, as
well as FastPing, which can efϐiciently measure delays towards a large amount of end hosts on the
Internet.
TopHat currently provides access to a set of interconnected system of different types, amongwhich
other measurement platforms (e.g. SONoMA), some system-level monitoring infrastructure and
testbed resources (todetermineunderwhich conditions themeasurementswereperformed). Whereas
access to these active measurement probes is WP2 related, and hence is described more in details
in mPlane Deliverable D21 (Sec. 3.7), in this context TopHat is relevant as it also grants access to a
set of existing repositories, namely:

• Team Cymru IP-to-ASN mapping service [1]

• MaxMind Geolite [15]

• GeorgiaTech AS taxonomy dataset [2]

We notice that some of the above (e.g., MaxMind) can also be access directly, making the effort
of writing an mPlane gateway that is speciϐic for that service. Yet, by writing an mPlane gateway
toward TopHat, this would enable to access a larger sets of external repositories with a single API.
Adding to this the already mentioned advantage in terms of active measurement probes described
in Deliverable D21 (Sec. 3.7), this makes it a natural candidate for integration.

2.2.4 Mirrored Sources

The integrationwith external data sources is strictly dependent from the characteristics of the data.

• NDT offer a large volume of data so mirroring/integrating it as a whole is not a valuable op-
tion. However, the framework offers very efϐicient APIs and query language to access to the
data. Moreover, it is still possible to occasionally downloaded data archives for running spe-
ciϐic analysis.

Plane 19 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

• MaxmindGeoIPOrganizationDB consists of only a60MBbinary (or CSV) ϐile. This compact
format make it easy to be managed and replicated on several repositories. However, to avoid
multiple join operations, input data can also be ``enhanced'' by running the join operation
once and storing the result for later processing. The database is released with the option of
monthly updates which make it easy to maintain.

2.3 mPlane Import Mechanisms

This section describes mechanisms to transfer high amounts of data between different physical
machines which might be used to transfer data from mPlane probes to repositories. Although the
mPlane architecture provides a description of a potential mechanism for data transfer between
probes and repositories, we review some already implemented solutions in this section. Themech-
anisms presented here focus on high data volumes and failure recovery. Repositories might import
data using one of those mechanisms along with the collect verb or an extension of it, see Section 4.
The remainder of this section describes the log shipping system used together with Tstat probes
called log sync, followed by a description of Apache Flume, used for log shipping together with
Hadoop and other systems. The section ends with a description of Apache Sqoop, enabling data
exchange between Hadoop and RDBMS. Apache Sqoop might be utilized to enable in-repository
queries, which combine the processing power of traditional RDBMS with the parallel map reduce
processing capabilities offered by Hadoop.

2.3.1 Tstat log sync

Tstat (TCP STatistic and Analysis Tool) is an Open Source passive monitoring tool developed by
the Telecommunication Network Group of Politecnico di Torino [10, 19]. Tstat rebuilds TCP/UDP
connections and monitor them to extract a set of aggregated metrics. It supports different out-
put formats including text log ϐiles and Round Robin Databases (RRDs) (please refer to deliverable
D2.1 andD5.1 formore details [16]). Output data are then periodically exported using a framework
called log sync. This system is based on a client-server paradigm. Servers run on the probes and
are responsible for preparing the data for the export. This includes applying compression and cre-
ate proper archives which represent a monolithic data update. Data transfers are initiated by the
client which contacts a servers to i) obtain an updated catalog of archives ready to be exported and
ii) requests the archives it is interested into (typically all). Once a transfer is complete, the client
consolidate the data on larger repositories or push the data on BigData/DBMS system for further
processing.
In a scenario basedonTstat probeslog syncneed tohandle fewprobes. A centralizeddeployments
result then in a simple and effective solution. In this case a single client and a single large repository
should be sufϐicient. To handle more complex scenarios, different clients can be used to pull data
from servers. However, the system is designed so that each server can communicate only with a
speciϐic client, while a client access to data frommultiple probes. This semi-centralized architecture
allows to obtain a simple and easy tomaintain system. Moreover, by imposing speciϐic relationships
between clients and servers, it is possible to adopt Access Control List (ACL) policies to enforce
entity authentication and improve the overall system security.
In the following are reported some details of the system architecture. A prototype is already build
and deployed to control Tstat probes described in the deliverable D5.1 [16]. Notice however that

Plane 20 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

listenlisten
clean
archive

main
config

local repo

oldnew

download
update
recovery

main
config

local repo

oldnew

consolidate

Server Client

remove data from local repo

add data from local repo

data transfer
control

Figure 2: log sync client and server modules.

further improvements are needed and not all the feature of the system are already implemented.

2.3.1.1 ExploiƟng parallel HTTP downloads

log sync uses HTTP/HTTPS as communication protocol, adopting a RESTfull interface to deϐine
the set of application commands. This design choice is basedon twomotivations. First, HTTP/HTTPS
is a very ϐlexible protocol and adopted in several systems today. Second, beside data export func-
tionalities, log sync also incorporates a ``dashboard'' which offers a quick status report on the
probes activities (e.g., CPU, memory, disk utilization, system load, etc.). By adopting HTTP/HTTPS,
the dashboard can incorporated into web portals offering an easy way to control probes status.

Client and server need to perform several operations to ensure successful data transfer and data
consistency. In particular, given that the volume of data collected by the probes can be large, it is
fundamental to design a system capable of fully exploit the available download bandwidth. Stan-
dard ϐile transfer tool such as scp and rsync for example transfer a single ϐile at time using a single
TCP connection and, due to some internal buffering mechanisms, they usually do not saturate the
available download bandwidth. To guarantee optimal performance the download process has to
based on parallel downloads, i.e., difference pieces of the ϐiles are downloaded at the same time
over different connections.

Another important aspect to consider when designing the data transfer is the possibility of net-
work failures. Considering a homogeneous scenario in which both log sync clients and servers
are inside the same network (e.g., an ISP internally managing its probes), we can assume a very
low failure rate. However, in case the system needs tomanage probes located in different networks
(e.g., Tstat probes located in different countries), transfer failures aremore realistic. Given the need
to use parallel download, using multiple connections, each one downloading a different ϐile can be
inefϐicient. In fact, a failure can result in the need to entirely re-download all interrupted transfers.
Instead, by splitting large ϐiles in smaller blocks of data individually transferred, we can improve
resiliency to failures. In fact, in case of errors the systems need only to re-download the missing or
corrupted ϐile blocks.

Plane 21 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

2.3.1.2 System components

Particular attention has been dedicated to provide enough ϐlexibility for the conϐiguration of the
system. In particular, beside offering command line switches, both client and server can be con-
trolled through INI conϐiguration ϐiles, i.e., text ϐiles containing a list of key-value pairs. For exam-
ple, beside providing basic information to specify the probes registered in the system, it is possible
to conϐigure more ϐine grained parameters such as the logical size of each block to transfer and the
maximum number of parallel connections.
The softwarehas beenwritten inPerlwith aquite extensive usage ofmulti-threading. For efϐiciency,
log sync client and server have been implemented as a collection of modules, each one dedicated
to a speciϐic operation. Fig. 2 shows the internal composition of both client and server. Notice that
both client and server handle a local repository. As highlighted by the arrows in the ϐigure, modules
interact with the local repository either adding or removing data from it.
A server is composed by the following modules:

main, is responsible for the conϐiguration of the server by parsing both command line options
and conϐiguration ϐiles. Based on the provided conϐiguration, it starts the other modules and
control the overall status of the server.

archive, is periodically started to check for availability of new data generated by the probe. These
data are then prepared to be exported by creating tarball, i.e., a set of ϐiles/directories which
constitute a new set of statistics are compressed and archived together using the tar com-
mand line tool to create monolithic block of data.
For each archive the module also generates a metaϔile that describes the archive properties.
These include for example the list the ϐiles included in the archive along with their attributes
(e.g., size, timestamps, etc.). A metaϔile also includes the list of logical block in which the
archive is split. This is used by the parallel download process as further described later.
Both the archives and the associatedmetaϔiles are stored in the local repository of the probe
until they are removed by the cleanmodule;

clean, periodically removes old ϐiles from the local repository. In particularly, the cleaning in
based on a LRU policy which removes from the repositories only the ϐiles older than a conϐig-
urable amount of hours/days or by explicit requests either by themainmodule or a log sync
client. This is highlighted in Fig. 2 by the vertical dashed line which divide the local reposi-
tory in two parts: all data on the right of the threshold are too old and can be removed. This
means that the system can be conϐigure to do not immediately delete ϐiles which have been
correctly transferred. In fact, some errorsmight occur before the client consolidating data on
the repository. By using a LRU cleaning policy, the system still offer the possibility to recover
from data corruption or losses after the transfer.

listen, implements the communication interface through which log sync clients can communi-
catewith the server, as show in Fig. 2. The core of themodule is a simpleweb serverwhich lis-
tening on a conϐigurable TCP port and runs further operations based on the input commands
received. For example, with the HTTP query GET /repository/list a client can obtain the
list of archives ready to be transferred. To download a ϐile in a single transfer the client needs
to issue a request such GET /repository/download/filenameXYZ, while in case it is inter-
ested only on a portion of the ϐile the request becomes
GET /repository/download/filenameXYZ?range=START:END.

Plane 22 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

A client is instead composed by the following modules:

main, similar to the server module, is responsible for the conϐiguration of the client by parsing
both command line options and conϐiguration ϐiles. It is also responsible for the overall func-
tioning on the client and control the status of the other modules.

recovery, periodically invoked by the main module to inspects the local client repository looking
for broken ϐiles related to unsuccessful previous transfers. For each broken ϐile found the
module reschedules its download either as whole or only for the broken/missing portions.

update, periodically starts the procedure to pull data from registered probes. More in details, the
module contacts all registered probes asking for an updated list of the archives available to
be transferred, i.e., the list of the archivesmetaϔiles in the repository. Eachmetaϔile is in turn
downloaded to retrieve the logical partitioning on the associated archive in block, and each
block is scheduled for download using the downloadmodule;

download, corresponds to a simple FIFO queue in which are collected ``objects'' to be down-
loaded. These correspond to either ϐiles to be download at once (e.g., metaϔiles) or speciϐic
portion of a ϐile (e.g., a block of an archive). The queue in internally handled with a listener
which wait until data are available in the queue and extract up to a conϐigurable amount of
objects which are downloaded in parallel using a multiple threads, each associated to a dif-
ferent TCP socket. As shown in Fig. 2, this require communication with the listen module
of the server.

consolidation, as suggested by the name, it consolidates the downloaded archives on a larger
NAS. Optionally it can also start some conϐigured pre-processing operations to transform the
data before consolidate them on the NAS.

2.3.2 Apache Flume

Apache Flume [4] is a distributed, reliable, and available system for efϐiciently collecting, aggregat-
ing and moving large amounts of data frommany different sources to a centralized data store. It is
a top-level project at the Apache Software Foundation.
The basic unit of data in ϐlume is calledEvent. To Flume, an event is just a generic blob of bytes. Each
Event ϐlows from a Source to a Sink through a Channel. A Flume Agent is a process that consists of
a Source, a Channel and a Sink. A Source consumes Events from a client or another Flume agent
and stores it in a Channel. The Channel is a temporary buffer that holds the events until they are
consumed by a Sink. The Sink removes events from a Channel and stores it in into an external
repository, like HDFS, or forward it to the Sink of a chained Flume agent.
Flume is designed to transport and ingest regularly-generated event data over relatively stable,
potentially complex topologies. The key property of an event is that they are generated in a contin-
uous, streaming fashion. If your data is not regularly generated then Flume will still work, but it is
probably overkill for your situation.
Flume is designed in order to guarantee the reliable delivery of events. The sources and sinks re-
spectively store and retrieve data to and from the Channels using a transaction basedmechanisms.
A transaction is a indivisible unit of work that must succeed or fail as a complete unit. No interme-
diate states are possible. The use of transactions ensures that each event is reliably passed from
point to point in the ϐlow. Thismechanismworks also in case ofmulti-hop ϐlows, wheremore ϐlume

Plane 23 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

agents are chained: indeed, the sink of the previous agent and the source of the next hop agent use
transactions in order to store events in the channel of the next hop.
The channel manages also recovery from failures. In fact channels can support durable storage,
backing up the data in the local ϐile system or in a database.
Flume supports also themultiplexing of events tomore than one destination. An event can be repli-
cated (or selectively routed) to more than one channel. In case of replication, each ϐlow is sent to
multiple channels. In case of selective routing, an event is delivered to a subset of channels when
an attribute matches a series of rules.
Flume supports also load balancing and handling of failures.
Failover Sink Processor maintains a prioritized list of sinks, guaranteeing that so long as one is
available eventswill be processed anddelivered. The failovermechanismworks by relegating failed
sinks to a pool where they are assigned a cool down period, increasing with sequential failures
before they are retried. Once a sink successfully sends an event, it is restored to the live pool.
Loadbalancing sinkprocessor provides the ability to load-balance ϐlowovermultiple sinks. Itmain-
tains a list of active sinks on which the load must be distributed and selects the one to use using
either round robin or random selection.

2.3.3 Data Exchange with large-scale Batch Processing Systems

Large-scale batch processing systems operate on a very large amount of data, which can scale to
the order of thousands of terabytes. A classic example of such kind of systems is Apache Hadoop
(hadoop.apache.org), which implements a computational paradigm named MapReduce, where
the application is divided into many small fragments of work, each of which can execute or re-
execute on any node in the cluster. In general, this kind of systems provides their own implemen-
tation of a storage layer, in order to minimize large data transfers. The Apache Hadoop Distributed
File System (HDFS) is the de-facto standard ϐilesystem for these systems. HDFS stores large ϐiles
(typically in the range of gigabytes to terabytes) across multiple machines.
In a typical data processingworkϐlow, data is ϐirst imported in the HDFS from the probes; the result
of the analysis is stored in the HDFS and possibly analyzed again. The ratio between the data to
analyze and theoutput of the analysis varies: jobs canexpand their inputs aswell compress them. In
dependence of the characteristics of the jobs (the jobs can produce only temporary ϐiles) and of the
producedoutput (data volumecanbehuge), somepart of data remains onHDFSand is not imported
into any mPlane repositories. Note that data that needs to be processed by large scale systems is
directly loaded into HDFS from the probes, without passing through any relational database.
The transfer of data from Hadoop to relational databases is done using an Open Source project,
Apache Sqoop (http://sqoop.apache.org/), the de-facto industry standard for data import and
export from Hadoop to relational databases. Apache Sqoop is a tool designed for efϐiciently trans-
ferring bulk data between Apache Hadoop and structured datastores such as relational databases.
Sqoop can both import data from external relational database into HDFS and populate tables in
Hive and HBase, and export data from Hadoop to relational databases. Any import or export op-
eration can be automatized and can happen periodically or event based, since Sqoop is highly in-
tegrated with Oozie (http://oozie.apache.org/), a workϐlow manager for Hadoop. Sqoop au-
tomates most of this process, relying on the database to describe the schema for the data to be
imported. Sqoop uses MapReduce to import and export the data, which provides parallel oper-
ation as well as fault tolerance. The import process is illustrated in Figure 3. The dataset being

Plane 24 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

transferred is divided into different partitions and amap-only job is launchedwith individual map-
pers responsible for transferring a slice of this dataset. Each record of the data is handled in a type
safe manner, thanks to the hidden interaction with the database metadata to infer the data types.

Map

Map

Map

Map

HDFS
Storage

Sqoop
Job

mPlane
Repository

Hadoop Cluster

Sqoop
Export

Gather
Metadata

Submit Map-Only Job

Figure 3: Overview of the export process of data from HDFS to any mPlane repository, using Sqoop

Export is done in two steps. The ϐirst step is to introspect the database for metadata, followed by
the second step of transferring the data. Sqoop divides the input dataset into splits and then uses
individual map tasks to push the splits to the database. Each map task performs this transfer over
many transactions in order to ensure optimal throughput and minimal resource utilization.
Since Sqoop breaks down export process into multiple transactions, it is possible that a failed ex-
port job may result in partial data being committed to the database. Therefore, in order to isolate
production tables during the import process, intermediate staging tables can be used. They acts as
auxiliary tables, used to stage exported data. Staging tables are ϐirst populated by themap tasks and
then merged into the target table once all of the data has been transferred, in a single transaction.
The connection with external databases is done using connectors or JDBC. Sqoop includes connec-
tors for various popular databases such as MySQL, PostgreSQL, Oracle, SQL Server and DB2. It also
includes fast-path connectors for MySQL and PostgreSQL databases. Fast-path connectors are spe-
cialized connectors that use database speciϐic batch tools to transfer data with high throughput.
Sqoop also includes a generic JDBC connector that can be used to connect to any database that is
accessible via JDBC.
The degree of parallelism depends on the number of launched map tasks, and it can be conϐigured
independently from the size of the data to import. By default, only four tasks in parallel are used
for the export process. Anyway, this degree can be tuned appropriately in the ϐinal system in order
to achieve the best trade-off between load on the database and import speed. Indeed additional
tasks may offer better concurrency, but if the database is already overcharged additional load may
decrease performance.
Note that the export is not executed as an atomic operation: partial results from the export will

Plane 25 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

become visible before the export is done. But atomicity is not required, since the amount of data
involved in the export would lead to a useless enormous complexity. In fact, exports are performed
by multiple writers in parallel. Each writer uses a separate connection to the database; these have
separate transactions fromone another. Sqoopuses themultirow INSERT syntax to insert up to 100
records per statement. Each INSERT is executed in a single transaction within a writer task. This
ensures that transaction buffers do not grow without bound causing out-of-memory conditions.
Therefore, an export is not an atomic process.

Plane 26 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

3 Data Processing

Some repositories in mPlane, like DBStream, are not only used simply to store data, but also to
process the imported data continuously. First, data can be processed to generate index structures,
enabling fast access to certain sub sets of the imported data as shown in Section 3.1. Second, data
canbe aggregated,multiple data streams canbe combinedor data canbe enrichedwith information
from external data sources. This data processing is calledmaterialized view generation and further
detailed in Section 3.2. Although materialized view generation might be important for some use
case it is not considered to be a standard feature among mPlane repositories.

3.1 Data Indexing

Data indexing is strictly related to the type of analysis to run. Generally speaking, we report a set
of considerations that can enable a faster lookup operation on the collected data:

• Time: data collected from monitoring probes are intrinsically related to time. This is true
independently if the probe is active or passive and if measures are occasional or continuous.
As such, the larger the data set, the greater the need of an index to enable fast searches.
Indexes can corresponds to speciϐic data structure (e.g., B-trees, hashtables, etc.) or can be
the result of data partitioning. For instance, both Tstat and NDT collect text logs ϐiles in a
hierarchy of directories related to the time of capture (e.g., set of logs are grouped on a hourly
base).

• End-users' characteristics: one of the primary roles of monitoring systems is to study the
performance and behavior of hosts located in a speciϐic/private network. For instance, ISPs
can be interested in understandingwhich Internet applications their customers access to and
what are the obtained performance. However, not all the users present similar characteris-
tics. In fact, theymight use different devices (e.g., laptop, tablets, smartphones, set-top-boxes,
etc.), access technologies (e.g., ADSL, FTTH, 3G/4G, WiFi) or Internet applications (e.g., P2P,
video streaming, cloud storage, etc.).
All these characteristics are valid factors to consider when considering data indexing. Notice
thatmonitoringprobes canbeprogrammed todirectly partition the trafϐic basedon theprevi-
ous characteristics. For instance a passive probes might track only speciϐic device types (e.g.,
Android devices) or streaming services (e.g., YouTube). However, by ofϐloading advanced
ϐiltering function to repositories the probes can results simpler while increasing the over-
all system ϐlexibility (e.g., collect once and post-process multi times by changing the target
function).

• CDNs and cloud services network infrastructures: similarly to the previous point, data
collected from monitoring probes can be used to study the infrastructure of the services
accessed by end-users. For instance, by inspecting the network properties of the YouTube
servers contacted it is possible to infer their location. Moreover, by using technologies such
as the Maxmind GeoIP Organization name database previously introduced, it is possible map
each server IP address to the name organization which owns it. In other words, it is possible
to isolate the Akamai trafϐic from thewhole aggregate and study the CDN network infrastruc-
ture (e.g., data center location, load balancing and caching policies). In these cases both the
organization names and server IP addresses correspond to important information to index.

Plane 27 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

3.2 Materialized View GeneraƟon in DBStream

DBStream is a continuous analytics system. Its main purpose is to process and combine data from
multiple sources as they are produced, create aggregations, and store query results for further pro-
cessing by external analysismodules or visualization. The system targets continuous networkmon-
itoring but it is not limited to this context. For instance, smart grid, intelligent transportation sys-
tems, or any other use case that requires continuous process of large amounts of data over time can
take advantage of DBStream.
DBStream combines on-the-ϐly data processing of Data Stream Management Systems (DSMS) with
the storage and analytic capabilities of Database Management Systems (DBMS) and typical ``big
data'' analysis systems such as Hadoop [21]. In contrast to DSMSs, data are stored persistently and
are directly available for later visualization or further processing. As opposed to traditional data
analytics systems, typically importing and transforming data in large batches (e.g., days or weeks),
DBStream imports and processes data in small batches (in the order of minutes). Therefore, DB-
Stream is like a DSMS in the way that data can be processed fast, but streams can be re-played
for past data. The only limitation is the size of available storage. DBStream thus supports a na-
tive concept of time. At the same time DBStream provides a ϐlexible interface for data loading and
processing, based on the declarative SQL language used by all relational DBMSs. Two important
features of DBStream are:
• It supports incremental queries deϐined using a declarative interface based on the SQL query
language. Incremental queries are those which update their results by combining newly arrived
data with previously generated results rather than being re-computed from scratch (see Sec. 3.2.2
for more details). This enables efϐicient processing of two interesting groups of queries. First, a set
of items can be monitored over time by looking at the last state plus the new data, e.g., monitoring
the set of all server IP addresses that are active within a sliding window of time such as in the last
twoweeks. Second, aggregated variables can be kept for the elements of themonitored set, e.g., the
number of bytes uploaded and downloaded by each IP over a sliding window of time.
• In contrast tomany database system extensions, DBStream does not change the query processing
engine. Instead, queries over data streams are evaluated as repeated invocations of a process that
consumes a batch of newly arrived data and combines them with the previous result to come up
with the new result. Therefore, DBStream is able to reuse the full functionality of the underlying
DBMS, including its query processing engine and query optimizer.
DBStream is built on top of a SQL DBMS back-end. We use the PostgreSQL database in our imple-
mentation, but the DBStream concept can easily be used with other databases and it is not depen-
dent on any speciϐic features of PostgreSQL.
In the mPlane project DBStream will serve as one example for a repository and processing facility.
At themoment already a sample implementation, importingdata fromTstat [10]monitoringprobes
exists. One of the next steps is to integrate data exchange with Hadoop as already mentioned in
Section 2.3.3. Most importantly, data from some of the sources mentioned already in Section 2.1 is
imported and processed in DBStream.

3.2.1 Architecture

In DBStream, base tables store the raw data imported into the system, and materialized views (or
views for short) store the results of queries such as aggregates and other analytics - which may

Plane 28 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

XML

DBStream

config file

Raw Data

PostgreSQL

RetentionImport

table1

tableN

View Generation

job1

jobN

moduleN
view

A

view

A

1

N

job1

jobN

module1
view

A

view

A

1

N

SchedulerHydra

DBStream system

Figure 4: General overview of the DBStream architecture.

then be accessed by ad-hoc queries and applications in the same way as base tables. Base tables
and materialized views are stored in a time-partitioned format inside the PostgreSQL database,
which we refer to as continuous tables. The entity that updates a base table or a view in response
to the arrival of a new batch of data is called a job. We refer to a batch of data as a window or slice;
for example, if new data arrive everyminute, then each batch is a non-overlapping window/slice of
size one minute.
Each time partition of a base table corresponds to data from one window. Each time partition of a
view corresponds to the result of a query at that point in time. That is, in addition to the current
result of the given query, DBStream stores previous results for historical analysis. Timepartitioning
makes it possible to insert new data without modifying the entire table; instead, only the newest
partition is modiϐied.
Fig. 4 gives a high-level overview of the DBStream architecture. DBStream consists of a set of mod-
ules running as separate operating system processes. The Scheduler deϐines the order in which
jobs are executed. Importmodules may pre-process the raw data if necessary, and signal the avail-
ability of new data to the Scheduler. The scheduler then runs jobs that update the base tables
with newly arrived data and create indexes, followed by incrementally updating the materialized
views and creating indexes. Each view update is done by running an SQL query that retrieves the
previous state of the view and modiϐies it to account for newly arrived data (we will discuss this
in more detail in Section 3.2.2); new results are then inserted into a new partition of the view and

Plane 29 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

indexes are created for this partition. For each base table, a View Generation module contains
the job deϐinitions that maintain the views deϐined on that base table. Finally, the Retentionmod-
ule monitors base tables and views, deleting old data based on predeϐined storage size quotas and
other data retention policies.
The central module of DBStream is the Scheduler, which decides which job will run next. For each
base table, the availability of a new window of data triggers a new job; when done, a new job will
be triggered for each view deϐined over this base table, and then new jobs will be triggered for
views deϐined over these views and so on (i.e., views may be deϐined over other views, forming
deep hierarchies). If the system falls behind, a given table or viewmay have multiple jobs pending,
one corresponding to each window of data that must be loaded. The scheduler ensures that, for
any given table or view, windows are processed in chronological order.
Another critical function of the scheduler is to avoid resource contention: with a very large number
of base tables and views, we need to limit the number of concurrent update jobs. Our experience so
far has shown that the maximum number of concurrent jobs may be set to the number of parallel
threads that can be executed by the CPUs in the system. Thus, the scheduler will allow jobs to be
executed until this limit is reached, and will put any other pending jobs in the execution queue. If a
thread becomes available, the scheduler will choose a job from the execution queue to run on that
thread according to some scheduling policy. In the current implementation, a simple ϐirst-in-ϐirst-
out (FIFO) algorithm is supported, and improved schedulers is a work in progress.
The Retention module is responsible for implementing data retention policies. For example, a
maximum size may be deϐined for each base table and view, and if their sizes grow larger than
maximum, the oldest data will be deleted. This module is critical since data are continuously im-
ported into DBStream and the available storage may ϐill up quickly. Since each base table and view
is partitioned by time, deleting old data is simple: it sufϐices to drop the oldest partition(s).
The DBStream system is operated by an application server process called hydra, which reads the
DBStream conϐiguration ϐile, starts all modules, andmonitors them over time. Status information is
fetched from thosemodules andmade available in a centralized location. In case amodule crashes,
it is restarted automatically after a predeϐined waiting period. This mechanism is important to en-
sure that modules, which might depend on processes possibly running on remote machines, con-
tinue to work even after reboots or temporary failures of those remote machines. All DBStream
modules are implemented such that they can be stopped and started at any point in time, always
leaving the system in a recoverable state.
The inter-process communication in DBStream, e.g., between hydra and other modules as well as
between the Scheduler and the View Generation, is implemented using remote procedure calls
over HTTP. Modules can be placed on separate machines, and external programs can connect to
DBStreammodules by issuing simple HTTP requests.

3.2.2 ConƟnuous AnalyƟcs Language

This section describes the user and application interface to DBStream, which exploits the declara-
tive database query language, SQL, to deϐine incremental updates tomaterialized views. Weprovide
a high-level overview of the language using examples from the networking domain.
Many continuous and streaming query languages have been proposed [12, 7, 5, 8], but they assume
that data are not stored persistently and that queries can only refer to temporary state (e.g., a cur-
rent window of time). On the other hand, many DBMSs support deϐining materialized views using

Plane 30 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

0 min 60 min

Table A
(15-30)

Table A
(30 - 45)

Table A
(45 - 60)

Table A
(0-15)

Result B
(15-30)

Result B
(30 - 45)

Result B
(45 - 60)

Result B
(0-15)

Window
A(0-15)

Window
A(15-30)

Window
A(30-45)

Window
A(45-60)

15 min 30 min 45 min

(a) A continuous table being transformed into an-
other.

0 min 60 min

Table C
(15-30)

Table C
(30 - 45)

Table C
(45 - 60)

Table C
(0-15)

Result D
(15-30)

Result D
(30 - 45)

Result D
(45 - 60)

Result D
(0-15)

Window
C(0-15)

Window
D(0-15)

Window
D(15-30)

Window
D(30-45)

Window
C(15-30)

Window
C(30-45)

Window
C(45-60)

15 min 30 min 45 min

(b) Complex data processing ϐlow for an incremen-
tal query.

Figure 5: Data ϐlow of two example jobs.

SQL queries over large historical tables, but incremental view maintenance over time is restricted
to simple types of queries such as ϐilters and joins. In contrast, DBStream enables users and ap-
plications to declaratively specify, using arbitrary SQL, exactly how to update a view when a new
batch of data is inserted into its source table(s). These speciϐications may refer to previously gen-
erated results that are stored in the view, which, to the best of our knowledge, is not declaratively
supported by any other system.

Fig. 5 shows two abstract examples of how views may be updated upon insertion of new data into
their source tables; we will show concrete queries corresponding to these two cases in the next
section. Fig. 5a illustrates a base table A that is updated every 15 minutes, i.e., it is partitioned into
15-minute slices. A view B is also maintained, which is the result of some query over A, e.g., A may
store raw trafϐic data and B may store aggregated trafϐic volume for each source-destination pair
over every 15-minute window. When a new window of data is added to A, the SQL query corre-
sponding to B runs over the contents of the new window, and the result is inserted into the most
recent window of B. Four such updates are shown in Fig. 5a, corresponding to the processing done
over one hour. This example corresponds to the simple non-incremental case, without accessing
history, that can be handled by DBStream as well as existing stream processing systems.

Fig. 5b illustrates incremental processing by accessing previously computed results. Here, C is a
base table and D is a view, both of which are partitioned into 15-minute windows. The ϐirst (left-
most) partition of D is created by running D's SQL query over the ϐirst partition of C. However, the
next partition of D is computed by running D's query over the next partition of C and the previous
partition of D that has been computed 15 minutes ago. For instance, D could store all the active
sessions in any given 15-minute window, in which case computing the active sessions at any time
amounts to taking the active sessions as of 15-minutes ago, adding newly active sessions from the
past 15 minutes, and removing sessions that have ended in the last 15 minutes.

Without the ability to refer to the previous result of D, a default way of maintaining D would be to
read the entire base table C and extract all the sessions that are currently active (or at least read as
far back as the longest possible connection, so that we can capture its connection-start record in C).
This would be far less efϐicient than the above incremental technique. Since network monitoring
involvesmany tasks that are computed incrementally over time, the incremental viewmaintenance
approach of DBStreammakes it an ideal candidate for the repository layer of mPlane.

Plane 31 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

3.2.3 Job DefiniƟon Examples

Let us now return to the two examples from Fig. 5 and show how such views can be set up in DB-
Stream. Each view requires a user-supplied job deϐinition that includes, among other things, the
windows (partitions) that are necessary to compute a new partition of the view, and the SQL query
that will transform the input windows into a result window. For Fig. 5a, an example job deϐinition
is as follows:

<job inputs="A (window 15min primary)"
output="B (window 15min)"
schema="serial_time int4,

device_class int4,
count int4"

query="select serial_time, device_class,
count(*) from A
group by serial_time, device_class"/>

The inputs attribute deϐines the input window(s) and the output attribute deϐines the destination
for the result. Here, B is the resulting view, partitioned by 15 minutes, each of whose partitions is
computed from the corresponding partition of the base table A. The ``primary'' keyword denotes
the leading input partition - when created, it triggers an update of the view. A job can havemultiple
inputs.
The schemaof the output view is deϐinedusing theschema attribute; in addition to the attributes re-
turned by the query, a timestamp attribute corresponding to the window end time is also included
by default. The query attribute speciϐies the SQL query which is executed for every primary input
window; DBStream supports all SQL queries that are supported by the underlying DBMS (Post-
greSQL). Here, the query counts the number of packets for each combination of serial time and
device class for each 15-minute window. The query includes a ``from A'' statement, which does not
actually read all of A, only the window of A that was speciϐied in the inputs statement (i.e., the most
recent 15-minute window). In addition, the index attribute can be used to deϐine indexes over the
view.
For Fig. 5b, the following job deϐinition maintains a view D with the currently active TCP sessions;
assume that C stores passive probe data and contains a record whenever a connection is started or
stopped.

<job inputs="C (window 15min primary),
D (window 15min delay 15min)"

output="D (window 15min)"
schema="id int4"
query="

select id from D
where not exists (
select * from C

where D.id=C.id and C.state='disconnect'
) union

select id from C
where state='connect'"/>

Note the ``delay'' keyword, which speciϐies a delayed version of D (more speciϐically, the previous
result of D from 15 minutes ago) as one of the inputs, along with a new window of C, which is the

Plane 32 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

primarywindow that triggers the creation of a newpartition of D. The SQL query selects session ids
from D that were active 15 minutes ago (i.e., from the previous partition of D from 15 minutes ago,
as speciϐied in the inputs statement), but only for those for which there is no disconnect record in
the newest partition of C. Then the result is merged (unioned) with the newly started connections
from (the newest partition of) C.

Plane 33 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

4 Data Access

This chapter describes how repositories enable access to their data for mPlane clients, supervisors
and reasoners. The chapter is split into three parts, reϐlected in three sections. Section 4.1 deϐines
and describes the verbs anmPlane repository should implement and report as capabilities to other
mPlane components. The second Section 4.2 gives a description of other useful verbs, which might
be implemented in mPlane repositories, but are not part of every repository. The last section, Sec-
tion 4.3 explains how access control for mPlane repositories is handled.

4.1 General Repository Access Mechanisms

A mPlane repository is a physical or logical entity offering the functionality speciϐied in this sec-
tion. In general, mPlane repositories store data, keep it for a certain amount of time and make it
available to other components of the mPlane architecture, like clients, supervisors and reasoners.
The following list gives an overview of mPlane information model elements, so called verbs, which
should be implemented and reported as capabilities by an mPlane repository.

collect is used to import data into an mPlane repository. Its main purpose is to initiate the import
of data exported by anmPlane probe using an asynchronous exportmechanism. It is optional
to implement the collect verb if the store verb is implemented.

store is used to store single items of data in an mPlane repository. It is optional to implement the
store verb, if the collect verb is implemented.

query is used to retrieve data from an mPlane repository. The verb query can not be used to run
selective queries or queries which support any kind of processing inside a repository, but
only the retrieval of stored data. A mPlane repository might implement an extended version
of query offering additional functionality.

It is important to notice, that all data stored inmPlane repositories has to either expose a event time
with every stored record, or the repository has to be programmed to infer a event time for each
record it will store depending on the given stream type. In addition, the general verbs collect and
store do not specify the handling of out of order events. Therefore, a repository might decide to
discard out-of-order events.
In some cases there might be repositories which neither implement collect nor store, but only
query. Those repositories are used in cases, where the underlying monitoring or probe infrastruc-
ture is not part of the mPlane or the probe directly exposes an mPlane repository interface. In this
case, mPlane components can still access data stored in the repository using the query verb, but
the mPlane is not controlling the import of data into the repository.

4.1.1 collect - ConƟnuous Data Storage

The collect verb is used to import data continuously from mPlane probes. For this purpose, the
repository reports one capability for each pre-programmed data type it is able to store. Therefore,
the following capabilities will be reported for collect:

Plane 34 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

capability: collect
parameters:

stream.name: string
async-format: string
async-target: url

In this example, stream.name is a predeϐined name for anmPlane data format the repository is able
to store, e.g. log tcp v01. The ϐield async-format contains the format in which the data might be
sent to the given repository. The format might be one of the mPlane protocol message representa-
tions e.g. JSON, YAML, XML or CSV. In the async-target the repository speciϐies a URL towhich the
exporter should senddata to, aswell as the transmission protocol. The async-targetuses a export
URL scheme deϐined in D1.3 and might look like this: mplane-http://repo1.ict-mplae.eu.
Some repositories might use one of the import mechanisms described in Section 2.3 instead of
async-target.

4.1.2 store - Single Value Storage

The store verb is used to store single data values. It is not intended to use this verb for large
data transfers towards repositories, but rather for the storage of single values e.g. produced by
reasoners as the result of a machine learning algorithm. Therefore, the capabilities reported by the
repository are rather ϐlexible and depend highly on the preconϐigured data format the repository is
able to store.
Whereas, the general capability template for store looks like this:

capability: store
parameters:

stream.name: string
start.s: -inf..+inf
[list of attributes]

The example of a reported capability for storing a IP address along with the measured link load
might look like this:

capability: store
parameters:

stream.name: probe_linkload
start.s: *
server.ip4: *
load.link: *

The actual data is then send by e.g. the reasoner in the speciϐication statement.

4.1.3 query - Data Retrieval

The query verb is used to retrieve data from an mPlane repository. The reference implementation
of the query verb does neither support selective queries nor queries supporting any data process-

Plane 35 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

ing. It is only used for the retrieval of datawhichwas either directly imported before, usingcollect
or store, or is the result of in repository processing. The template of capabilities exposed for query
by the repository looks like this:

capability: query
parameters:

stream.name: *
start.s: -inf..+inf
end.s: -inf..+inf

results:
- (fields of the data stream)

In this example, stream.name is the name of the stream the data was stored with, start.s and
end.s refer to the event times which where provided while storing the queried data. The results
sectionwill contain the names and types of the format of the stream. Therefore, a concrete example
of a query verb might look like this:

capability: query
parameters:

stream.name: probe_linkload
start.s: -inf
end.s: 2013-10-31 23:59:59

results:
- start.s
- server.ip4
- load.link

4.2 Extending Repository Access

In general, every mPlane repository can report verbs in addition to the default implementation.
Those additional verbs can be used to reϐlect functionalities, which are special to that particular
repository, but are not reϐlected by the general mPlane architecture. Since many different underly-
ing systems might be used as mPlane repositories many different capabilities will be reported and
used by the mPlane.

4.2.1 DBStream Extensions

This section gives an example how themPlane repository access layer can be extended by a speciϐic
repository. In this section, it is shown what other verbs will be implemented in DBStream. Other
repository might implement their own verbs or also implement the verbs proposed here.
One new verb of DBStreamwill be an extended version of query, which also allows to ϐilter and sort
results. Therefore, the query verb will have an additional ϐield to express a ϐilter condition which is
similar to a SQLWHERE clause. The returned result will be the subset of results fulϐilling the ϐilter
condition. Another additional ϐield, sort can contain SQL order by statements. Those can be used to
sort the returned result set using a stable sort algorithm. The values provided by those two ϐields

Plane 36 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

will be passed to the underlying SQL execution engine, which will execute the ϐiltering and sorting
of the results. The extended version of querywill also provide other ways to return results, which
are optimized for high data rates.
Another additional verb is an extended version of collect. collect is used in cases, where the
import/exportmechanism is not part of the generalmPlane architecture but amore direct coupling
of the repository to the probe. In those cases, the repository might use one of the mechanisms
described in Section 2.3. Per example to import data from Tstat probes DBStream might import
data which arrives at the database server using the log sync mechanism. In this case the collect
verb is only used to switch this import/export mechanism on and off.
Since one of the main purposes of DBStream is to process imported data and generate aggregated
statistics, a special verbprocesswill be implemented. InDBStreammultiple processing algorithms
might be pre-programmed and then activated and deactivated, as well as parametrized using the
process verb. This mechanism is useful in cases where it is e.g. too computationally extensive to
compute a certain learning algorithm for all subnets/hosts/IP addresses/etc. Therefore, the rea-
soner might activate a certain analysis e.g. only for one subnet. In this case the reasoner sends the
repository a process speciϐication along with the parameter deϐining the e.g. speciϐic subnet which
should be analyzed. In other cases, the parameter given to the process verb might be the result of
a machine learning or data mining algorithm, and therefore change over time.

4.3 Repository Access Control

According to the architecture overview exposed in chapter 2.1 of the deliverable D1.3, the reposi-
tory is involved in two types of interactions:

• the "synchronous data request", in which the Repository R publishes its capabilities to the
Supervisor S, then S sends a speciϐicationmessage to R requesting for a capability, and ϐinally
R replies with a data ϐlow that is the result for that speciϐication.

• the "asynchronous data export", in which the probe P exports the collected data directly to R,
creating a short circuit between the two components.

Regarding the interactions between Repositories and Supervisors, there is no need to implement
the authorization procedures at the Repository, since all the Access Control mechanisms are imple-
mented at the Supervisor level: the Supervisor checks if the speciϐications coming from the Clients
are legitimate, and if so it forwards them to the appropriate component. The Probes and the Repos-
itories only receive legitimate speciϐication messages. For this reason, the Repository component
only needs an Authentication layer, in order to check the identity of the Supervisor and accept its
speciϐication messages.
In the "asynchronous data export" case the Probe needs to establish a channel with the Repository,
and to push data into it. The Repositorymust expose a public interface, and a capability expressing
the ability to accept data from that speciϐic Probe. This interface must be strictly controlled, in or-
der to avoid unauthorized accesses or illegal requests.

A viable solution could be to delegate to the supervisor all the authorization controls on the data
export, for example:

Plane 37 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

• P publishes a capability to S that indicates it can export a given measurement (perhaps ex-
plicitly to R)

• R publishes a capability to S that indicates it can collect the same measurement (perhaps
explicitly from P)

• S publishes a capability based on these two

• Client C sends a speciϐication to S asking to use this capability

• S checks C's credentials and the speciϐication to see if it is authorized. If so:

• S sends a speciϐication over a mutually authenticated channel to R to begin collection and
awaits a receipt.

• S sends a speciϐication over a mutually authenticated channel to P to begin export.

• P exports collected data over a mutually authenticated channel to R.

With this approach all the Authorization controls are enforced in the Supervisor, that is already
responsible for the whole mPlane architecture security controls, relieving the other components
from the implementation of those mechanisms.

Plane 38 of 39 Revision 1.0 of 08 Nov 2013

318627-mPlane D3.2
Database Layer Design

References

[1] http://www.team-cymru.org/.
[2] http://www.ece.gatech.edu/research/labs/MANIACS/as_taxonomy/,.
[3] Tophat website. http://www.top-hat.info/.
[4] Apache Flume. http://flume.apache.org.
[5] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations and query

execution. The VLDB Journal, 15(2), 2006.
[6] T. Bourgeau, J. Augé, and T. Friedman. TopHat: supporting experiments through measurement infras-

tructure federation. In Proceedings of TridentCom'2010, Berlin, Germany, 18-20 May 2010.
[7] Q. Chen and M. Hsu. Experience in extending query engine for continuous analytics. In DaWaK 2010.
[8] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database for network

applications. In SIGMOD 2003.
[9] S. Fdida, T. Friedman, and T. Parmentelat. OneLab: An open federated facility for experimentally driven

future internet research. In Proc. Workshop on New Architectures for Future Internet, 2009.
[10] A. Finamore, M.Mellia, M.Meo, M.Munafò, and D. Rossi. Experiences of internet trafϐicmonitoringwith

tstat. IEEE Network, 25(3):8--14, 2011.
[11] FireLog project. http://firelog.eurecom.fr/.
[12] L. Golab, T. Johnson, S. Sen, and J. Yates. A sequence-oriented streamwarehouse paradigm for network

monitoring applications. In PAM 2012.
[13] IP2LOCATION Home Page. http://www.ip2location.com/databases/

db8-ip-country-region-city-latitude-longitude-isp-domain.
[14] IPligence Home Page. http://www.ipligence.com/products.
[15] Maxmind GeoIP databases and web services. http://www.maxmind.com/en/geolocation_landing.
[16] mPlane consortium. Public Deliverables. http://www.ict-mplane.eu/public/

public-deliverables.
[17] Network Diagnostic Test (NDT) - Home page. http://www.measurementlab.net/tools/ndt.
[18] Neustar Home Page. http://www.neustar.biz/enterprise/ip-intelligence/

ip-intelligence-packages#.UkXqPhYmzdk.
[19] Tstat Home Page. http://tstat.polito.it.
[20] WhatIs MyIPAddress Home Page. http://whatismyipaddress.com/geolocation-providers.
[21] T. White. Hadoop: the deϔinitive guide. O'Reilly, 2012.
[22] WipMania WorldIP - IP Geolocation. http://www.wipmania.com/en/api/.

Plane 39 of 39 Revision 1.0 of 08 Nov 2013

