
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

Algorithm and Scheduler Design and ImplementaƟon

Author(s): POLITO D. Apileƫ, E. Baralis, A. Finamore, L. Grimaudo, S. Traverso
FUB V. Guchev, F. Matera, E. Tego
ALBLF Z. Ben-Houidi
EURECOM P. Michiardi, M. Milanesio
ENST Y. Gong, D. Rossi
NEC M. Dusi (ed.), S. Niccolini, S. Nikitaki
TID G. Dimopoulos, I. LeonƟadis
NETvisor Á. Bakay, T. Szemethy
FTW A. Bär, P. Casas, A. D'Alconzo, P. Fiadino

Document Number: D3.3
Revision: 1.0
Revision Date: 31 Aug 2014
Deliverable Type: RTD
Due Date of Delivery: 31 Aug 2014
Actual Date of Delivery: 31 Aug 2014
Nature of the Deliverable: (S)oŌware
DisseminaƟon Level: Public

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Abstract:

This deliverable describes the data-analysis algorithms implemented at the repository for each use case. Furthermore, it con-
tains the algorithms and tools to support the parallel computaƟon of the algorithms by using a distributed cluster of resources.
These tools are publicly released by the mPlane ConsorƟum, and include:

• Hadoop Fair Sojourn Protocol, a scheduler for Apache Hadoop;

• Schedule, a tool for cache-oblivious scheduling of shared workloads;

• RepoSim, a ns2 based simulator to fine-tune the mPlane repository performance.

SoŌware and instrucƟon on how to access and use them at hƩp://www.ict-mplane.eu/public/soŌware. To highlight the strong
collaboraƟon with other EU-projects, the Hadoop Fair Sojourn Protocol has been developed jointly with partners from the
BigFoot project.

Keywords: mPlane soŌware, repository tools, job scheduler, algorithm design

Plane 2 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.
The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Contents

Disclaimer. 3

Document change record. 6

1 Introduction. 7

2 Large-scale data analysis algorithms. 8
2.1 Supporting DaaS troubleshooting. 8

2.1.1 Algorithm design and description . 8
2.1.2 Results. 8

2.2 Estimating content and service popularity for network optimization . 10
2.2.1 Algorithm design and description . 10
2.2.2 Results. 11

2.3 Passive content curation. 11
2.3.1 Algorithm design and description . 14
2.3.2 Results. 15

2.4 Quality of Experience for Web browsing . 16
2.4.1 Algorithm design and description . 16
2.4.2 Results. 17

2.5 Mobile network performance issue cause analysis andmultimedia streammeasure-
ments . 17
2.5.1 Algorithm design and description . 17
2.5.2 Results. 18
2.5.3 Multimedia content delivery in wired provider networks . 22

2.6 Anomaly detection and root cause analysis in large-scale networks . 23
2.6.1 Algorithm design and description . 24
2.6.2 Results. 28

2.7 Anomaly detection and root cause analysis in large-scale networks: data mining al-
gorithms . 29
2.7.1 Algorithm design and description . 29
2.7.2 Results. 29

3 Distributed computing platforms: tools and performance. 33
3.1 Hadoop Fair Sojourn Protocol: a scheduler for Apache Hadoop . 33

3.1.1 Revisiting Scheduling Based On Estimated Job Sizes . 33
3.1.2 HFSP: Size-Based Scheduling for Hadoop. 41

Plane 4 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

3.1.3 OS-Assisted Task Preemption for Hadoop . 47
3.2 Schedule: Cache-Oblivious Scheduling of Shared Workloads . 52

3.2.1 Introduction to the Problem. 53
3.2.2 Problem Statement . 54
3.2.3 Algorithms . 56

3.3 RepoSim: a simulator to assist the ϐine-tuning of repository performance 62
3.3.1 repoSim mPlane model . 62
3.3.2 repoSim ϐlow taxonomy model . 63
3.3.3 repoSim motivations . 64
3.3.4 repoSim modules . 65
3.3.5 Results. 66

3.4 Performance of computing platforms . 66
3.4.1 Experimental analysis . 67

4 Conclusions. 69

Plane 5 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Document change record

Version Date Editor(s) Description
0.1 11 Aug 2014 M. Dusi (NEC) initial draft
0.9 28 Aug 2014 M. Dusi (NEC) ϐinal draft for review
1.0 31 Aug 2014 M. Dusi (NEC) ϐinal

Plane 6 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

1 IntroducƟon

This document details the algorithms that operate on the data storage layer, that are being de-
veloped since the ϐirst year after their deϐinition, as detailed in Deliverable D3.1. As most of the
algorithms are use-case speciϐic, we opted for describing them in the context of each use case. Al-
gorithms that have a more general nature other than the one detailed for the speciϐic use-case, and
can be exploited to support the work of the entire repository layer are also presented.
This document also describes some features of the computing environment required by the repos-
itory. In particular, we report on the design and preliminary implementation of the job scheduler
Hadoop Fair Sojourn Protocol, for executing concurrent tasks on a shared computing environment,
and of schedule, a tool for cache-oblivious scheduling of shared workloads. A software release of
both schedulers is provided. Moreover, we provide a performance comparison of several stream-
computing platformswhich can potentially workwithin the repository to operate on the very large
amounts of data coming from the monitoring probes. Finally, we describe repoSim, a ns2 based
simulator to ϐine-tune the mPlane repository performance.
Together with this deliverable, we release the following tools:

• Hadoop Fair Sojourn Protocol, a scheduler for Apache Hadoop;

• Schedule, a tool for cache-oblivious scheduling of shared workloads;

• RepoSim, a ns2 based simulator to ϐine-tune the mPlane repository performance.

The code and description of such tools can be accessed from the project website at
http://www.ict-mplane.eu/public/software.
To highlight the strong collaboration with other EU-projects, the Hadoop Fair Sojourn Protocol has
been developed jointly with partners from the BigFoot project.
This document is organized as follow. First, a brief introduction is made in Chapter 1. In Chapter 2,
we discuss the design of the algorithms that operate at the repository layer, with their results. In
Chapter 3, we describe the design and implementation of the tools we release, as well as the per-
formance evaluation of different stream-computing platforms. Finally, Chapter 4 concludes the
document and describes the directions of future work.

Plane 7 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

2 Large-scale data analysis algorithms

2.1 SupporƟng DaaS troubleshooƟng

To detect the Quality of Experience of users accessing content using Desktop-as-a-Service (DaaS)
solutions through thin-client connections, we consider statistical classiϐication techniques to infer
on-the-ϐly the application that runs inside the thin-client protocols, by passively observing features
of packets of the thin-client connection. Given that information, we combine them with the actual
network conditions along the path, such as the Round Trip Time (RTT) and the available bandwidth
of the connection. A threshold-based algorithm is then able to infer users’ QoE.

2.1.1 Algorithm design and descripƟon

As for the design of the statistical application identiϐication, we evaluated the accuracy of four su-
pervised statistical classiϐication techniques widely-used in the trafϐic classiϐication ϐield, namely
Support Vector Machines (SVM), Random Forest (RF), Naive Bayes (NB) and Decision Tree (C4.5),
in detecting the applications running on top of the thin-client connections. In our evaluation we
exploited the WEKA Java library 2, which includes implementations of all the aforementioned su-
pervised machine learning algorithms.
We applied the above techniques to our dataset. In particular, we used a dataset (D1) to train the
techniques andevaluated their accuracyonanotherdataset (D2), both in termsof bytes andnumber
of epochs that are correctly classiϐied. A complete description of the datasets and of the testbed is
provided in deliverable D5.1 and in deliverable D4.2.
In this context, we deϐine accuracy as the number of epochs (bytes) correctly identiϐied by the tech-
niques as belonging to a given application out of the total number of epochs (bytes) that belong to
that speciϐic application.

2.1.2 Results

Starting from the results described in deliverable D4.2, where we investigated how the techniques
perform when the dataset used for training and the one used for testing include the same class
of applications and are collected under the same network conditions, we extended the analysis to
investigate the robustness of the techniques when the network conditions between the traces used
for training and the ones used for testing differ. As the algorithm based on SVM showed to perform
better than the other machine-learning algorithms that we considered, here we report the results
only when using SVM as algorithm of the statistical application identiϐication module.
In particular, we evaluated how the techniques performwhen the thin-client (RDP) sessions under
test experiment bandwidth reduction (down to 1.5Mbps on the direction from the server to the
client and 256Kbps in the opposite direction), packet delay (up to 160ms) and packet loss (up to
3%).
Figure 2.1 reports the accuracy results for each category of trafϐic when training the SVM technique
on the dataset D1 and testing it on traces of the dataset D2 on which we changed the bandwidth
(i.e., traces with neither packet loss nor delay). The ϐigure outlines the results when considering a

Plane 8 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.1: Robustness of SVM to network conditions: percentage of accuracy per epochs [top] and
per bytes [bottom] on a ten-second time window. Note that the training has been done without
considering any network impairments.

Plane 9 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

time-window of ten seconds (note that the algorithm did not receive any training for the network
conditions under which it was tested). While the categories Audio and Data are not affected by the
bandwidth reduction that we applied, the accuracy of the category Video decreases, as we reduce
the bandwidth, from95% to 32% in terms of epochs and from97% to 59% in terms of bytes. As the
numerical results suggests, the epochs that are misclassiϐied are the ones that carry the minority
of bytes. Moreover, we evaluated how parameters such as packet loss and packet delay affects the
accuracy results. On our data, the effect of packet delay turns out to be negligible: a delay up to 160
milliseconds has no inϐluence on algorithms that take decision based on observation windows of
the order of seconds. On the contrary, packet loss has an effect on the results: when using SVM on a
ten-second window, the accuracy goes down to 67% (86%) in terms of epochs (bytes) with traces
that have 3% packet loss.

2.2 EsƟmaƟng content and service popularity for network opƟ-
mizaƟon

To detect web contents that show the potential of attracting large future popularity, we designed
algorithms to (i) extract popular contents from the HTTP log repository online, (ii) train and gen-
erate the signatures of request arrival processes using a Hierarchical Clustering Structure, and (iii)
identify popularity patterns through a likelihood maximization algorithm.
We focused on speciϐic web services such as YouTube and kind of ϐiles such as JPG images and MP4
videos, as an ISP may be interested in predicting the popularity of YouTube videos to proactively
push them to the caches closer to the users.

2.2.1 Algorithm design and descripƟon

Probes at WP2 monitor the HTTP requests that are generated by users to download given kind of
content: at the repository we exploit such information to build a time series of arrival requests for
each observed content, that we employ as training set.
We describe the behavior of individual content over time by means of Gaussian Mixture Models
(GMM): GMM are known to provide greater ϐlexibility and precision in modelling the underlying
statistics of the sampling data. Given an object oi, we account for the curve of its observation data
set D(oi) given by the number of downloads for a speciϐic time interval. The curve is ϐitted by the
linear combination ofK Gaussian distributions, i.e. aGMM. In order to overcome the computational
load implied by traditional mixture estimation techniques, during the mixture ϐitting we adopt a
new algorithm denoted as Factorize Asymptotic Bayesian (FAB) [29]. In particular, FAB algorithm
outperforms state-of-the-art Variational Bayesianmethods for the ϐitting of the considered data set
in terms of both model selection performance and computational efϐiciency.
After modeling the request pattern of each of the observed objects, an agglomerative hierarchical
clustering algorithm is adopted in order to build the cluster tree. In order tomeasure the similarity
of two objects the Jensen-Shannon (JS) divergence is adopted as dissimilarity metric. At the ϐirst
step of the algorithm each cluster is composed by a single object oi. Then at each step, the method
ϐinds the pair of clusters to merge in a single parent cluster, such that to minimize the increase of
the total within cluster variance after merging. To merge the two data sets D(oi) and D(oj), the
direct approach considers the new data set D(om) = D(oi) ∪ D(oj). Then, the model parameter

Plane 10 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

estimation algorithm is applied to D(om) and the GMM model parameters of the parent data set,
θm, are obtained. This completes the training stage.

To predict the popularity of an unknown content, we run the following algorithm online: whenever
a content is observed for r requests, we update the GMM signatures modeling its popularity evolu-
tion andmatch them against the GMMs in the hierarchical clustering structure. To identify the best
pattern class we run a Likelihood Maximization algorithm: eventually, it returns a request arrival
process which we employ to predict the future popularity of observed content.

2.2.2 Results

We run our prototype on a set of anonymized traces from a commercial ISP, which collects the re-
quests of YouTube videos from a population of 28000 users. First, we gathered the models of our
target applications by collecting a set of requests for 10000 YouTube videos over time (aggregated
by day) that served as training set. Then, we tested the validity of such models on a subset of 3400
requests to videos available in our trace.

We started investigating the accuracy of our algorithm in predicting the future popularity of the
videos provided that the algorithm has observed the evolution of the requests of the videos in their
ϐirst x days. Figure 2.2 reports the results of the mean percentage error when the history samples
are equal to 31 and 91, respectively. The mean percentage error (MPE) is deϐined as the ratio be-
tween the absolute estimation (the difference between the estimated and the real requests) and
the number of requests that the video actually gets in the data sample during the prediction. The
performance of the algorithm is inϐluenced by the number of data samples of the video requests.
As it was expected, the accuracy of the algorithm decreases for long future horizons. However, it is
interestingly observed that themedian and 25%percentile error of the algorithm remain relatively
constant when predicting in steps further into the future for both history samples, indicating that
the performance is affected by a small number of outliers.

To further conϐirm that the performance of the algorithm is highly affected by a small number of
videos, in Figure 2.3 we report the cumulative distribution function (P∥X∥ ≤ x) of the percentage
error for various prediction steps for the history samples 31 and 91. Speciϐically, for 91 sample his-
tory and in the extreme case of predicting in 9 future steps only 20%of the objects highly inϐluence
the performance of the algorithm. The pattern request of the speciϐic videos is characterized of the
abrupt increase of user's request, a behavior that GMM ϐinds hard to capture.

2.3 Passive content curaƟon

To implement a crowd-sourced service to assist users in identifying relevant content on the web,
we designed a large scale data analysis algorithm that runs online on the HTTP log repository to ex-
tract the URLs that were clicked by users (user-URLs) as opposed to those that were automatically
queried by browsers and other applications that exploit HTTP protocol.

In deliverable D4.2, we presented a set of heuristics that allow to extract user-URLs and that can
work ofϐline. In the following we describe how we modiϐied such heuristics to be able to work in
an on-line fashion.

Plane 11 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.2: Box Plot of the mean percentage reconstruction error when predicting the popularity
of the video in different future steps for history length of 31 [top] and 91 [bottom].

Plane 12 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.3: Cumulative distribution function of the percentage reconstruction error when predict-
ing thepopularity of the video indifferent future steps forhistory lengthof 31 [top] and91 [bottom].

Plane 13 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

2.3.1 Algorithm design and descripƟon

During the design of online algorithms, and moving to real trafϐic traces (as opposed to synthetic
traces), we noticed two sources of problems for which we design two simple countermeasures.

i) URLs generated by non-browser applications: Modern applications use HTTP to automatically
download web objects, e.g., software updates. Those URLs are clearly not relevant, and must
be ignored. To this extent, we leverage the User-Agent ϐield exposed in HTTP requests, which
informs about which client application generated the request. A white-list of well-known
browsers is enough to discard roughly around 15% of URL generated by non-browser appli-
cations.

ii) Inϔlated popularity induced by few users: Web browsers can generate multiple HTTP requests
for the same URL, e.g., automatically reloading a page, or downloading videos in chunks. This
phenomenon inϐlates the popularity of some URLs. We counter this effect by ignoring user-
URLs for which the Referer ϐield is the same as the user-URL itself.

With this pre-ϐiltering techniques in mind, we then adapted our prior heuristics to be able to run
online. As described in D4.1, our heuristics are: (i) the referer-based ϐilter (F-Ref), (ii) the Type-
based ϐilter (F-Type), (iii) the Ad-based (F-Ad), and (iv) the children-based ϐilter (F-Children).
Our online algorithm must be able to read a stream of HTTP requests and detect only the small
fraction represented by user-URLs. All in a very short period of time, e.g., a few seconds.
We prefer not to process the HTTP request in batches, an approach prone to ``border effect'' prob-
lems (requests for the same content split between batches). Therefore, we consider as input a
stream of HTTP requests, which are processed using a sliding window. For each HTTP request, we
get ϐive ϐields: <timestamp, URL, Referer, User-Agent, userID>, where the userID is an (anonymized)
user identiϐier, e.g., derived from the client IP address. As an output, our algorithm returns the tu-
ple: <timestamp, URL, referer>.
As described in D4.1, the most accurate ϐilter combination is F-Ref + F-Type + F-Ad. Unfortunately,
the F-Ad is based on the humongous Ad-Block catalog, and results too resource-consuming to be
implementedonline. Thus, wepick the secondbest candidate, F-Ref + F-Type+F-Children (C<= 5),
which represents the best trade-off between accuracy and ease of implementation.
The online algorithm is described by the pseudo-code in Alg. 1. It employs a hash table -- the Candi-
date Cache, C -- which stores information for every observed Referer, grouped by userID. As soon as
a HTTP request is received from the input, we check the presence of the User-Agent in the browser
white-list, and verify that the URL and Referer are different. If so, we extract the tuple<timestamp,
URL, Referer>. In parallel, we extract the Referer r and we check its presence in C. If r is not in
C, we immediately check the nature of its content with the F-Type ϐilter. If r passes the ϐilter, we
add it to the candidate cache C, that starts updating information about it for a period of time that
we call observation time, TO . Such information is: <ϔirst timestamp, number of children>, i.e., the
timestamp of the ϐirst request having r as referer, the number children of r.
Then, we call function get_user_URL: for each referer in C, we check if its observation time TO has
expired. If so, it means we collected enough information and we can run the heuristics to under-
stand whether such URLmay be labeled as user URL or not. If the referer is a user URL, we retrieve
its information from the history cache C, return it to the output, and delete its entry from C.

Plane 14 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Algorithm 1 Online user-URL detector.
HTTP Request Stream
Input: HS
user-URL Stream
Output: IS
Init Observation Time
1: TO ← α
Init Candidate Cache
2: C← ∅
Read current HTTP request
3: while h in HS do
4: h← timestamp, URL, referer, user-agent, UserID

Check User-Agent and URL is different from the referer
5: if ĎĘ_ćėĔĜĘĊė(h.user-agent) and h.URL != h.referer then

If current referer is not in Candidate Cache
6: if h.referer ̸∈ C then

If it passes type-based ϐilter
7: if ċ_ęĞĕĊ(h.referer) then

Add referer to the Candidate Cache
8: Ćĉĉ(C, h.referer)
9: ČĊę_ĚĘĊė_URL(C)
10: end if
11: else

Increment the number of children and look for social
plugins in the History Cache

12: ĚĕĉĆęĊ_ĎēċĔ(C, h.referer)
13: ČĊę_ĚĘĊė_URL(C)
14: end if
15: end if
16: end while

17: function ČĊę_ĚĘĊė_URL(C)
Iterate all referers in the Candidate Cache

18: for i in C do
Check TO expiration and if it passes children ϐilter

19: if observation_time(i)> TO and ċ_ĈčĎđĉėĊē(i) then
Retrieve information from C, e.g., the ϐirst
timestamp

20: out← ėĊęėĎĊěĊ_ĎēċĔ(C, i)
Send to the output

21: write(out, IS)
Clean structures

22: remove(i, C)
23: end if
24: end for
25: end function

2.3.2 Results

Given the substantial modiϐications on the online version of our user URL detector, we evaluate its
accuracy.
Aswe did for the ofϐline heuristics (see D4.1), also in this case, we evaluate the accuracy of different
ϐilters and different parameter tuning on the same dataset, where the ground truth is given by the
fact that the dataset has been manually collected. For completeness, we compare again several
combinations of ϐilters.
At ϐirst, we apply the F-Ref and the F-Type. These two ϐilters together lead to a high recall (98.01%),
but also to a low precision (46.22%). By adding the F-Children too, the precision increases, while
recall decreases. The results of these experiments are reported in Table 2.1. For our online deploy-
ment of this algorithm, we opted for the highest precision which is given by F-Ref + F-Type + F-
Children (C<= 5).

Plane 15 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Method Recall Precision FPR
F-Ref + F-Type 98.01% 46.22% 2.7%

F-Ref + F-Type + F-Children (C<= 1) 98.01% 46.27% 2.7%
F-Ref + F-Type + F-Children (C<= 2) 94.47% 58.56% 1.45 %
F-Ref + F-Type + F-Children (C<= 3) 92.7% 66% 0.95%
F-Ref + F-Type + F-Children (C<= 5) 85.41% 73.4% 0.38%

Table 2.1: Accuracy of the online algorithm.

Method Recall Precision FPR
F-Ref 98.34% 34.0% 4.4%
F-Ref + F-Type 98.34% 46.35% 2.66%
F-Ref + F-Children (C <= 1) 94.8% 43.13% 2.84%
F-Ref + F-Children (C <= 2) 93.14% 49.76% 2.06%
F-Ref + F-Ad 96.57% 44.14% 2.82%
F-Ref + F-Time (T < 0.01s) 97.90% 37.67% 3.7%
F-Ref + F-Time (T < 0.1s) 96.13% 41.09% 3.17%
F-Ref + F-Time (T < 1s) 87.51% 55.15% 1.39%
F-Ref + F-Time + F-Children (C <= 1) 94.80% 58.24% 1.49%
F-Ref + F-Time + F-Children (C <= 2) 93.14% 65.39% 1%
F-Ref + F-Time + F-Children (C <= 3) 90.38% 68.73% 0.74%
F-Ref + F-Time + F-Children (C <= 5) 83.09% 73.58% 0.3%
F-Ref + F-Type + F-Ad + F-Children (C <= 2) 91.82% 77.08% 0.45%
F-Ref + F-Type + F-Ad + F-Children (C <= 3) 89% 79.1% 0.29%
F-Ref + F-Type + F-Ad 96.57% 66.41% 1.17%

Table 2.2: Accuracy of the ofϐline algorithm.

We ran additional tests to see the impact of increasing the observation time for several values, from
5s up to 30s. We found thebest trade-off forTO = 15s, even if the choice has limited impact. Weomit
results for the sake of brevity. This choice guarantees a stable accuracy, a low memory footprint,
and a tight enough processing delay. This is conϐirmed by very tiny accuracy difference between the
online approach (in Table 2.1) and the ofϐline one (in Table 2.2): the online algorithm is basically
as accurate as its ofϐline version.

2.4 Quality of Experience for Web browsing

2.4.1 Algorithm design and descripƟon

To perform root cause analysis in performance degradation over the users' browsing sessions, at
the repository level we exploit statistical measurements and classiϐication techniques over the ag-
gregated data coming from different probes (see Section 2.4.2 of Deliverable 3.1).

The continuous analysis ofmean, variance, index of co-variance and othermetrics helps the diagno-
sis algorithm to infer if deviations occur from the usual behavior. Clustering techniques (K-Means)
and statistical classiϐication tools like Decision Trees provide further insights on the QoE from dif-
ferent probes to the same web sites, to identify the root cause of the performance degradation.

Plane 16 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

2.4.2 Results

We are still in the process of forming a statistically signiϐicant dataset for evaluating our clustering
algorithm.

2.5 Mobile network performance issue cause analysis and mul-
Ɵmedia stream measurements

Figure 2.4: Illustration of the segments in a real-world scenario.

In order to detect the types of failures that may cause issues during the video playback, we need to
place measurement probes in selected vantage points so that we can extract performance metrics
fromdifferent segments anddevices along thepath. To collectmeasurements from thedata receiver
and sender's point of view, we place probes at the mobile and the server that correspond to the
endpoints of the connection. We add a third probe at the home gateway to act as an intermediate
vantage point capable of acquiring metrics from both the local (LAN) and the wide are network
(WAN). Here, for simplicity the term WAN encompasses a variety of interconnected networks and
devices as can be seen in Figure 2.4.

2.5.1 Algorithm design and descripƟon

The correlation between QoE metrics such as stalls during playback and metrics describing the
performance of device hardware and network segments is difϐicult to quantify because of their
non-monotonic and some times counter-intuitive relation. Establishedmethods for identifying net-
work or hardware faults do not return information on whether nor how these problems affect the
viewer's experience.
For that purpose, we use machine learning methods to learn the correlations between these met-
rics and QoE metrics and to create a predictive model to detect and characterize the root cause of
playback problems.
For the data processing and analysis we use version 3.6.10 ofWeka. Weka is a collection ofmachine
learning algorithms and tools for processing, classiϐication, regression and clustering. From the

Plane 17 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

variety of algorithms offered by Weka we select Decision Trees to perform the classiϐication of the
instances. The Decision Trees method builds trees to identify the class each instance belongs to
using the concept of mutual information. Our classiϐier of choice for the data analysis is J48 which
is an implementation of the popular C4.5 algorithm offered by Weka.
We collect the dataset from the controlled experiments to establish the ground truth not only for
problematic sessions but also for the type of problem that occurred. We afterwards use it for train-
ing the problem detection algorithm and evaluate it with the dataset from the real-world measure-
ments. In particular, sessions where re-buffering events have been detected are marked as prob-
lematic whereas sessions without buffering as marked as healthy.
The training of the algorithm is performed using the K-fold cross-validation method with K=10.
This training method breaks the dataset to 10 parts of equal size and uses the 9 parts for training
and one for testing. The process is repeated 10 times before producing the ϐinal accuracy of the
classiϐier.
Weuse the ϐiltering tools that are available inWeka to reduce the total number of features by remov-
ing irrelevantmetrics such as IP addresses, ports and string types likeURLs and trafϐic classiϐication
labels. Additionally, we remove all the features that do not variate at all or show very small vari-
ance across all the instances. With this approach we are able to reduce the over-ϐitting problem
where the number of parameters is too large relative to the number of instances and results in the
reduction of the algorithm's performance.
Overall, we accomplish a 50% reduction of the number of features for the controlled experiments
and 38% for the real-world experiments. The lower performance in feature reduction for the real-
world dataset is expected given that in real network and usage conditions there is more variance
in the system and therefore we cannot remove as many parameters with small or none variance.

2.5.2 Results

All the collectedmetrics that correspond to a single video session are aggregated to one instance in
the dataset. Each instance in the controlled experiments dataset is comprised of 343 metrics out
of which there are 113 network metrics for each of the three vantage points, the total number of
re-buffering events and from the hardware measurements of the mobile we get the maximum ob-
served CPU utilization, the minimum amount of free memory and the minimum value of the RSSI.
For the real-world experiments on the other hand, although all hardware measurements as well as
the number of re-buffering events are always available for each instance in the database, the num-
ber of network metrics varies depending on the number of vantage points that were used. There-
fore, in the ϐinal dataset we have instances with either 113 for one vantage point or 226 network
parameters when using two.
Before performing the analysis, the instances in the data need to be labelled appropriately in order
to be identiϐied and evaluated by the classiϐier. Speciϐically, we remove the re-buffering events from
the instances in the controlled experiments data and label non problematic instances as `good'.
The problematic sessions are labelled as either `lan shaped', `lan congested', `wan shaped', `wan
congested', `low rssi', `wiϐi interference' or `mobile load' according to the simulated scenario they
correspond to. In the real-world dataset however we have no knowledge of the type of problem
that caused re-buffering at the player side so we are only able to mark the problematic instances as
`bad'.
The dataset from the controlled experiments consists of 203 instances in total out of which 129

Plane 18 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

are labelled as good and 74 as bad. The second dataset obtained from the real-world test, contains
3410 instances that are divided to 2863 good and 547 bad.
Controlled Experiments Analysis
In the results presented in this and the following section apart from the overall accuracy of the al-
gorithm we also use Precision and Recall. Precision is calculated from the ratio of True Positive
divided by the sum of True Positives (TP) and False Positives (FP) and it expresses the ratio of the
number of relevant instances retrieved to the total number of relevant instances in the dataset. Re-
call is the ratio of TP divided by the sum of TP and False Negatives (FN). It expresses the ratio of
number of relevant instances to the total number of relevant and irrelevant instances retrieved.

Precision = TP
TP+FP , Recall = TP

TP+FN

Detecting Problems: Firstly, we want to examine weather it is possible to identify problematic
video instances through each one of the vantage points or the combination of them. We prepare the
data by merging all the labels from problematic instances to a single label `bad', while preserving
all good labels. We consecutively evaluate for every vantage point separately and ϐinally with all
the points combined. The overall accuracy for themobile and router is 78.8%, for the server 74.4%
and for the combination of all 80.3%. Although the server vantage point is performing worse than
the other twowhen used separately, there is signiϐicant improvementwhenwe takemeasurements
from all probes combined.
In Table 2.5.2 we present the performance of the algorithm per vantage point in terms of Precision
(P) and Recall (R). We observe that the worse performance of the server derives from the lower
accuracy when identifying bad instances. The intuition behind this observation is that most of the
problems in our dataset occur far from the server where there is not enough information to cor-
rectly identify instances as bad.

Mobile Router Server Combined
P R P R P R P R

good 0.84 0.82 0.81 0.87 0.79 0.81 0.83 0.87
bad 0.7 0.73 0.73 0.65 0.66 0.62 0.75 0.72

W. Avg. 0.79 0.79 0.78 0.79 0.74 0.74 0.8 0.8

Table 2.3: Accuracy for problem detection in controlled experiments.

Detecting the Location of Problems: In the next step we aim in verifying the algorithm's accu-
racy when identifying in which part of the data path the problem has occurred. For this purpose
we create three new labels `wan', `lan' and `mobile' based on the locality of the problem. In label
`wan' we merge wan congestion and wan shaping problems, `lan' contains instances from lan con-
gestion, lan shaping, wiϐi interference and low rssi scenarios and ϐinally in the `mobile' we place the
problematic instances that correspond to mobile load.
The percentage of the correctly classiϐied instances drops to 75.95% in this evaluation case. As ex-
pected the accuracy for identifying good instances remains approximately the sameas for good/bad
classiϐication. However in the related accuracies in Table 2.4, we see that mobile device problems
are detected with higher accuracy. This is attributed to the stronger correlation of the hardware
metrics with the particular problem.
From the confusion matrix in Table 2.5.2, we see that there are a lot of false positives for the lan
meaning that the classiϐier is incorrectly identifyingmany problematic instances as good. The poor

Plane 19 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

classiϐication for the lan label originates from themerge of problems that are quite diverse in nature
such as local network and wireless medium faults.

Precision Recall
good 0.84 0.87
lan 0.51 0.51
wan 0.6 0.43

mobile 0.9 0.82
Weighted Avg. 0.75 0.76

Table 2.4: Accuracies for localization detection in controlled experiments.

a b c d classiϐied as
112 10 7 0 a = good
16 25 3 1 b = lan
1 5 12 0 c = wan
1 1 0 9 d = mobile

Table 2.5: Confusion matrix for location detection in controlled experiments.

Detecting the Exact Problem: In the following part of the analysis of the controlled experiments,
we train and evaluate the algorithm using all the labels of problematic scenarios that are available
in our dataset. In thiswaywe assess the accuracywithwhich the classiϐier can detect the root cause
behind the problem experienced by the user.
From the output of the classiϐier we get 73.7% correctly identiϐied instances while different labels
are classiϐied with different accuracies as seen in table 2.5.2. In more detail, we observe low per-
formance for lan congestion and 802.11 related problems but much higher for wan shaping and
mobile load.
The respective confusion matrix reveals that the classiϐier performs better when predicting the
low rssi and the mobile load labels. This is expected due to the use of hardware metrics that are
strong indicators of the device's load and the strength of the signal. We get poor results however
when distinguishing between lan congestion and lan shaping problems. This is attributed to the
fact that there aremany similarities in the network parameters describing the scenarios of shaping
and congestion in the local network and therefore the algorithmhas trouble distinguishing between
the two.
Our next step involves a per-vantage-point evaluation to examine which vantage point is perform-
ing better when identifying each problem type. For this evaluation it is necessary to separate the
measurements from each point to a different dataset. After the separation, we train and evaluate
the classiϐier for each of the three new datasets.
From the results of each classiϐication we compile Table 2.8 where we compare the precision and
recall measures of each vantage point separately and with their combination. From the table we
can observe that the vantage point on the mobile is able to detect with higher accuracy problems
in the LAN segment and issues of the wireless medium. The router performs well when detecting
wan congestion and lan shapingwhile the only problem the server can identifywith better accuracy
than the other vantage points is wan shaping. In terms of overall accuracy, themobile is better than

Plane 20 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Precision Recall
good 0.84 0.83
lan congested 0.24 0.36
lan shaped 0.67 0.6
wan congested 0.71 0.62
wan shaped 1 0.7
low rssi 0.46 0.6
wiϐi interference 0.44 0.36
mobile load 0.9 0.82
Weighted Avg. 0.76 0.73

Table 2.6: Accuracies for root-cause detection in controlled experiments.

a b c d e f g h classiϐied as
107 11 1 1 0 6 2 1 a = good
7 5 2 0 0 0 0 0 b = lan congested
2 2 6 0 0 0 0 0 c = lan shaped
2 1 0 5 0 0 0 0 d = wan congested
2 0 0 0 7 0 1 0 e = wan shaped
2 1 0 0 0 6 1 0 f = low rssi
4 1 0 1 0 1 4 0 g = wiϐi interference
1 0 0 0 0 0 1 9 h = mobile load

Table 2.7: Confusion matrix for root-cause classiϐication.

Plane 21 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

the router vantage point which in turn is better than the server, with respective accuracies 73.77%,
69.94% and 68.85%.

The improved accuracy of themobile, is a strongmotivation for instrumenting users' devices. With
a single probe collecting measurements from the mobile, the user is able to verify if the problem
occurs locally or in a remote part of the network. In the case of a local problem, the algorithm
can help the user troubleshoot by providing information about its root cause. If the issue occurs
remotely, the user is able to report the problem to the respective network administrator.

Another interesting ϐinding from the results in this section is that any vantage point in our system
can tell with good accuracy if a video did not suffer any problems. Based on this insight, middle
entities such as service providers can use TCP-driven detectors to detect problems without having
to instrument the client or the server.

Finally, we conclude that the usage of a combination of vantage points in a distributedmanner, helps
to increase the accuracy of the system. Strategically placing more probes on devices along the data
path such as edge routers, will not only improve the detection of problems but add knowledge to
the system about the location and the nature of the problem.

MOBILE ROUTER SERVER COMBINED
P R P R P R P R

good 0.83 0.88 0.81 0.85 0.79 0.85 0.84 0.83
lan congested 0.45 0.36 0.31 0.29 0.29 0.29 0.24 0.36
lan shaped 0.67 0.57 0.4 0.57 0.5 0.29 0.67 0.6

wan congested 0.4 0.5 0.83 0.62 0.8 0.5 0.71 0.62
wan shaped 0.5 0.33 0.57 0.67 0.67 1 0.7 0.33
mobile load 1 0.73 0.5 0.27 0.75 0.27 0.9 0.82

wiϐi interference 0.5 0.64 0.45 0.45 0.43 0.54 0.44 0.36
low rssi 1 1 0.4 0.29 0.25 0.29 0.46 0.6

Weighted Avg. 0.72 0.74 0.69 0.7 0.69 0.76 0.73 0.74

Table 2.8: Accuracy comparison for all vantage points and labels

2.5.3 MulƟmedia content delivery in wired provider networks

Considering the scenario depicted in Figure 2.5, there is a clear analogy between themeasurements
described above and those implemented in monitoring multimedia content delivery performance
in a provider's (wired) network.

In this scenario, active probes are programmed to request and receive multimedia streams from
a content provider utilizing an ISP's network as transport. These streaming probes correspond to
the mobile devices in the previous scenario. Additionally, the provider might deploy line probes
that test actual line bandwidths within the network. These probes correspond to router measure-
ments of the previous scenario. Finally, high-performance passive probes identify and measure
TCP streams originating from streaming probes towards content provider servers. Thesemeasure-
ments correspond to server-based measurements of the previous scenario.

Realizing that measurements of the two scenario map very well to each other, we conclude that the
diagnosis algorithm outlined formobile network performance can be applied easily formultimedia
content delivery within ISP networks as well.

Plane 22 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.5: Multimedia content delivery measurements in provider networks

2.6 Anomaly detecƟon and root cause analysis in large-scale net-
works

The goal of the CDN Anomaly Detection (CDN-AD) algorithm is to detect macroscopic anomalies
in the aggregate trafϐic served by CDNs, meaning events that involve multiple ϐlows and/or affect
multiple users at the same time. For this purpose, it resorts to the temporal analysis of the entire
probability distributions of certain trafϐic descriptors or features. The proposed statistical non-
parametric anomaly detection algorithm works by comparing the current probability distribution
of a trafϐic feature to a set of reference distributions describing its “normal” behavior. At each iter-
ation the algorithm determines a reference for normality by running a reference-set identiϐication
sub-routine. The purpose is to ϐind distributions in the recent past (e.g., in an observation window
of one or two weeks) which are best suited to represent the current one. In the testing phase the
algorithm assesses the statistical compatibility of the current distribution against the distributions
included in the reference set. If the current distribution is ϐlagged as anomalous awarning is raised,
and it’s discharged to be considered as future reference of normality. For further details about the
CDN-AD we refer the reader to deliverable D4.1, Section 2.7.2.2, and references therein.

Note that the speciϐic trafϐic features to be processed by the tool shall capture both the intrinsic
and dynamic CDNs mechanisms (e.g., number of ϐlows and bytes served by each CDN server IP
address), aswell as end-users experiencedperformance (e.g., ϐlowdownload throughput). Features
distribution are computed on a temporal basis considering time bins of ϐixed length, referred to as
time scale. Time scales is a design parameter that can range from 1 to 60 minutes. Functionally
speaking, the algorithm consists of two phases: the training and the detection phase. During the
training phase the algorithm accumulates distribution timeseries for a period ranging between 7
and 14 days (depending on the considered timescale). Then, during the detection phase, it uses the
information accumulated to identify a suitable reference for normality for the distribution under
test. Results of the anomaly detection test, for each trafϐic dimension, and for each timescale, are
logged independently. Further results correlation, for the purpose of the root-cause identiϐication,

Plane 23 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

is left to the reasoner function and falls beyond the scope of the ADTool implementation.

2.6.1 Algorithm design and descripƟon

ADTool is Perl implementationof the aforementioned statistical AnomalyDetectionalgorithmwhich
runs on top of theDBStream streaming data-warehouse system. The software tool requires suitable
DBStream jobs to compute trafϐic feature distributions at the required time-scale. It is designed to
run online, i.e. it processes the distributions of features as soon as they are available in the DB-
Stream views.
ADTool runs iteratively on the output of DBStream jobs. At every iteration, the program tries to
retrieve the distribution corresponding to the last timebin available and compares it with the dis-
tributions in the reference set (i.e. all the distributions corresponding to timebins in a reference
window of predeϐined length).

2.6.1.1 List of Modules

This section provides an overview of the modules the ADTool consists of.

Conϐigs.pm This module provides an interface between the XML conϐiguration ϐile and the rest
of the software. The parsing of the XML ϐile is done by the XML::Simple Perl standard module.

DataSrc.pm This module provides an interface between the PostgreSQL database used by DB-
Stream and the rest of the software. It allows to connect to the database, query for the last avail-
able data to compute and write back the output. Both the read and the write interactions with the
database are done by the standard Perl DBI module via SQL queries and inserts.

ENKLd.pm Thismodule provides the computationof thenormalizedKullback-Leibler divergence
between two distribution of values. The two distributions are passed to this module as array ref-
erences and do not need to be normalized in advance.

RefSet.pm This module deϐines the package RefSet for managing Reference Sets (collection of
past distributions) After being instantiated, a "raw" RefSet object contains all the distributions in
the speciϐied referencewindow. Themodule provides functions to discard not statistically-relevant
distributions (e.g., not enough samples). The output code canbe either 2 (if distribution to be tested
is too small) or 3 (if the reference set does not contain enough samples).

ADTest.pm This module implements the testing logic of the CDN-AD algorithm. It requires the
distribution to be tested, the reference set, and other algorithm parameters (i.e., α, γ). The output
code can be either 0 (if normal) or 1 (if anomalous).

Plane 24 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

2.6.1.2 DBStream Jobs

In order to run ADTool, it is ϐirstly necessary to set-up a suitable DBStream job to compute counters
of the feature for each variable and time bin. The output view of the job should have the following
columns:

serial_time
<variable name>
<feature name>

Note that a single view can be used to collect multiple feature if the <variable_name> and the time
resolution is compatible.

2.6.1.3 Tool configuraƟon

The conϐiguration of the software is done via an XML ϐile. The available options are:

[database] host
[database] port
[database] username
[database] password
[database] features table name (output of DBStream job)
[database] flags table name (output of ADTool)
[analysis] start timestamp
[analysis] end timestamp (0 means run forever)
[analysis] name of variable upon whom the job has computed the distribution
[analysis] feature name
[refset] width (in days)
[refset] guard period (in hours)
[refset] min refset size (minimum number of distributions in refset)
[refset] min distr size (minimum number of samples in distribution)
[refset] m (number of top ranked distributions in refset)
[refset] k (currently unused)
[ADtest] alpha (algorithm's sensitivity)

A sample conϐiguration ϐile is:

<ADTool_config>
<!-- ***

task description
** -->
<Description>adtool on youtube (ip,imsi_cnt)</Description>

<!-- ***
settings for database connection

** -->
<Database host="localhost" port="5440" dbname="dbstream" user="dbstream" password="FT4hhyhL" >
<features_table>adtool_mw14_gg11_youtube_features_serverip_600</features_table>

Plane 25 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

<flags_table>adtool_youtube_flags_serverip_600</flags_table>
</Database>

<!-- ***
analysis settings (time span, granularity, feature name, etc.)

** -->
<Analysis>
<start>1396648800</start><!-- beginning of analysis -->
<end>0</end><!-- end of analysis, 0 means run online -->
<granularity>600</granularity><!-- time granularity in seconds -->
<variable>server_ip</variable><!-- variable of the distributions -->
<feature>imsi_cnt</feature><!-- name of the traffic feature -->
</Analysis>

<!-- ***
settings for reference set

** -->
<RefSet>
<width>7</width><!-- reference set time window in days -->
<guard>2</guard><!-- guard period in hours -->

<min_distr_size>100</min_distr_size><!-- min number of samples in distributions -->
<min_refset_size>80</min_refset_size><!-- min number of distributions in refset -->
<slack_var>0.1</slack_var><!-- for comparing size of timebins -->
<m>50</m><!-- usually ~1/4 min_refset_size -->
<k>2</k><!-- number of clusters for pruning --> <!-- currently unused -->
</RefSet>

<!-- ***
settings for AD test

** -->
<ADTest>
<alpha>0.05</alpha><!-- sensitivity -->
</ADTest>
</ADTool_config

2.6.1.4 Workflow

The logic is deϐined in the main executable adtool.pl. The arguments for running the program are:
--config␣<XML_CONFIG_FILE>
--log␣<LOG_FILE>

The execution workϐlow of |AdTool| is described in Figure 2.6.

2.6.1.5 Output

Upon completion of each iteration, the output is reported on STDOUT as well as on the database's ϐlag table
speciϐied in the conϐiguration. For each iteration running on a time-bin, the row inserted in the ϐlag table is
composed by the following column:

• beginning timestamp of the timebin

• feature name

Plane 26 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.6: Flowchart of the ADTool.

• output code (0, 1, 2, 3, 4)

• score

• γ

• Φα

• Output codes:

• 0: distribution is ``normal''

• 1: distribution is anomalous

• 2: distribution does not contain enough samples

• 3: refset does not contain enough distributions.

• 4: currently unused

Plane 27 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 2.7: Passive trafϐic analysis in an operational 3G Network. The ADTool analyzes the ϐlows
observed at the Gn interface.

KPI code 0 (A-free) code 1 (Anomaly) code 2 code 3
Vol. per IP 81.5% 13.4% 1.5% 3.6%
Users per IP 84.9% 9.1% 1.5% 4.5%

Table 2.9: ADTool results for distribution of volume and number of users per server IP in a 3G
network, for a full month.

2.6.2 Results

The ADTool is currently running on-line on top of an operational 3G network. Packets are captured on the Gn
interface links between the GGSN and SGSN nodes, using a passive monitoring probe, as depicted in ϐigure
2.7.

Here we report some preliminary results of the outputs generated by the ADTool during a complete month.
In this evaluation, we consider two different KPIs for anomaly detection: the distribution of downloaded
trafϐic volume per server IP address, and the distribution of number of unique users per server IP address.
The rationale behind these two features is that CDN cache selection policies, ϐlash-crowd events, or even
misbehaving user terminals may potentially cause a shift in the aforementioned distributions worth to be
detected.

During the ϐirst week of the evaluation, the ADTool uses the monitored data for training purposes, building
the reference set of normal behavior distributions, for both KPIs. Table 2.9 reports the obtained results
for the full evaluation month, reporting the fraction of generated outputs, according to the aforementioned
output codes. The results of each analysis are reported every 10 minutes, and the total number of outputs is
therefore about 4500.

While the majority of the samples correspond to anomaly free outputs, there is about one out of ten outputs
reporting an anomaly. These results are preliminary and we do not include in this discussion an evaluation
of the detection accuracy or the false alarms generation. Indeed, the main contribution of these results is
to acknowledge that the algorithm is currently running and is able to process all the trafϐic captured on a
national wide mobile network, running on top of DBStream. In the next section, and to complete the overall
image on how DBStream is able to cope with large amounts of monitoring data, we report an evaluation of
its performance as compared to a traditional big data parallel solution based on the MapReduce paradigm.

Plane 28 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

2.7 Anomaly detecƟon and root cause analysis in large-scale net-
works: data mining algorithms

Here we describe the application and performance evaluation of a cloud-based approach, named SĊARĚM,
to efϐiciently mine association rules on a distributed computing model. SĊARĚM has been applied to mPlane
network trafϐic traces for exploratory data analysis and consists of a series of distributed MapReduce jobs
run in the cloud.
The automatic analysis of hugenetwork trafϐic data is a challenging andpromising task. Association rulemin-
ing is an exploratory data analysis method able to discover interesting and hidden correlations among data.
It is a two-step process: (i) Frequent itemset extraction and (ii) association rule generation from frequent
itemsets. Since the ϐirst phase represents the most computationally intensive knowledge extraction task, ef-
fective solutions have been widely investigated to parallelize the itemset mining process both on multi-core
processors and with a distributed architecture. However, when a large set of frequent itemsets is extracted,
the generation of association rules from this set becomes a critical task.
The challenge is twofold: (i) this data mining process is characterized by computationally intensive tasks,
thus requiring efϐicient distributed approaches to increase its scalability, and (ii) its results must add value
to the domain expert knowledge.
In the context of the mPlane project we designed, developed and applied a horizontally-scalable approach.

2.7.1 Algorithm design and descripƟon

As introduced in deliverable D3.1, SĊARĚM consists of a series of distributed jobs run in the cloud. Each
job receives as input the result of one or more preceding jobs and performs one of the steps required for
association rule mining. Currently, each job is performed by one or more MapReduce tasks run on a Hadoop
cluster.
The SĊARĚM architecture contains the following jobs:

• Network measurement acquisition
• Data pre-processing
• Item frequency computation
• Itemset mining
• Rule extraction
• Rule aggregation and sorting

A complete descriptionof the architecture is provided indeliverableD4.2. In the followsweevaluate SĊARĚM
in a cloud-based distributed environment.

2.7.2 Results

A set of preliminary experiments have been performed analyzing SĊARĚMbehavior on real mPlane datasets.
We assessed (i) the performance of the association rule mining, (ii) the network knowledge characteriza-
tion and (iii) the number of extracted association rules by varying the support and conϐidence thresholds
(Section 2.7.2),
SĊARĚM has been applied to two real datasets. We will refer to each dataset as D1 or D2 as shown in Table
2.10, where the number of TCP ϐlows and the size of each dataset are also reported.
Network knowledge characterization

Plane 29 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Dataset Number of TCP ϐlows Size [Gbyte]
D1 11,325,006 5.28
D2 413,012,989 192.56

Table 2.10: Network trafϐic datasets

1,E+00	

1,E+01	

1,E+02	

1,E+03	

1,E+04	

1,E+05	

1,E+06	

1,E+07	

1,E+08	

1,E+09	

Fr
eq

ue
nc
y	

Feature	

(a) Item distribution for the P{reord} feature

0,0E+00	

5,0E+06	

1,0E+07	

1,5E+07	

2,0E+07	

2,5E+07	

3,0E+07	

RT
T=
0-­‐
5:
	

RT
T=
10
-­‐1
5:
	

RT
T=
20
-­‐2
5:
	

RT
T=
30
-­‐3
5:
	

RT
T=
40
-­‐4
5:
	

RT
T=
50
-­‐5
5:
	

RT
T=
60
-­‐6
5:
	

RT
T=
70
-­‐7
5:
	

RT
T=
80
-­‐8
5:
	

RT
T=
90
-­‐9
5:
	

RT
T=
10
0-­‐
10
5:
	

RT
T=
11
0-­‐
11
5:
	

RT
T=
12
0-­‐
12
5:
	

RT
T=
13
0-­‐
13
5:
	

RT
T=
14
0-­‐
14
5:
	

RT
T=
15
0-­‐
15
5:
	

RT
T=
16
0-­‐
16
5:
	

RT
T=
17
0-­‐
17
5:
	

RT
T=
18
0-­‐
18
5:
	

RT
T=
19
0-­‐
19
5:
	

RT
T=
>2
00
:	

Fr
eq

ue
nc
y	

Feature	

(b) Item distribution for theRTT feature

Figure 2.8: Dataset D2

We evaluated the effectiveness of the proposed approach on real network trafϐic traces. In particular, we
analyzed: (i) theusefulness of the extracted association rules in supporting theknowledgediscoveryprocess,
and (ii) the item frequency distribution.
As example, the following two rules R1 and R2 are generated from dataset D1 and D2, respectively. Both rule
have high conϐidence values and lift greater than 1 (rule support, conϐidence, and lift are reported in brackets
after each rule).
R1 : {Port = 80, P{reord} = 0 − 0.1,DataPkt = 1 − 2,DataBytes = 4 − 5} → Class = HTTP (0.313,
0.999, 1.765)
R2 : {P{dup} = 0− 0.1,NumPkt ≤ 1,DataPkt ≤ 1, Class = SSL}→ Port = 443 (0.013, 0.993, 4.944)
Based on ruleR1, the HTTP protocol is mainly used to transmit a set of TCP ϐlows sent by the server through
the TPC port 80. For these ϐlows, the number of packets is in the range 10÷100 and a large number of bytes
is transmitted (from10,000 to 100,000). These ϐlows can be generatedwhen very large ϐiles are downloaded
(e.g., YouTube videos).
Rule R2 reports that the TCP Port 443 (HTTPS) is mainly used to transmit ϐlows with SSL/TLS coded pro-
tocol and less than 10 packets. These ϐlows can be generated when logging into websites through a secure
connection (e.g., Facebook, Twitter).
We also analyzed the item frequency distribution to characterize the network activity. Figure 2.8 consid-
ers the Round-Trip-Time (RTT) and the ϐlow reordering probability (P{reord}), which are discussed as
representative features.
The item distribution for the P{reord} feature is characterized by a very frequent item which models most
TCP ϐlows: they have a very low P{reord}, i.e., from 0 to 0.1. This data distribution analyzed over time and
for different (sub)networks may be exploited to identify periods of time or (sub)networks that become less
reliable or whose packets change path more frequently than usual.

Plane 30 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

 0

 50

 100

 150

 200

 250

 30 35 40 45 50

ite

m
se

ts

MinSup (%)

D1

(a) Number of extracted itemsets for differentMinSup values

 0

 100

 200

 300

 400

 500

 600

 700

 50 55 60 65 70 75 80 85 90

ru

le
s

MinConf (%)

s=50%
s=45%
s=40%
s=35%
s=30%

(b) Number of extracted rules for different values ofMinConf and
MinSup

Figure 2.9: Dataset D1: Effect ofMinSup andMinConf thresholds

The item distribution for theRTT , instead, shows four peaks:

• the ϐirst peak around 5-20 ms may represent local network trafϐic
• the second peak around 100 ms may represent external trafϐic inside the same ISP or in the same
geographical zone (e.g., country, continent)

• the third peak around 170 ms may represent trafϐic towards long-distance destinations (e.g., other
continents)

• ϐinally, the last peak over 200 ms may represent network problems or unresponsive services

Effect of the support and conϐidence thresholds

Minimum support (MinSup) and conϐidence (MinConf) thresholds signiϐicantly affect the number of ex-
tracted itemsets and association rules.
When decreasing theMinSup value, the number of frequent itemsets grows non linearly and the complexity
of the frequent itemset extraction task signiϐicantly increases. High MinConf values represent a tighter
constraint on rule selection. Consequently, when increasingMinConf less rules are mined, but these rules
tend to represent stronger correlations among data. HighMinConf values should be often combined with
lowMinSup values to lead the extraction of peculiar (i.e., not very frequent) but highly correlated rules.
Figures 2.9(a) and 2.10(a) plot, for the two reference datasets, the number of extracted itemsets when vary-
ingMinSup. Figures 2.9(b) and 2.10(b) report the number of association rules for differentMinConf val-
ues.

Plane 31 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 30 35 40 45 50

ite

m
se

ts

MinSup (%)

D2

(a) Number of extracted itemsets for different values ofMinSup

 0

 100

 200

 300

 400

 500

 600

 50 55 60 65 70 75 80 85 90

ru

le
s

MinConf (%)

s=50%
s=45%
s=40%
s=35%
s=30%

(b) Number of extracted rules for different values ofMinConf and
MinSup

Figure 2.10: Dataset D2: Effect ofMinSup andMinConf thresholds

Plane 32 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

3 Distributed compuƟng plaƞorms: tools and performance

In this chapter we report on the tools being developed at the repository level to schedule jobs on distributed
computing platforms, with their design and results.
Tools described in this chapter have been made available by mPlane partners and they can be accessed at
http://www.ict-mplane.eu/public/software.

3.1 Hadoop Fair Sojourn Protocol: a scheduler for Apache
Hadoop

This section presents the design of Hadoop Fair Sojourn Protocol, a size-based scheduler for ApacheHadoop,
developed jointly with partners of the EU-project BigFoot.
A key problem for the applicability of size-based scheduling in general is that job size ismost often not known
exactly a priori: it can rather be estimated.
In Section 3.1.1, we describe a simulation-based evaluation of size-based schedulers in presence of errors;
our result are promising, since we show that size-based scheduling performs well when the job sizes are not
extremely skewed; when the skew is large, on the other hand, we show that simple adaptations are sufϐicient
to obtain close to optimal scheduling in most cases.
These results encourage us to implement size-based scheduling in Hadoop. In Section 3.1.2, we describe
Hadoop Fair Sojourn Protocol (HFSP), our approach to this problem. In context of heterogeneousworkloads,
as the ones expected in mPlane, HFSP performs excellently.
A scheduler such as HFSP relies on the concept of job preemption to release resources for jobs with higher
priorities: waiting for running tasks to complete is not optimal, since it will result in higher latency for high-
priority tasks. In Section 3.1.3, we describe our implementation of a suspend primitive that uses operating
system signaling to stop low-priority tasks, and resumes them when high-priority ones are completed.

3.1.1 RevisiƟng Scheduling Based On EsƟmated Job Sizes

We now begin our exploration of the investigated scheduling issues with a simulation-based analysis of the
behavior of size-based scheduling protocols in the presence of errors: these results guide and motivate us
in the implementation of the Hadoop HFSP scheduler, described in Section 3.1.2. Here, we synthesize a sub-
mitted work which is available as a pre-print [19]: we refer the interested reader to that work for more
detail.

3.1.1.1 Background

We now introduce the SRPT and FSP size-based scheduling protocols, and describe the effects that estima-
tion errors have on their behavior, focusing on the difference between over- and under-estimation. Wenotice
that under-estimation triggers a behavior which is problematic in particular for heavy-tailed job size distri-
butions, and we propose a solution to handle it.
First InFirstOut (FIFO) andProcessor Sharing (PS) are arguably the twomost simple andubiquitous schedul-
ing disciplines in use in many systems; for instance, the FIFO and FAIR schedulers in Hadoop are inspired
by these two approaches. In FIFO, jobs are scheduled in the order of their submission, while in PS resources
are divided evenly so that each active jobs keeps progressing. In loaded systems, these disciplines have se-
vere shortcomings: in FIFO, large running jobs can delay very signiϐicantly small ones that are waiting to be
executed; in PS, each additional job delays the completion of all the others.

Plane 33 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

100
usage (%)

cluster

50

10 15 37.5 42.5 50

time
(s)

100
usage (%)

cluster

10 5020 30

50

time
(s)

job 1

job 2

job 3

job 1 job 3job 2 job 1

Figure 3.1: Comparison between PS (top) and SRPT (bottom).

SRPT Essentially, size-based scheduling adopts the idea of giving priority to small jobs: as such, they will
not be slowed down by large ones. The Shortest Remaining Processing Time (SRPT) policy, which prioritizes
jobs that need the least amount of work to complete, is the one that minimizes the mean sojourn time (or
response time), that is the time that passes between a job submission and its completion [40].
Figure 3.1 compares PS with the SRPT scheduling discipline with an illustrative example: in this case, two
small jobs -- j2 and j3 -- are submitted while a large job j1 is running. While in PS the three jobs run (slowly)
in parallel, in a size-based discipline j1 is preempted: the result is that j2 and j3 complete earlier. It is worth
noting that, in this case, the completion time of j1 does not suffer from preemption: somewhat counter to
intuition, this is often the case for SRPT-based scheduling [28].

FSP SRPT may cause starvation (i.e., never providing access to resources): for example, if small jobs are
constantly submitted, large jobsmay never get served. FSP (also known in literature as fair queuing [34] and
Viϔi [26]) is a policy that doesn't suffer from starvation by virtue of job aging, i.e., gradually increasing the
priority of jobs that are not scheduled. More precisely, FSP serves the job that would complete earlier in a
virtual emulated system running a processor sharing (PS) discipline: since all jobs eventually complete in
the virtual system, they will also eventually be scheduled in the real one.
In the absence of errors, a policy such as FSP is particularly desirable because it obtains a value of MST
which is close to what is provided by SRPT while guaranteeing a strong notion of fairness in the sense that
FSP dominates PS: no jobs complete later in FSP than in PS [22]. When errors are present, such a property
cannot be guaranteed; however, as our experimental results in Section 3.1.1.5 show, FSP still preserves better
fairness than SRPT even when errors are present.

3.1.1.2 Dealing With Errors: SRPTE and FSPE

We now consider the behavior of SRPT and FSP when the scheduler has access to estimated job sizes rather
than exact ones. For clarity, we will refer hereinafter to SRPTE and FSPE in this case.
In Figure 3.2, we provide an illustrative example where a single job size is over- or under-estimated while
the others are estimated correctly, focusing (because of its simplicity) on the behavior of SRPTE; job sojourn
times are represented by the horizontal arrows. The left column of Figure 3.2 illustrates the effect of over-
estimation. In the top, we show how the scheduler behaves without errors, while in the bottom we show
what happens when the size of job J1 is over-estimated. The graphs shows the remaining (estimated) pro-
cessing time of the jobs over time (assuming a normalized service rate of 1). Without errors, jobs J2 does
not preempt J1, and J3 does not preempt J2. Instead, when the size of J1 is over-estimated, both J2 and

Plane 34 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Over-­‐es'ma'on	
 Under-­‐es'ma'on	

t	

t	

t	

t	

Re
m
ai
ni
ng
	
 si
ze
	

Re
m
ai
ni
ng
	
 si
ze
	

Re
m
ai
ni
ng
	
 si
ze
	

Re
m
ai
ni
ng
	
 si
ze
	

J1	
 J2	

J3	

J2	

J3	

J1	
 ^	

J4	

J5	

J6	

J4	
 J5	

J6	

^	

Figure 3.2: Examples for job under- and over-estimation.

J3 preempt J1. Therefore, the only job suffering (i.e., experiencing higher sojourn time) is the one that has
been over-estimated. Jobs with smaller sizes are always able to preempt an over-estimated job, therefore
the basic property of SRPT (favoring small jobs) is not signiϐicantly compromised.
The right column of Figure 3.2 illustrates the effect of under-estimation. With no estimation errors (top), a
large job, J4, is preempted by small ones (J5 and J6). If the size of the large job is under-estimated (bottom),
its estimated remaining processing time eventually reaches zero: we call late a job with zero or negative
estimated remaining processing time. A late job cannot be preempted by newly arrived jobs, since their size
estimation will always be larger than zero. In practice, since preemption is inhibited, the under-estimated
job blocks the system until the end of its service, with a negative impact on multiple waiting jobs.
This phenomenon is particularly harmful when job sizes are heavily skewed: if the workload has few very
large jobs and many small ones, a single late large job can signiϐicantly delay several small ones, which will
need to wait for the late job to complete before having an opportunity of being served.
Even if the impact of under-estimation seems straightforward to understand, surprisingly no work in the
literature has ever discussed it. To the best of our knowledge, we are the ϐirst to identify this problem, which
signiϐicantly inϐluences scheduling policies dealing with inaccurate job size.
In FSPE, the phenomena we observe are analogous: job size over-estimation delays only the over-estimated
job; under-estimation can result in jobs terminating in the virtual PS queue before than in the real system;
this is impossible in absence of errors due to the dominance of FSP over PS. We therefore deϐine late jobs in
FSPE as those whose execution is completed in the virtual system but not yet in the real one and we notice
that, analogously to SRPTE, also in FSPE late jobs can never be preempted by new ones, and they block the
system until they are all completed.

3.1.1.3 Our SoluƟon

Now that we have identiϐied the issue with existing size-based scheduling policies, we propose our counter-
measure. Several alternatives are envisionable, including for example updating job size estimations if new
information becomes available as work progresses: such a solutionmay not however be always feasible, due
to limitations in terms of information or computational resources available to the scheduler.
We propose, instead, a simple solution that requires no additional job size estimation, based on the simple

Plane 35 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

idea that late jobs should not prevent executing other ones. This goal is achievablewith a variety of techniques
having in common the property that the scheduler takes corrective actions when one or more jobs are late,
guaranteeing that -- even when very large late jobs are being executed -- newly arrived small jobs will get
executed soon.
We showhere FSPE+PS, which is a simplemodiϐication to FSPE: the only difference is that, when one ormore
jobs are late, (i.e., they have completed in the emulated virtual system and not in the real one), all late jobs are
scheduled concurrently in a PS fashion. FSPE+PS inherits from FSP and FSPE the guarantee that starvation
is absent, it is essentially as complex to implement as FSP is and, as we show in Section 3.1.1.5, it performs
close to optimally in most experimental settings we observe. We remark that due to the dominance of FSP
with respect to PS, if there are no size estimation errors no jobs can ever become late: therefore, with no
error FSPE+PS is equivalent to FSP.
Several alternatives to FSPE+PS are possible: we experimented for example with similar policies that are
based on SRPT rather than on FSP, that use a least-attained-service policy rather than a PS one for late jobs,
and/or that schedule aggressively jobs that are not late yet as soon as at least one reaches the ``late'' stage.
With respect to the metrics we use in this work, their behavior is very similar to the one of FSPE+PS, and for
reasons of conciseness we do not report about them here. We however encourage the interested reader to
examine their implementation.1

3.1.1.4 EvaluaƟon Methodology

Understanding size-based scheduling systems when there are estimation errors is not a simple task. The
complexity of the system makes an analytical study feasible only if strong assumptions, such as a bounded
error [49], are imposed. Moreover, to the best of our knowledge, no analytic model for FSP (without estima-
tion error) is available, making an analytic evaluation of FSPE and FSPE+PS even more difϐicult.
For these reasons, we evaluate our proposed scheduling policies through simulation. The simulative ap-
proach is extremely ϐlexible, allowing to take into account several parameters -- distribution of the arrival
times, of the job sizes, of the errors. Previous simulative studies (e.g., [33]) have focused on a subset of these
parameters, and in some cases they have used real traces. We developed a tool that is able to both reproduce
real traces and generate synthetic ones. Moreover, thanks to the efϐiciency of the implementation, we were
able to run an extensive evaluation campaign, exploring a large parameter space. For these reasons, we are
able to provide a broad view of the applicability of size-based scheduling policies, and show the beneϐits and
the robustness of our solution with respect to the existing ones.

Scheduling Policies Under Evaluation In this work, we take into account different scheduling poli-
cies, both size-based and blind to size. For the size-based disciplines, we consider SRPT as a reference for its
optimality with respect to theMST.When introducing the errors, we evaluate SRPTE, FSPE and our proposal,
FSPE+PS, described in Section 3.1.1.1.
For the scheduling policies blind to size, we have implemented the First In, First Out (FIFO) and Processor
Sharing (PS) disciplines. These policies are the default disciplines used in many scheduling systems -- e.g.,
the default scheduler in Hadoop [47] implements a FIFO policy, while Hadoop's FAIR scheduler is inspired
by PS; the Apache web server delegates scheduling to the Linux kernel, which in turn implements a PS-like
strategy [41]. Since PS scheduling divides evenly the resources among running jobs, it is generally consid-
ered as a reference for its fairness. Finally, we consider also the Least Attained Service (LAS) [39] policy.
LAS scheduling, also known in the literature as Foreground-Background (FB) [31] and Shortest Elapsed Time
(SET) [17], is a preemptive policy that gives service to the job that has received the least service, sharing it
equally in a PS mode in case of ties. LAS scheduling has been designed considering the case of heavy-tailed
job size distributions, where a large percentage of the total work performed in the system is due to few very
large jobs, since it gives more priority to small jobs than what PS would do.

1http://bit.ly/schedulers

Plane 36 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Table 3.1: Simulation parameters.
Parameter Explanation Default
sigma σ in the log-normal error distribution 0.5
shape shape for Weibull job size distribution 0.25
timeshape shape for Weibull inter-arrival time 1
njobs number of jobs in a workload 10,000
load system load 0.9

PerformanceMetrics In this document, we evaluate scheduling policies according tomean sojourn time
(MST). MST is the time that passes between the moment a job is submitted and when it completes; such a
metric is widely used in the scheduling literature.
Fairness is instead a more elusive concept: in his survey on the topic, Wierman afϐirms that ``fairness is an
amorphous concept that is nearly impossible to deϔine in a universal way'' [48]. We refer to our full work [19]
for an evaluation of fairness based on slowdown, i.e., the ratio between a job's sojourn time and its size.

Parameter Settings Our goal is to empirically evaluate scheduling policies in a wide spectrum of cases.
Table 3.1 synthetize the parameters that our simulator can accept as inputs; they are explained in detail in
the following. In this synthesis, we provide our results obtained by varying shape and sigma only; other
parameters are less fundamental and results are covered in our full work [19].

Job Size Distribution: Job sizes are generated according to aWeibull distribution, which allows us to evaluate
both heavy-tailed and light-tailed job size distributions. Indeed, the shape parameter allows to interpolate
between heavy-tailed distributions (shape < 1), the exponential distribution (shape= 1), the Raleigh dis-
tribution (shape = 2) and bell-shaped distributions centered around the `1' value (shape > 2). We set the
scale parameter of the distribution to ensure that its mean is 1.
Since scheduling problems have been generally analyzed on heavy-tailed workloads with job sizes using
distributions such as Pareto, we consider a default heavy-tailed case of shape = 0.25. In our experiments,
we vary the shape parameter between a very skewed distribution with shape = 0.125 and a bell-shaped
distribution with shape = 4.

Size Error Distribution: We consider log-normally distributed error values. A job having size s will be esti-
mated as ŝ = sX , whereX is a random variable with distribution

Log-N (0, σ2). (3.1)

This choice satisϐies twoproperties: ϐirst, since error ismultiplicative, the absolute error ŝ−s is proportional
to the job size s; second, under-estimation and over-estimation are equally likely, and for any σ and any fac-
tor k > 1 the (non-zero) probability of under-estimating ŝ ≤ s

k is the same of over-estimating ŝ ≥ ks.
This choice also is substantiated by empirical results: in our implementation of the HFSP scheduler for
Hadoop [36], we found that the empirical error distribution was indeed ϐitting a log-normal distribution.
The sigma parameter controls σ in Equation 3.1, with a default -- used if no other information is given -- of
0.5; with this value, the median factor k reϐlecting relative error is 1.40. In our experiments, we let sigma
vary between 0.125 (median k is 1.088) and 4 (median k is 14.85).
It is possible to compute the correlation between the estimated and real size as σ varies. In particular, when
sigma is equal to 0.5, 1.0, 2.0 and 4.0, the correlation coefϐicient is equal to 0.9, 0.6, 0.15 and 0.05 respectively.
The mean of this distribution is always larger than 1, and growing as sigma grows: the system is biased to-
wards overestimating the aggregate size of several jobs, limiting the underestimationproblems that FSPE+PS
is designed to solve. Even in this setting, the results in Section 3.1.1.5 show that the improvements obtained
by using FSPE+PS are still apparent.

Plane 37 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Job Arrival Time Distribution: For the job inter-arrival time distribution, we use aWeibull distribution for its
ϐlexibility to model heavy-tailed, memoryless and light-tailed distributions. We set the default of its shape
parameter (timeshape) to 1, corresponding to ``standard'' exponentially distributed arrivals.

Other Parameters: The load parameter is the mean arrival rate divided by the mean service rate. As default
value, we use the same value of 0.9 used by Lu et al. [33].
The number of jobs (njobs) in each simulation round is 10,000 (in additional experiments -- not shown for
space reasons -- we varied this parameter, without obtaining signiϐicant differences). For each experiment,
we perform at least 30 repetitions, andwe compute the conϐidence interval for a conϐidence level of 95%. For
very heavy-tailed job size distributions (shape ≤ 0.25), results are very variable and therefore, in order to
obtain stable averages, we performed hundreds and/or thousands of experiment runs, until the conϐidence
levels have reached the 5% of the estimated value.

Simulator Implementation Details Our simulator is available under the Apache V2 license.2 It has
been conceived with ease of prototyping in mind: for example, our implementation of FSPE as described in
Section 3.1.1.1 requires 53 lines of code. Workloads can be both replayed from real traces and generated
synthetically.
The simulator has been written with a focus on computational efϐiciency. It is implemented using an event-
based paradigm, and we used efϐicient data structures based on B-trees.3 As a result of these choices, a
``default'' workload of 10,000 jobs is simulated in around half a second, while using a single core in our
machine with an Intel T7700 CPU. We use IEEE 754 double-precision ϐloating point values for the internal
representation of time and job sizes.

3.1.1.5 Experimental Results

We now present our experimental ϐindings. For all the results shown in the following, the parameters whose
values are not explicitly stated take the default values shown in Table 3.1. For the readability of the ϐigures,
we do not show the conϐidence intervals: for all the points, in fact, we have performed a number of runs
sufϐiciently high to obtain a conϐidence interval smaller than 5% of the estimated value. We ϐirst present our
results on synthetic workloads generated according to themethodology of Section 3.1.1.4; we then show the
results by replaying two real-world traces from workloads of Hadoop and of a Web cache.
Additional results, proving that these results apply also to real workloads, are available in our full work [19].

Mean SojournTimeAgainst PS Webegin our analysis by comparing the performance of the three size-
based scheduling policies, using PS as a baseline because PS and its variants are the most widely used set of
scheduling policies in real systems. In Figure 3.3 we plot the value of the MST obtained using respectively
SRPTE, FSPE and FSPE+PS, normalizing it against theMST of PS.We vary the sigma and shape parameters in-
ϐluencing respectively job size distribution and error rate; wewill see that these two parameters are the ones
that inϐluence performance the most. Values lower than one (below the dashed line in the plot) represent
regions where size-based schedulers outperform PS.
In accordance with intuition and to what is known from the literature, we observe that the performance of
size-based scheduling policies depends on the accuracy of job size estimation: as sigma grows, performance
suffers. From Figures 3.3(a) and 3.3(b), we however observe a new phenomenon: job size distribution im-
pacts performance even more than size estimation error. On the one hand, we notice that large areas of the
plots (shape > 0.5) are almost insensitive to estimation errors; on the other hand, we see that MST becomes
very large as job size skew grows (shape < 0.25). We attribute this latter phenomenon to the fact that, as we
highlight in Section 3.1.1.1, late jobs whose estimated remaining (virtual) size reaches zero are never pre-
empted. If a large job is underestimated and becomes ``late'' with respect to its estimation, small jobs will

2https://bitbucket.org/bigfootproject/schedsim
3http://stutzbachenterprises.com/blist/

Plane 38 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

shape

0.125 0.25 0.5 1
2

4

sig
ma

0.125
0.25

0.5
1

2
4

M
ST

/
M

ST
(P

S)

0.25
0.5
1
2
4
8
16
32
64
128

(a) SRPTE.

shape

0.125 0.25 0.5 1
2

4

sig
ma

0.125
0.25

0.5
1

2
4

M
ST

/
M

ST
(P

S)

0.25
0.5
1
2
4
8
16
32
64
128

(b) FSPE.

shape

0.125 0.25 0.5 1
2

4

sig
ma

0.125
0.25

0.5
1

2
4

M
ST

/
M

ST
(P

S)

0.25
0.5
1
2
4
8
16
32
64
128

(c) FSPE+PS.

Figure 3.3: Mean sojourn time against PS.

0.125 0.25 0.5 1 2 4
shape

2

4

6

8

10

M
ST

/
M

ST
(S

R
PT

) SRPTE
FSPE
FSPE+PS

PS
LAS
FIFO

Figure 3.4: Impact of shape.

have to wait for it to ϐinish in order to be served; when job distribution is heavy tailed, this results in large
delays whenever one of the biggest jobs is underestimated.
As we seewith Figure 3.3(c), FSPE+PS outperforms PS in a large class of heavy-tailed workloadswhere SRPTE
and FSPE suffer. The net result is that a size-based policy such as FSPE+PS is outperformed by PS only in
extreme cases where the job size distribution is extremely skewed and job size estimation is very imprecise.
It may appear surprising that, when job size skew is not extreme, size-based scheduling can outperform PS
even when size estimation is very imprecise: even a small correlation between job size and its estimation
can direct the scheduler towards choices that are beneϐicial on aggregate. In fact, as we see more in detail in
the following, sub-optimal scheduling choices become less penalized as the job size skew diminishes.

Impact of shape We now delve into details and examine how schedulers performwhen compared to the
optimal MST that SRPT obtains. In the following Figures, we show the ratio between the MST obtained with

Plane 39 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

0.125 0.25 0.5 1 2 4
sigma

2

4

6

8

10

M
ST

/
M

ST
(S

R
PT

) SRPTE
FSPE
FSPE+PS

PS
LAS

(a) shape=0.25

0.125 0.25 0.5 1 2 4
sigma

1

10

100

M
ST

/
M

ST
(S

R
PT

) SRPTE
FSPE
FSPE+PS

PS
LAS

(b) shape=0.177

0.125 0.25 0.5 1 2 4
sigma

1

10

100

1000

M
ST

/
M

ST
(S

R
PT

) SRPTE
FSPE
FSPE+PS

PS
LAS

(c) shape=0.125

Figure 3.5: Impact of error on heavy-tailed workloads, sorted by growing skew.

the scheduling policies we implemented and the optimal one of SRPT.
From Figure 3.4, we see that the shape parameter is fundamental for evaluating scheduler performance.
We notice that FSPE+PS has almost optimal performance for all shape values considered with the default
sigma=0.5, while SRPTE and FSPE perform poorly for highly skewed workloads. Regarding non size-based
policies, PS is outperformed by LAS for heavy-tailed workloads (shape< 1) and by FIFO for light-tailed ones
having shape> 1 ; PS provides a reasonable trade-off when the job size distribution is unknown. When the
job size distribution is exponential (shape= 1), non size-based scheduling policies performanalogously; this
is a result which has been proven analytically (see e.g., the work by Harchol-Balter [27] and the references
therein). It is interesting to consider the case of FIFO: in it, jobs are scheduled in series, and the priority
between jobs is not correlated with job size: indeed, the MST of FIFO is equivalent to the one of a random
scheduler executing jobs in series [32]. FIFO can be therefore seen as the limit case for a size-based sched-
uler such as FSPE or SRPTEwhen estimations carry no information at all about job sizes; the fact that errors
become less critical as skew diminishes can be therefore explained with the similar patterns observed for
FIFO.

Impact of sigma We have seen that the shape of the job size distribution if fundamental in determining
the behavior of scheduling algorithms, and that heavy-tailed job size distributions are those in which the
behavior of size-based scheduling differs noticeably. Because of this, and since heavy-tailed workloads are
central in the literature on scheduling, we focus on those.
In Figure 3.5, we show the impact of the sigma parameter representing error for three heavily skewedwork-
loads. In all three plots, the values for FIFO fall outside of the plot. These plots demonstrate that FSPE+PS
is robust with respect to errors in all the three cases we consider, while SRPTE and FSPE suffer as the skew
between job sizes grows. In all three cases, FSPE+PS performs better than PS as long as sigma is lower than
2: this corresponds to lax bounds on size estimation quality, requiring a correlation coefϐicient between job
size and its estimate of 0.15 or more.
In all three plots, FSPE+PS performs better than SRPTE; the difference between FSPE+PS and FSPE, instead,
becomes discernible only for values of shape < 0.25. We explain this difference by noting that, when several
jobs are in the queue, size reduction in the virtual queue of FSPE is slow: this leads to less jobs being late
and therefore non preemptable. As the distribution becomes more heavy-tailed, more jobs become late in
FSPE and differences between FSPE and FSPE+PS become signiϐicant, reaching differences of even around
one order of magnitude.

Plane 40 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

In particular in Figure 3.5(b), there are areas (0.5 < sigma < 2) in which increasing errors decreases
(slightly) theMST of FSPE. This counter intuitive phenomenon is explained by the characteristics of the error
distribution: themean of the log-normal distribution grows as sigma grows, therefore the aggregate amount
of work for a set of several jobs is more likely to be over-estimated; this reduces the likelihood that several
jobs at once become late and therefore non-preempt-able. In other words, FSPE works better with estima-
tion means that tend to over-estimate job size; it is however always better to use FSPE+PS, which provides a
more reliable and performing solution to the same problem.

3.1.2 HFSP: Size-Based Scheduling for Hadoop

The promising results described in Section 3.1.1 lead us to implementing HFSP, a size-based scheduler for
Hadoop.
Instead of the FSPE+PS strategy suggested in the previous Section, HFSP can deal with estimation errors by
leveraging on the fact that the Hadoop framework provides information about job progression: therefore,
HFSP starts with a ϐirst rough estimation of job size based simply on the number of map/reduce tasks in a
job, but reϐines this estimation once a few tasks for that job are completed.
This section provides a synthesis of the work that we published in [36]: we refer the interested reader to
that publication for more details.
Implementing a size-based scheduling protocol inHadoop raises a number of challenges. A fewof themcome
from the fact thatMapReduce jobs are scheduled at the lower granularity of tasks, and that they consist of two
separate phases --map and reduce -- which are scheduled independently (Sec. 3.1.2.1). In addition, job size
is in general unknown a priori: to evaluate it, we develop an estimationmodule (Sec 3.1.2.4) that provides, at
ϐirst, a coarse estimation of job size upon submission, and then reϐines it after the ϐirst few sample tasks have
been run. Estimations are used by an aging module (Sec. 3.1.2.3) which outputs job priorities; ϐinally the
scheduler (Sec. 3.1.2.2) uses such priorities to allocate resources while ensuring that sample tasks are allo-
cated quickly, to converge rapidly to a more accurate job size estimation. Next, we describe the components
of our system.

3.1.2.1 Hadoop Scheduling

In Hadoop, the JobTracker coordinates the worker machines, called TaskTrackers. The scheduler resides
in the JobTracker and allocates TaskTracker resources to running tasks: map and reduce tasks are granted
independent slots on each machine.
The scheduler is called whenever one or more task slots become free, and it decides which tasks to allocate
on those slots.
Whena single job is submitted to the cluster, the scheduler assigns anumberofmap tasks equal to thenumber
of partitions of the input data. The scheduler tries to assignmap tasks to slots available onmachines inwhich
the underlying storage layer holds the input intended to be processed, a concept called data locality. Also, the
scheduler may need to wait for a portion ofmap tasks to ϐinish before scheduling subsequent mappers, that
is, the map phase may execute in multiple ``waves'', especially when processing very large data. Similarly,
reduce tasks are scheduled once intermediate data, output from mappers, is available.4 Whenmultiple jobs
are submitted to the cluster, the scheduler allocates available task slots across jobs.
In this work we consider the Hadoop Fair Scheduler, which we call FAIR. FAIR groups jobs into ``pools''
(generally corresponding to users or groups of users) and assigns each pool a guaranteed minimum share
of cluster resources, which are split up among the jobs in each pool. In case of excess capacity (because
the cluster is over dimensioned with respect to its workload, or because the workload is lightweight), FAIR
splits it evenly between jobs. When a slot becomes free and needs to be assigned a task, FAIR proceeds as

4More precisely, a ``slowstart'' setting indicates the fraction of mappers that are required to ϐinish before reducers
are awarded execution slots.

Plane 41 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

follows: if there is any job below its minimum share, it schedules a task of that particular job. Otherwise,
FAIR schedules a task that belongs to the job that has received less resources.

3.1.2.2 The Job Scheduler

In our architecture, the scheduler operates on a set of job priorities that are output by the aging module
(Sec. 3.1.2.3), which uses job size information provided by the estimation module (Sec. 3.1.2.4). Next, we
highlight themain issues thatweencounteredwhile implementingour scheduler, andwemotivateourdesign
choices.

Job Preemption Unlike the abstract protocols shown in Section 3.1.1.1, which schedule full jobs, here
scheduling is performedat the task granularity. Fromanabstract point of view,when thepriority of a running
job is lower than the one of awaiting task, the running job should be preempted to free resources for the other.
In Hadoop, this can be implemented either by killing the running tasks of the preempted job, or by simply
waiting for those tasks to complete. Note that scheduling choices are more critical in situations of high load,
and that the choice of killing running tasks may result in increasing load even more, because the work done
by killed tasks should be performed again. As such, we opt here for wait-based preemption. In Section 3.1.3,
we show our efforts towards a more efϐicient preemption primitive.

Job Phases In MapReduce, a job is composed by a map phase followed (optionally) by a reduce phase.
We estimate job size by observing the time needed to compute the ϐirst few tasks of each phase; for this
reason we cannot estimate the length of the reduce phase when scheduling map tasks. For the purpose of
scheduling choices we considermap and reduce phases as two separate jobs. For ease of exposition, we thus
refer to bothmap and reduce phases as ``jobs'' in the remainder of this section. As we experimentally show
in Section 3.1.3.3, the good properties of size-based scheduling ensure shorter mean response time for both
themap and the reduce phase, resulting in better response times overall.

Priority to Training Initially, the estimation module provides a rough estimate for the size of new jobs.
This estimate is then updated after the ϐirst s sample tasks of a job are executed. To guarantee that job size
estimates quickly converge to more accurate values, the scheduler gives priority to sample tasks across jobs
-- up to a threshold of t% of the total number of slots. Such threshold avoids starvation of ``regular'' jobs in
case of a bursty job arrival pattern.

Data locality For performance reasons, it is important to make sure that map tasks work on local data.
For this reason, we use the delay scheduling strategy [50], which postpones scheduling tasks operating on
non-local data for a ϐixed amount of attempts; in those cases, tasks of jobs with lower priority are scheduled
instead.

Scheduling Policy As a result of all the choices described above, our scheduling policy -- which is called
whenever a task slot frees up -- behaves as follows:

1. Select eligible jobs: those with tasks waiting to be scheduled that conform to the delay scheduling
constraints;

2. Sort them according to the priorities obtained from the aging module;
3. Check if sample tasks are running on less than t%of the slots, and if one or more eligible jobs need to

execute sample tasks:

(a) If so, schedule a sample task from the highest priority of such jobs;
(b) Otherwise, schedule a task from the highest priority eligible job.

Plane 42 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

3.1.2.3 Aging Module

The aging module of HFSP is inspired by the FSPE policy we describe in Section 3.1.1.2. FSPE ``ages'' jobs
by reducing the estimated job size by the amount of service they receive in a virtual simulated PS system;
analogously, HFSP performs aging according to the amount of service jobs obtain in a simulated FAIR-like
scheduler.
The agingmodule takes as input job size estimates producedby the estimationmodule, andoutputs a priority
for each active job, which is used by the scheduling module described above.
To do that, we adopt the notion of virtual time, a technique used in many practical implementations of well-
known schedulers [34, 22, 26]. Essentially, we keep track of the amount of remaining work for each job in a
virtual ``fair'' system, and update it every time the scheduler is called; job priorities are then output sorted by
amount of remainingwork. While the remainingwork does not necessarily reϐlect accurately the completion
time for queued jobs, the order in which those jobs complete in virtual time is all that matters for size-based
scheduling to work.
Job aging avoids starvation, achieves fairness, and it requires minimal computational load, since the virtual
time does not incur in costly updates for jobs already in queue [34, 22].

Max-Min Fairness The estimation module outputs job sizes in a ``serialized form'', that is the sum of
runtimes of each task. As such, the physical conϐiguration of the cluster does not inϐluence estimated size. In
the virtual time, instead, this becomes a factor: for example, a job requiring only a few tasks cannot occupy
thewhole virtual cluster, which has the samenumber of compute slots of the real one. We simulate aMax-Min
Fairness criterion to take into account jobs that request less compute slots than their fair share (i.e., 1/n-th
of the slots if there are n active jobs): a round-robin mechanism allocates virtual cluster slots, starting from
small jobs (in terms of the number of tasks). As such, small jobs are implicitly given priority, which reinforces
the idea of scheduling small jobs as soon as possible.

Job Aging Each job arrival or task completion triggers a call to the job aging function, which decreases the
remaining amount of work for each job according to the virtual allocation described above and to the time
that haspassed fromthe last invocationof the aging function. Thepriorities output by themodule correspond
to the remaining amount of work per job, so that jobs with the least remaining work in the virtual time will
be scheduled ϐirst.

Failures The agingmodule is robustwith respect to failures, and supports cluster size upgrades: themax-
min fairness allocation uses the information about the number of slots in the system which is provided by
the Hadoop framework; once Hadoop detects a failure, job aging will be slower. Conversely, adding nodes
will result in faster job aging.

Job Priority and QoS Our scheduler does not currently implement a concept of job priority; however,
the aging function can be easily modiϐied to simulate a Generalized Processor Sharing discipline, leading to
a scheduling policy analogous to Weighted Fair Queuing [43].

3.1.2.4 Job Size EsƟmaƟon

Size-based scheduling requires knowledge of job size. In Hadoop, such information is unavailable until a job
completes; however, a ϐirst rough estimate of job size can use job characteristics known a priori such as the
number of tasks; after the ϐirst sample tasks have executed, the estimation can be updated based on their
running time.
The estimation component has been designed to result in minimized response time rather than coming up
with perfectly accurate estimates of job length; this is the reason why sample tasks should not be too many

Plane 43 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

(our default is s = 5), and they are scheduled quickly. We stress that the computation performed by the
sample tasks is not thrown away: the results computed by sample tasks are used to complete a job exactly
as those of regular tasks.

Initial Estimation In Hadoop, the number ofmap and reduce tasks each job needs is known a priori. In
turn, eachmap task processes an input split: data essentially residing on a single, ϐixed-size, HDFS block. Our
ϐirst job size approximation is therefore directly proportional to the number of tasks per job.
The size of a map (resp. reduce) job with k tasks is, at ϐirst, estimated as ξ · k · l, where l is the average size
of past map (resp. reduce) tasks, and ξ ∈ [1,∞) is a tunable parameter that represents the propensity the
systemhas to schedule jobs of unknown size. At the extreme ξ = 1, new jobs are scheduled quite aggressively
based on the initial estimate, with the possible drawback of scheduling particularly large jobs too early. More
conservative choices of ξ > 1 avoid this problem, butmight result in increased response times by scheduling
jobs later. We note that particularly small jobs, with s or less tasks, are scheduled immediately and ϐinish in
the training phase.

mapPhase Size It has been observed, across a variety of jobs, thatmap task execution times are generally
stable and short [50, 16]. It is thus reasonable to perform job size estimation using only s sample tasks, albeit
runtime skewmay induce inaccurate size estimation. We recall here that the aging module described above
does not require perfect accuracy.
Our estimation uses a measure of the execution time σi,j for each sample task j of job i. For each job, we
obtain an estimate of themap phase size bymultiplying the average (sample) task runtime by k, which is the
number ofmap tasks for the estimated job.

Data Locality Amap sample task could performworse than normal due to network latencies if operating
on non-local data. However, since the sample tasks are between the ϐirst to be scheduled, there is a larger
choice of blocks to process, making the need of operating on remote data less likely. In combination with the
delay scheduling strategy described in Section 3.1.2.2, we found that data locality issues on sample tasks, as
a result, are negligible.

reduce Phase Size The reduce phase can be broken down in two parts: shufϔle time -- needed to move
and merge data from mappers to reducers -- and the execution time of the reduce function, which can only
start when the shufϔle phase has completed.

Size of shufϔle As soon as a reduce task is scheduled, it starts pulling data from the mappers; once data
from all mappers is available, a global sort is performed by merging all the mappers' output. Since each
mapper output is already locally sorted, a linear-time merge step is sufϐicient.
Thus, an approximate duration of the shufϔle phase can be computed as follows. For each of the s sample
reduce tasks of a job, we measure the time required for their shufϔle phase to complete. This is given by
the difference between the moment a task executes the reduce function, and the moment the same task was
scheduled in the training module. The estimated shufϔle time of the entire reduce phase is then theweighted
average of the individual shufϔle times of the sample tasks multiplied by the total number of reduce tasks of
the job, where the weights are the normalized input data size to each sample task.

Execution Time The execution time of the reduce phase is evaluated analogously to the map phase de-
scribed before. However, reduce tasks can be orders of magnitude longer thanmap tasks, therefore we aim
at providing an estimate of the duration of the sample tasks before their completion. In particular, we set a
timeout ∆. If a sample task j of job i is not completed by the timeout, its estimated execution time will be
σ̃i,j =

∆
pi,j

, where pi,j is the progress done during the execution stage. The progress of a task is computed as
the fraction of data processed by a reduce task over the total amount of its input data.

Plane 44 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Table 3.2: Job sizes in our experimental workloads.
Dataset size Map tasks

Workload
SMALL LARGE

1 GB < 5 65% 0%
10 GB 10− 50 20% 10%
40 GB 50− 150 10% 60%

100 GB > 150 5% 30%

Oncewe obtain the size (or an estimation of it) for each sample task, we compute the total execution time us-
ing the same procedure described in Section 3.1.2.4. The ϐinal estimate of thewhole reduce phase is obtained
by adding the estimated shufϔle time to this estimated execution time.

3.1.2.5 Experiments

This Section focuses on a comparative analysis between the FAIR and HFSP schedulers.

Experimental Setup The cluster is composed by 36 TaskTrackermachineswith 4 CPUs and 8 GB of RAM
each. We conϐigured Hadoop according to advised best practises [6, 7]: the HDFS block size is 128 MB, with
replication factor of 3; each TaskTracker has 2 map slots with 1 GB of RAM dedicated to each and 1 reduce
slots with 2 GB of RAM. In total, our cluster has 72 map slots and 36 reduce slots. The slowstart factor is
conϐigured to start the reduce phase for a job when 95% of itsmap tasks are completed.
HFSP operates with the following parameters: the sample set size s for bothmap and reduce tasks is set to 5;
the∆ timeout to estimate reduce task size is set to 10 seconds; we schedule aggressively jobs that are in the
training phase, setting ξ = 1 and t = 100%. The FAIR scheduler has been conϐigured with a single job pool.

Workloads We generate workloads using PigMix [8], a benchmarking suite used to test the performance
of Apache Pig releases. PigMix is appealing to us because, much like its standard counterparts for traditional
DB systems such as TPC [44], it generates realistic datasets with properties such as data skew, and deϐines
queries inspired by real-world data analysis tasks.
We generated four datasets of sizes respectively 1 GB, 10 GB, 40 GB and 100 GB. Job arrival follows a Poisson
process, and jobs are generated by choosing uniformly at random a query between the 17 deϐined in PigMix,
and applying it to one of the datasets according to a workload-deϐined probability distribution. We evaluate
two workloads:

• SMALL: this workload is inspired by the Facebook 2009 trace observed by Chen et al. [16], where a
majority of jobs are very small. The mean interval between job arrivals is µ = 30 s.

• LARGE: thisworkload is predominantly composed of relatively heavy-duty jobs. In this case, themean
interval between jobs is µ = 120 s.

In Table 3.2, we report the probability distribution for choosing a particular dataset size; we remark that
PigMix queries operate on different subsets of the generated datasets, resulting in a variable number of
map/reduce tasks. Each workload is composed of 100 jobs, and both HFSP and FAIR have been evaluated
using the same jobs, the same inputs and the same submission schedule.
We have additional results -- not included here for conciseness -- that conϐirm our results on different plat-
forms (Amazon EC2 and the Hadoop Mumak emulator), and with different workloads (synthetic traces gen-
erated by SWIM [16]. They are available in a technical report [38].

Plane 45 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Table 3.3: Mean sojourn time (MST) and mean load.
Workload

MST (s) Mean Load
FAIR HFSP FAIR HFSP

SMALL 63 53 2.26 1.99
LARGE 2,291 544 16.80 4.60

101 102 103

Sojourn Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

HFSP

FAIR

(a) Sojourn time for the SMALL workload.

101 102 103 104

Sojourn Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

HFSP

FAIR

(b) Sojourn time for the LARGE workload.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (h)

0

5

10

15

20

25

30

35

L
o
ad

(p
en

d
in

g
jo

b
s)

HFSP

FAIR

(c) Cluster load for the LARGE workload.

Figure 3.6: Macro benchmark results.

Plane 46 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Macro Benchmarks In order to evaluate the overall performance of our system, we compare FAIR with
HFSP on sojourn time -- the interval between a job's submission and its completion -- and load, in terms of
number of pending jobs (i.e., those that have been submitted and not yet completed). Table 3.3 shows mean
sojourn time (across all jobs) and mean load (over the duration of the experiment) for our two workloads.
In the SMALL workload, HFSP decreases the mean sojourn time by around 16%. By observing the empirical
cumulative distribution function (ECDF) of sojourn times in Figure 3.6(a), we notice larger differences be-
tween FAIR and HFSP for jobs with longer sojourn times (note the logarithmic scale on the x axis). In this
workload, the system is on average loaded with around 2 pending jobs (see Table 3.3); since these jobs are
often small, the system is generally able to allocate all tasks of pending jobs, resulting in analogous schedul-
ing choices (and therefore sojourn time) for both FAIR and HFSP. However, when system load is higher, HFSP
outperforms FAIR.
Our results are strikingly different for the LARGE workload (Figure 3.6(b)), where the mean sojourn time
with HFSP is less than a quarter of the one with FAIR. In this workload, most jobs require several task slots,
and complete more quickly since HFSP awards them the entire cluster (if needed) when they are scheduled.
Instead, the sharing strategy of FAIR has the drawback of increasing the sojourn time of all jobs. map phases
ofmost jobs complete earlier inHFSP,making it possible to schedule reducephases sooner thanwith FAIR. As
a result, with HFSP, 30% of jobs complete within 100 seconds from their submission, while in the same time
window FAIR only completes 2% of them; after 1,000 seconds from submission, 90% of jobs are completed
with HFSP while only 15% are completed with FAIR.
Scheduling choices are more critical when the cluster is loaded by jobs that require many resources, and
the difference between the SMALL and LARGE workloads exempliϐies this clearly. Figure 3.6(c) shows the
evolution of load run on the LARGE workload: even if the job submission schedule for HFSP and FAIR is the
same, load is promptly decreased in HFSP by focusing resources on single jobs.
These results allow us to conclude that HFSP performs better than FAIR in two very different workloads; the
advantage is more pronounced when the job and workload size is large with respect to the cluster size. In
that case, scheduling decisions become critical, and the inefϐiciencies of simple fair sharing become apparent.

3.1.3 OS-Assisted Task PreempƟon for Hadoop

In order to avoid wasting computation, HFSP does not kill tasks of jobs that should have been preempted;
instead, it simply waits for them to ϐinish. This choice conserves work, but it is sub-optimal: in this Section,
we describe our efforts in creating a new way of handling preemption for Hadoop, namely by suspending
and resuming work.
We present here a summary of the work we published in [37]. We refer the interested reader to that work
for more detail, also discussing implications on task implementation and on the design of scheduling and
eviction strategies..
We now describe our preemption primitive, that implements task suspension and resume operations. First,
we outline how process suspension and memory paging work in modern operating systems.
Then, we present the implementation of our preemption mechanism. Note that this work focuses solely
on preemption primitives, and glosses over task eviction policies that are within the scope of a job and task
scheduler.

3.1.3.1 Suspension and Paging in the OS

Here we provide a synthetic description of the way OSes performmemorymanagement, whichmotivate our
design and implementation. A more in-depth description of such mechanisms can be found, for example, in
the work of Arpaci-Dusseau [10, Chapters 20 and 21].
In general, system RAM is occupied by ϐile-system (disk) cache and runtime memory allocated by processes
(including map/reduce tasks); when RAM is full -- for whatever reason -- the OS needs to evict pages from

Plane 47 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

memory, either by reclaiming space (and evict pages) from the ϐile-system cache or by paging out runtime
memory to the swap area. Since Hadoop workloads involve large sequential reads from disks, it is a best
practice to conϐigure the Linux kernel to give precedence to runtime memory, always evicting ϐile-system
cache ϐirst [1]. The system therefore only pages out runtime memory to avoid ``out of memory'' conditions,
i.e., when the memory allocated by running processes exceeds the physical RAM.
To decide which pages to swap to disk, OSes generally employ a policy which is a variant of least-recently-
used (LRU) [2]; clean pages -- i.e., those that have not been modiϐied since the last time they have been read
from disk -- do not need to be written and get prioritized when performing eviction. Page-out operations
are generally clustered to improve disk throughput (and amortize on seek costs) by writing multiple pages
to disk in a batch. These implementation policies ensure that paging is efϐicient and with small overheads,
especially if a suspended processes leads to swapping. Most importantly for our case, pages from suspended
processes are evicted before those from running ones.
We recall that it is necessary to make sure that the aggregate memory size for all processes -- both running
and suspended -- does not exceed the size of the swap space on disk, because in such a case the operating
systemwould be forced to kill processes. Since Hadoop tasks can only allocate a limited amount of memory,
this can be ensured by conϐiguring the scheduler so that also the number of suspended tasks per task-tracker
is limited.
Thrashing. Paging, in general, is not problematic unless thrashing happens, a phenomenon where data is
continuously read from and written to swap space [20] on disk. Thrashing is caused by a working set -- i.e.,
the set of pages accessed by running programs -- which is larger than main memory.
In Hadoop, thrashing is avoided because two mechanisms are in place: i) the number of running tasks per
machine is limited (and controlled via a conϐiguration parameter); and ii) the heap space size that a given
task can allocate is limited (and also controlled via conϐiguration). Proper Hadoop conϐiguration can thus
limit working set size and avoid thrashing.
The aforementioned mechanisms prevent thrashing in the same way even when suspension is used. Mem-
ory allocated by suspended processes is outside the working set and hence cannot cause thrashing; pages
allocated for the suspended processes are paged out and in at most once, respectively after suspension and
resuming. Thrashing could only happen if a given job is continuously suspended and resumedby the schedul-
ingmechanism: themoderate cost of a suspend-resume cycle can be thusmultiplied by the number of cycles.
A reasonable scheduler implementation should take into account that suspending and resuming a job has a
cost, and should take measures to avoid paying it too often.

3.1.3.2 ImplementaƟon Details

The concepts that we illustrate here are valid for both Hadoop 1 [5], which is the most widely used Hadoop
implementation in production, Hadoop 2, which uses a new infrastructure for resource negotiation called
YARN [46], and even other frameworks such as Spark [9]. Currently, our implementation targets Hadoop
version 1.
Our preemption primitive exposes an API that can be used both by users on the command line and by sched-
ulers. Mirroring the implementation of the killprimitive inHadoop, we introduce i)newmessages between
the JobTracker (a centralized machine responsible for keeping track of system state and scheduling) and
TaskTrackers (machines responsible for running Map/Reduce tasks), and ii) new identiϐiers for task states
in the JobTracker.

JobTracker Hadoophas a ``heartbeat''mechanismwhere, at ϐixed intervals and every time a task ϐinishes,
TaskTrackers inform the JobTracker about their state.
As soon as the JobTracker receives the command to suspend a task from the user or the scheduler, that task
is marked as being in a MUST_SUSPEND state. At the following heartbeat from the involved TaskTracker, the
JobTracker piggybacks the command to suspend the task. The following heartbeat notiϐies the JobTracker
whether the task has been suspended -- which triggers entering the SUSPENDED state in the JobTracker -- or

Plane 48 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 3.7: Task execution schedules.

whether it completed in the meanwhile.
Analogous steps are taken to resume tasks, exchanging appropriatemessages andhandling the MUST_RESUME
state, returning the state to RUNNINGwhen the process is over.

TaskTracker InHadoop,MapandReduce tasks are regularUnixprocesses running in child JVMs spawned
by the TaskTracker. This means that they can safely be handled with the POSIX signaling infrastructure. In
particular, to suspend and resume tasks, our preemption primitive uses the standard POSIX SIGTSTP and
SIGCONT signals.
These signals are used because (unlike SIGSTOP) they allow handlers to be written tomanage external state,
e.g., when closing and reopening network connections.

Job and Task Scheduler We factor out the role of task eviction policies implemented by the scheduler,
which are not the focus of this work, by building a new scheduling component for Hadoop -- a dummy sched-
uler -- which dictates task eviction according to static conϐiguration ϐiles. This allows to specify, using a series
of simple triggers, which jobs/tasks are run in the cluster andwhich are preempted. In addition to executing
jobs and preempting tasks with our suspend/resume primitives, the dummy scheduler also allows using the
kill primitive and to wait, for the purpose of a comparative analysis.

3.1.3.3 Experimental EvaluaƟon

In our experiments, we evaluate preemptionprimitives in termsof the latency they introduce and the amount
of redundant work they require. We show that our approach outperforms other preemption primitives and
has a small overhead bothwhen jobs are lightweight in terms ofmemory, andwhen they arememory-hungry.

Plane 49 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Experimental Setup Our suspend/resume primitives operate at the task level, and behave in the same
way for both Map and Reduce tasks. We evaluate the behavior of the system in a simple setup: our dummy
scheduler runs two single-task, map-only jobs, called th and tl (h and l stand for high and low priority re-
spectively). tl processes a single-block ϐile stored on HDFS, with size 512MB; th processes single HDFS input
block of size 512 MB. Both jobs run synthetic mappers, which read and parse the randomly generated in-
put. We remark that this setup is analogous to the one used by Cho et al., who evaluated their preemption
primitive using similar synthetic jobs created by the SWIM workload generator [15].
In our experiments, our dummy scheduler preempts the low-priority task tl after it has reached a completion
rate r% (i.e., r%of the input tuples have been processed) and grants the task slot to the high priority task th.
Once th is completed, the scheduler resumes tl, which can complete as well.
Next, we evaluate the behavior of our suspend/resume preemption mechanism against the two baseline
primitives available in Hadoop: wait and kill. When waiting, task th is simply executed after tl completes;
whenkilling, task tl is killed as soon as th is scheduled, and tl is rescheduled fromscratch after the completion
of th. This simple experimental setup is illustrated in Figure 3.7.
According to Hadoop conϐiguration best practices, in our experimental setup we prioritize runtime memory
over disk cache and therefore limit swapping, as discussed in Section3.1.3.1, by setting the Linuxswappiness
parameter to 0.

Performance Metrics Our goals are ensuring low latency for high-priority tasks, and avoid wasting
work: we quantify them, respectively, with the sojourn time of th and themakespan of the workload. Sojourn
Time of th is the time that elapses between the moment th is submitted and when it completes; makespan
is the time that passes between the moment in which the ϐirst task tl is submitted and when both tasks are
complete.

Results We focus on experimental results in case of light-weight tasks. This is the standard case for ``func-
tional'', stateless, mappers and reducers. In this case, the amount ofmemory that tasks allocate is essentially
due to the Hadoop execution engine (i.e., JVM, I/O buffers, overhead due to sorting, etc.).
Stateful mappers and reducers, instead, can allocate non-negligible amounts of memory; we thus comple-
ment our experiments by studying our performance metrics and overheads for memory-hungry jobs, which
represent a worst-case scenario for our preemption primitive.
All our results are obtained by averaging 20 experiment runs; we omit error bars for readability: in all data
points reported, minimum and maximum values measured are within 5% of the average values.

Baseline Experiments Figure 3.8(a) illustrates the sojourn time of th: the arrival rate of h is a parameter
deϐined as a function of tl progress, as shown on the x-axis.
The kill and our suspend/resume primitives achieve small sojourn times, as opposed to wait, in particular
when th arrives early. However, they both incur in some overheads: kill runs a cleanup task to remove tem-
porary outputs of the killed task; suspend/resumemay slow down th in case paging out memory occupied
by tl is needed. In our baseline setup, both jobs are light-weight, hence the suspended process resides only
in memory. This explains the small advantage for our mechanism, which outperforms all other primitives
even when th arrives at 90% completion rate of task tl.
Figure 3.8(b) illustrates our results for the makespan metric, using the same setup described above. In this
case, the makespan is heavily affected by a preemption primitive that wastes work. The wait policy, at the
cost of delaying th, avoids supplementary work and achieves a small makespan; the kill primitive, instead,
wastes all the work done by tl before preemption. Finally, our preemption primitive behaves similarly to the
wait policy, despite the possible overhead due to page-out/page-in cycles.
For light-weight jobs, we conclude that our primitive is superior to both alternatives, as both sojourn times
and makespan are small. We note that the authors of Natjam measured an overhead of around 7% in terms

Plane 50 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

10 20 30 40 50 60 70 80 90
tl progress at launch of th (%)

80

90

100

110

120

130

140

150

so
jo

ur
n

ti
m

e
t h

(s
)

wait

kill

susp

(a) Sojourn time of th

10 20 30 40 50 60 70 80 90
tl progress at launch of th (%)

170

180

190

200

210

220

230

240

m
ak

es
pa

n
(s

)

wait

kill

susp

(b) Makespan

Figure 3.8: Baseline experiments: a comparison of the three preemption primitives with light-
weight tasks.

10 20 30 40 50 60 70 80 90
tl progress at launch of th (%)

80

90

100

110

120

130

140

150

so
jo

ur
n

ti
m

e
t h

(s
)

wait

kill

susp

(a) Sojourn time of th

10 20 30 40 50 60 70 80 90
tl progress at launch of th (%)

170
180
190
200
210
220
230
240
250

m
ak

es
pa

n
(s

)

wait

kill

susp

(b) Makespan

Figure 3.9: Worst-case experiments: a comparison of the three preemption primitives with
memory-hungry tasks.

of makespan, in similar experimental settings as ours. Our ϐindings suggest that the overhead in our case is
negligible.

Worst-Case Experiments The experiments discussed above are valid for simple implementations of
Map and Reduce tasks, that carry out stateless computations on their input. Stateful tasks can, however,
allocate memory, which may force the OS to swap. Since clusters often have plentiful available memory [4],
such a situation is unlikely to be frequent. However, we still consider a ``worst case'' scenario to stress our
primitive: both tl and th allocate a large amount of memory (2 GB in our case; we note that this requires an
ad hoc change to the Hadoop conϐiguration since Hadoop jobs are not generally allowed to allocate such an
amount of memory). This value makes sure that, when running a single task the system does not have to
recur to swap;5 conversely, when the two tasks are present in the system at the same time, one of them is
forced to page out memory. We ensure that tasks allocate memory and that the OS marks pages as ``dirty'',
by writing random values to all memory at task startup, and reading them back when ϐinalizing the tasks.
Figures 3.9(a) and 3.9(b) present the sojourn time and themakespan for the worst-case experimental setup.
While our preemptionprimitive still outperformsboth alternativeswith respect to bothmetrics, it is possible
to notice that the overheads related to paging are visible: with respect to the sojourn time, the kill primitive

5The physical memory of our system is 4 GB; the rest of the memory is needed by the Hadoop framework and by the
operating system services.

Plane 51 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

0 625 MB 1.25 GB 1.875 GB 2.5 GB
memory allocated by th

200
400
600
800

1000
1200
1400
1600

pa
ge

d
by

te
s

(M
B)

0

5

10

15

20

25

ov
er

he
ad

(s
)

swap

makespan

th sojourn time

Figure 3.10: Overheads when varying memory usage.

achieves a slightly lower value; similarly, the wait primitive achieves slightly smaller makespan. Overall, the
overhead due to our preemption primitive is marginal: we further investigate and quantify it in the next
section.

Impact of Memory Footprint We now focus on a detailed analysis of the overheads imposed by the
OS paging mechanism on the performance of our preemption primitive. To do so, we vary the amount of
memory a task allocates in the setup phase.6 In our experiments tl allocates 2.5 GB of memory, and we
parametrize over the amount of memory th allocates. For each experimental run, we measure the number
of bytes swapped by the process executing tl, and compute the degradation of sojourn time and makespan
compared to the kill and wait primitives, respectively.
Figure 3.10 indicates that the overheads due to paging are roughly linearly correlated to the amount of data
swapped to disk. For the sojourn time, our preemption primitive degrades when th allocates more than
1.5 GB of RAM: in the worst-case, sojourn time is 20% larger than with the kill primitive. Similarly, for
the makespan, our mechanism degrades when th allocates more than 1.3 GB: in the worst-case, makespan
is 12% larger than with the wait primitive. Finally, we note that swapped data grows more than linearly
because of an approximate implementation of the page replacement algorithm in Linux (and other modern
OSes), which can lead to more swapping than strictly necessary [14, Chapter 17].

3.2 Schedule: Cache-Oblivious Scheduling of SharedWorkloads

Shared workload optimization is feasible if the set of tasks to be executed is known in advance, as is the case
in updating a set of materialized views or executing an extract-transform-load workϐlow. In this section, we
consider data-intensive shared workloads with precedence constraints arising from data dependencies, i.e.,
before executing some task, other tasks may have to run ϐirst and generate some data needed by the next
task(s). While there has been previous work on identifying common sub-expressions in shared workloads
and task re-ordering to enable shared scans, in this section we go a step further and solve the problem of
scheduling shared data-intensive workloads in a cache-oblivious way.
Our solution relies on a novel formulation of precedence constrained scheduling with the additional con-
straint that once a data item is in the cache, all tasks that require this data item should execute as soon as
possible thereafter. The intuition behind this formulation is that the longer a data item remains in the cache,

6This is where, generally, auxiliary data structures are created to maintain an internal state in a task.

Plane 52 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

the more likely it is to be evicted regardless of the cache size. We give an optimal ordering algorithm using
A* search over the space of possible orderings, and we propose efϐicient and effective heuristics that obtain
nearly-optimal results in much less time.

3.2.1 IntroducƟon to the Problem

There are several data management scenarios in which the workload consists of concurrent tasks that are
known in advance. For example, extract-transform-load (ETL) processing involves executing a predeϐined
workϐlow of operations that pre-process data before inserting it into the database. Another example is data
stream processing and publish-subscribe systems, in which a predeϐined set of queries is continuously exe-
cuted on incoming data. Also, in data warehouses, materialized viewmaintenance is often done periodically,
in which all the views, which are known in advance, are updated together.
Previous work has recognized optimization opportunities in these scenarios, referred to as shared work-
loads, including scan sharing, shared query plans and evaluating common sub-expressions only once [30].
In this work, we go a step further and address the following problem: given a shared workload, even after
identifying common sub-expressions and shared scan opportunities, it is still not clear what is an optimal
ordering of operations that maximizes the re-use of cached results? Furthermore, since we may not know the
exact amount of cache that is available to the data management system at a given time, we want to generate
a task ordering in a cache-oblivious way, i.e., in a way that exploits caching without knowing the cache size.
Throughout this work, we will use the term ``cached results'' in a general sense. Depending on the applica-
tion, this could refer to the disk-RAM hierarchy or the RAM-cache hierarchy.

MoƟvaƟng Example

While the solution presented in this work is applicable to any data-intensive shared workload (i.e., where
data I/O is the bottleneck, not CPU cycles), our motivation for studying cache-oblivious task ordering comes
from Data StreamWarehouses (DSWs) such as DataDepot [25] and DBStream [11]. DSWs are a combination
of traditional data warehouse systems and stream engines. They support very large fact tables, materialized
view hierarchies and complex analytics; however, in contrast to traditional data warehouses that are usually
updated once a day or once a week, DSWs are refreshed more often (e.g, every 5 minutes) to enable queries
over nearly-real time andhistorical data. Example applications includenetwork, datacenter or infrastructure
monitoring, data analysis for intelligent transportation systems and smart grid monitoring.
Since the ``claim to fame'' of DSW systems is their ability to ingest new data and refresh materialized views
frequently, the view maintenance operations must be performed efϐiciently. The system must ϐinish prop-
agating one batch of new data throughout the view hierarchy before the next batch arrives. Otherwise, at
best a backlog of buffered data will build up, and at worst some data will be lost and not available for future
analysis.
Based on our experience with building and tuning DSW systems for network monitoring data, the efϐiciency
of viewmaintenance operations depends on the order in which they are performed, which affects the extent
towhich cached data are re-used. For example, consider the simple view hierarchy shown in Fig. 3.11, with 0
and1being base tables and the other nodes corresponding tomaterialized views (real applications can easily
have hundreds of views). Note that some views (e.g., 2 and 4) are computed directly over base tables while
others are computed over other views (e.g., 5). This is the predeϐined workload that a DSW will repeatedly
execute when a batch of new data arrives for tables 0 and 1.
The view hierarchy illustrated in Fig. 3.11 forms a precedence graph. When a batch of new data arrives for
table 1, we must ϐirst insert it into table 1, and then we can use it to update views 2 and 4. Since view 5
needs view 2 as an input, it can only start processing after view 2 was updated. Thus, a legal ordering of the
view updates must satisfy the given precedence constraints; e.g., we cannot update view 5 if we have not yet
updated view 2.
However, different legal orderings may lead to different extents of cache re-use. For example, right after

Plane 53 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

4

1

2 5

30

Figure 3.11: A precedence graph corresponding to two base tables and four materialized views.

updating table 1 with new data, that new batch of data is likely to be in the cache. Therefore, we should then
update views 2 and 4 while the new batch of data is in the cache. On the other hand, if we update table 0 in
between views 2 and 4, then the new batch of data from table 1 is more likely to be evicted and will have to
be reloaded before updating view 4. Put another way, with this ordering, we would need a larger cache to
avoid cache misses.

Challenges

Even in the simple example above, it is not obvious which ordering makes the best use of cached results. It
makes sense to update views 2 and 4 immediately after updating table 1, but shouldwe update view 2 before
4 or vice versa? As the number of tasks in the workload and their data dependencies increase, so does the
complexity of choosing an efϐicient ordering. Furthermore, in practice we usually do not know exactly how
much cache is available for a given task at a given time. For instance, in a DSW, view updates compete for
resources with ad-hoc queries.
The intuition behind our solution is simple. The longer a data item remains in the cache, the more likely it
is to get evicted. Thus, tasks that require some data item should be scheduled as soon as possible after this
data item is placed in the cache. In other words, we need to minimize the amount of time a data item (e.g.,
a new batch of data loaded into a materialized view) spends in the cache until all the subsequent tasks that
need it have been executed. Note that these objectives are cache-oblivious in the sense that we do not need
to know the cache size to achieve them.
For example, Fig. 3.12 illustrates two possible legal orderings of the ϐive tasks from Fig. 3.11, obtained by
linearizing the view precedence graph. For each node that includes at least one outgoing edge (e.g., each
task that produces data required by other task(s)), we can compute how long these data must remain in the
cache. At the top of the ϐigure, the ``distance'' between table 0 and view 3, which requires data from table 0,
is four, i.e., three other tasks will run in between. For view 2, the maximum distance is three, since both view
3 and view 5 need data from view 2, and a total of three view updates will run from the time view 2 data are
inserted into the cache until both view 3 and view 5 updates are completed. On the other hand, the ordering
shown at the bottom of the ϐigure has a distance of only one between table 0 and view 3---they are executed
one after the other and data from table 0 is more likely to still be in the cache at the time of execution of view
3. The idea behind our approach is to minimize the distance between related tasks and therefore increase
the likelihood of re-using cached results, without having to know the cache size (our notion of distance will
be formalized in Section 3.2.2).

3.2.2 Problem Statement

The general problem we investigate in this work is the scheduling of tasks with precedence constraints cor-
responding to data dependencies among the tasks. Precedence constraints impose a partial order on the
tasks. This partial order is given as input in the form of a directed acyclic graph (DAG) G = (V,E), where
each node v ∈ V represent a task and each directed edge e = (u, v) ∈ E is a precedence constraint, which
requires that task u has to be scheduled before task v. Optionally, the input may include the size the output

Plane 54 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

41 2 5 30

41 2 530

Optimized solution:

Simple solution:

Figure 3.12: A simple and a optimized ordering of the tasks from Figure 3.11.

of each task; we will deal with this later on in this section. In addition to satisfying the given precedence
constraints, we will impose optimization goals on the generated ordering to maximize the re-use of cached
data without knowing the cache size.
Gmay consist of a number of connected components, e.g., a view hierarchy that uses some set of base tables,
and another view hierarchy that is sourced from a different set of base tables. Since inter-dependencies and
therefore cache optimization opportunities only exist in each connected component, we can deal with each
connected component separately, and thus we assume from now on thatG is connected.
We assume the tasks are data-intensive. That is, the bottleneck is loading the data into the cache rather than
the subsequent processing; otherwise, even having an unlimited cache would not help much. We assume a
cache-oblivious setting, in which we do not know the size or granularity of the cache. Further, we assume
that the tasks belonging to a given connected component are to be scheduled serially on a single machine,
although different connected components can be scheduled in parallel. We defer a full treatment of multi-
threaded scheduling in our context, as well as handling task priorities, to future work.
Let σ : V → {0, 1, ..., |V |} be a schedule function that orders the tasks (i.e., the nodes in the precedence
graph) in a given workload. The precedence constrained scheduling problem as formulated in [23] asks
whether a schedule canmeet a deadline. On a single-processor system, the problem of scheduling tasks with
precedence constrains, without taking caching into account, is solvable in polynomial time [23]. However,
real systems beneϐit from caching: the result of a preceding task u can be retrieved from the cache for task v,
if the cache has enough capacity to keep the result of v despite other tasks that are scheduled between u and
v. Therefore, minimizing the distance between u and v in the schedule σ, which is expressed by |σ(u)−σ(v)|,
increases the likelihood of a cache hit.
There are two classical problems that express related objectives: (1) directed bandwidth, which aims to
construct a schedule with a bound on the maximum distance of an edge in the precedence graph, and (2)
directed optimal linear arrangement, which aims to construct a schedule with a bound on the sum of the
distances for all edges:
Directed bandwidth (DBW) (GT41 in [23], GT43 in [18]): Given a graphG = (V,E) and a positive integerK ,
is there a schedule function σ : V → {1, ..., |V |} such that ∀(u, v) ∈ E : σ(u) < σ(v) and

max |σ(v)− σ(u)| ≤ K ? (3.2)

Directed optimal linear arrangement (DLA) (GT42 in [23], cf. GT44 in [18]): Given a graphG = (V,E) and a
positive integerK , is there a schedule function σ : V → {1, ..., |V |} such that ∀(u, v) ∈ E : σ(u) < σ(v) and∑

(u,v)∈E

|σ(v)− σ(u)| ≤ K ? (3.3)

Both of the above problems are NP-complete [24, 35]. Note that the problems are deϐined as decision prob-
lems, for which the corresponding optimization problems can be shown to be equally complex.

Plane 55 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

In our context, solving theDBWproblemonly optimizes for the single longest edge in the entireworkload and
does not take any other data dependencies into account. Also, DLA is not suitable in the context of caching
as it was originally meant for scheduling of production workloads, in which a task produces multiple items,
one for each subsequent tasks it is connected to. For example, recall Fig. 3.12 and note the edges from task 2
to tasks 3 and 5. DLA counts both of these edges, effectively assuming that two copies of the output of task 2
need to be stored. However,we are only interested in the longest edge from a task to any subsequent task that
depends on it, as that determines how long the data generated by the initial task need to stay in the cache.
This way, the resulting schedule is optimized for re-use of cached results irrespective of the cache size.
Based on the above observation, we formulate a new problem, total maximum bandwidth, that reϐlects our
objective, which is a combination of DBW and DLA:
Total Maximum Bandwidth (TMB): Given a graph G = (V,E) and a positive integer K , is there a schedule
function σ : V → {1, ..., |V |} such that
∀(u, v) ∈ E : σ(u) < σ(v) and ∑

u∈V

max
{v|(u,v)∈E}

|σ(v)− σ(u)| ≤ K ? (3.4)

If the input also includes the size of the output of each task u, call it ωu, then we can extend TMB toWeighted
Total Maximum Bandwidth (WTMB) by optimizing for the weighted distance of the longest edge from any
task to a dependent task. For WTMB, the optimization problem becomes:∑

u∈V

ωu max
{v|(u,v)∈E}

|σ(v)− σ(u)| ≤ K ? (3.5)

We close this section with an example of TMB and DBW. Fig. 3.13 (top) shows a precedence graph for ϐive
tasks, followed by twopossible schedules (A andB). Schedule A) is optimized for TMB and has a TMB score of
six: the distance between task 0 and 2 (of 1) plus the distance between task 2 and 4 (of 3), plus the distance
between task 1 and 3 (of 1), plus the distance between task 3 and 4 (of 1). Its DBW score is three (the
maximum over these distances). Schedule B) is optimized for DBW; its DBW score is two and its TMB score
is seven.
Fig 3.13 also shows the data outputs that must be cached throughout the execution of the schedules, assum-
ing an optimal eviction policy. In schedule A), we start with the output of task zero, which can be evicted as
soon as task 2 is done. After task 2 is done, its output is in the cache, and the output of task 1 is added when
task 1 is done. After task 3 is done, the output of task 1 can be evicted. In schedule B), we also start with the
output of task zero, and adding the output of task 1 after it is done, and so on. Notice that schedule A), which
optimizes for TMB, requires less cache over time since only one item needs to be stored in the second step,
compared to two items in schedule B).

3.2.3 Algorithms

In this section, we present algorithms that take in a precedence graph and output a schedule optimized for
TMB orWTBM if the task output sizes are known (Equations 3.4 and 3.5, respectively). We start by deϐining
some of the concepts and subroutines that will be used by the algorithms (Section 3.2.3). We then present an
optimal algorithm based on A*-search of the complete space of possible schedules (Section 3.2.3), followed
by three approximate algorithms that examine a subset of possible schedules: a simple breadth-ϐirst baseline
approach (Section 3.2.3) and two heuristics, a greedy algorithm that always chooses a task whose distance
to its predecessor is the smallest (Section 3.2.3) and an algorithm that chooses tasks which are likely to lead
to efϐicient schedules (Section 3.2.3).

Preliminaries

First, we deϐine the candidate search graph, G = (V ,E), in which the sequence of edge labels along every
path from the start to the sink is a feasible schedule that obeys the precedence constraints encoded by the

Plane 56 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

4

0 2

1 3

0 2 1 3 4

3

1 1 1

A)

0 1 2 3 4
1

222B)

0cache: 2 1 3

0 0 1 2

2 2

1 2 3

cache:

Figure 3.13: An example comparing TMB with DBW.

given precedence graphG = (V,E)7. For example, the candidate search graph corresponding to the prece-
dence graph fromFig. 3.11 is shown in Fig. 3.14. Each node v ∈ V denotes the schedulable tasks at that point
in the schedule, i.e., those which can now be executed because all of their precedence constraints have been
met. Each edge (u, v) ∈ E is labeled with the name of the task that is to be executed at that step. The start
node at the top of Fig. 3.14 contains tasks 0 and 1, which must run before any other tasks. If we follow the
right edge, labeled 1, the schedulable tasks are now 0, 2 and 4, and so on.
We can construct G fromG in a straightforward way. In the ϐirst step, the source node inG contains all the
root nodes in G (i.e., the tasks without any predecessors). In each subsequent step, we create edges for all
tasks contained in the labels of nodes created in the previous step, labeled with the task number. For each
of the created edges, we created a new node in G that contains the tasks that are now schedulable (if such
a node has not already been created). Finally, if no more nodes are schedulable, the edges are connected to
the sink node, labeled with ∅.
Since we create G on-the-ϐly, the following deϐinitions are based on a partial schedule. Let s be a possibly
partial schedule of |s| tasks. Let get_cands(G, s) := {v : (u, v) ∈ E and u ∈ s and v /∈ s}. That is, get_cands
returns the set of schedulable tasks that can now be appended to s assuming that all the tasks in s have
already been executed. Furthermore, for a task u, let successors(u) be the set of tasks that depend on u, i.e.,
successors(u) = {v : (u, v) ∈ E(G)}.
Finally, we deϐine a tmb_cost(s,G) function that evaluates the Total Maximum Bandwidth cost of a possibly
partial schedule s according to Equation 3.4 (or Equation 3.5 if the task output sizes ω(u) are known). Let
σ be the ordering function of s (recall Section 3.2.2). For each task u in s, we compute tmb_cost(s,G) as
follows.

1. if u has no successors, do nothing

2. else if all of u's successors are already in s, add to the total cost the distance between u's last successor
and u, i.e., maxv∈successors(u) |σ(v)− σ(u)|, multiplied by ω(u) if given

3. else (if not all of u's successors are in s), add to the total cost the quantity |s| + 1 − σ(u), which is
a lower bound on the distance between u's last successor (which has not yet been scheduled) and u
(again, multiplied by ω(u) if given)

7A similar search graph was used in [45] in the context of the direct optimal linear arrangement problem.

Plane 57 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

0,1

1

0

0,2,4

1

2,4

1 0

0,4,5

2

0,2

4

3,4,5

2

2

40

0,5

4

0,4

5 0 2

3,5

4

4,5

3

3,4

5 2 0

0

50 4

5

3

3

54

4

5 43 0

Ø

5 34

Step 4

Step 3

Step 2

Step 1

Step 5

Step 6

Figure 3.14: Candidate search graph for the workload whose precedence graph was shown in Fig-
ure 3.11.

For example, consider the partial schedule s = ⟨0, 1, 2, 4⟩ for the precedence graph from Fig. 3.11. For task
zero, the cost is two since its successor, task 2, appears two positions later in the sequence. For task 1, the
cost is 3, which is a lower bound on its true cost (its successor, task 3, has not yet been scheduled). The
cost for task 2 is one and the cost for task 4 is one, which, again, is a lower bound on its true cost. Thus,
tmb_cost(s,G) = 2 + 3 + 1 + 1 = 7.
Algorithm 2 shows the pseudo-code for tmb_cost. Each task in the possibly partial schedule s is considered
sequentially. Lines 6 through 11 count how many of the current task's successors are in s and record the
position in s of the furthest successor of the current task. Note the use of the schedule function σ to ϐind
the position of outTask in s. Line 12 counts the total number of successors of a given task. If this number
is zero, the current task does not incur any TMB cost. Otherwise, if all the successors have already been
scheduled, we can precisely compute the TMB cost in line 16, which is simply the difference in the position
of the furthest successor and the task itself. Otherwise, line 18 computes a lower bound on the given task's
TMB cost. In line 20, we add the cost of the current task to the total cost of the schedule. Note the ω function
that determines the output sizes for WTMB. In case of TMB, ω(task) is simply one for every task.

OpƟmal Algorithm Based on A* Search

We begin with an optimal algorithm based on A* search that considers every possible schedule and selects
an optimal one with the lowest tmb_cost. As we will experimentally show in Section 3.1.3.3, this algorithm
is not feasible in practice for non-trivial problem instances because the number of possible schedules can be
very large.
A* search ϐinds a least-cost path between two nodes, in our case the start node and the sink node of the
candidate search graph (i.e., a least-cost schedule). For each node x, the cost function used by A* includes

Plane 58 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Algorithm 2 (Weighted) tmb_cost
1: cost = 0 // the overall cost of the schedule
2: for task in s do
3: stepCost = 0
4: maxOutPos = 0 // position of furthest successor
5: outTasksDone = 0
6: for outTask in successors(task) do
7: if outTask in s then
8: outTasksDone++
9: maxOutPos = max(σ[outTask], maxOutPos)

10: end if
11: end for
12: ℓ = len(successors(task))
13: if ℓ == 0 then
14: do nothing // no successors
15: else if outTasksDone == ℓ then
16: stepCost = maxOutPos - σ(task)
17: else
18: stepCost = len(s) - σ(task)
19: end if
20: cost += ω(task) * stepCost
21: end for
22: return cost

two parts: g(x), which is the cost of the path from the start node to x, and h(x)which is a heuristic function
that approximates, but must not overestimate, the cost of the path from x to the sink node. In our problem,
g(x) is simply tmb_cost(s) where s is the schedule corresponding to the path from the start node to x. The
more interesting part is h(x).
To solve our problem, we deϐine h(x) as the sum of the outgoing edges present in the precedence graph for
each task that has not yet been scheduled along the path from the start node to x. To understand why this
is an admissible function for A* search (i.e., one that does not overestimate the remaining cost of the path),
note that if a task node has an outgoing edge in the precedence graph, then there is a successor task that
must be scheduled after that node. Thus, a lower bound on the total maximum bandwidth cost for the given
task is the number of its outgoing edges in the precedence graph, i.e., the number of its successors. This
lower bound occurs if all the successors are scheduled immediately after the given task. If any other task is
scheduled before the last successor, the cost can only increase.
For example, consider the partial schedule s = ⟨0, 1, 4⟩ based on Fig. 3.11. The g(x) function of the node in
the candidate search graph corresponding to this partial schedule is simply tmb_cost(s,G), which is 6 (three
each for task zero and one, since not all of their successors have been scheduled, and zero for task 4 because
it does not have any successors). To compute h(x), note that tasks 2, 3 and 5 are yet to be scheduled. The
sum of the outgoing edges of these three nodes in the given precedence graph is two, which gives us h(x).
Thus, the total cost of s as computed by A* search is g(x) + h(x) = 8. It is easy to verify that no complete
schedule with s as its preϐix can have a tmb_cost of less than 8.

Baseline Algorithm

We now present the ϐirst of three algorithms that consider a subset of the possible schedules and therefore
are faster than the A*-based algorithm, but are not guaranteed to ϐind a good solution. The ϐirst such algo-
rithm is the simplest and fastest approach we refer to as Baseline: at every step, it randomly chooses one of

Plane 59 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

the currently-schedulable tasks. Thus, using the precedence graph from Fig. 3.11 as input, in the ϐirst step,
Baseline executes tasks 0 and 1 in random order, then tasks 2, 3 and 4 in random order, and then task 5. The
running time of Baseline corresponds to that of breadth-ϐirst-search, which isO(|V |+ |E|).

Greedy Algorithm

The next algorithm is the standard greedy heuristic applied to our problem: at every step, it chooses a
schedulable task that yields the lowest tmb_cost(s,G) when added to the current partial schedule s. Ties
are broken randomly.
Using the precedence graph from Fig. 3.11 as input, the greedy heuristic ϐirst decides between tasks zero and
1. For both s=⟨0⟩ and s=⟨1⟩, tmb_cost(s,G) = 1 since not all of 0's or 1's successors, respectively, have been
scheduled. Suppose the tie-break results in task 1 being sequenced ϐirst. In the next step, the schedulable
tasks are still zero, plus 2 and 4. For s=⟨1, 0⟩, tmb_cost(s,G) = 2. For s=⟨1, 2⟩, tmb_cost(s,G) is 2 due to task
1 plus 1 due to task 2, which gives 3. For s=⟨1, 4⟩, tmb_cost(s,G) = 2 due to task 1 (plus zero due to task
4 since it has no successors). Thus, the greedy algorithm randomly chooses between task 0 and 4 to follow
task 1. We omit the remaining steps for brevity.
Wenowanalyze the runtime complexity of the greedyalgorithm. It uses the get_cands function to retrieve the
set of currently schedulable tasks. However, since each step of the algorithm adds one task to the schedule,
only the successors of this new task need to be added to the schedulable set. This givesO(|V |+ |E|) for all
get_cands calls over all the iterations.
The runtime is dominated by calling tmb_cost for the considered schedules, which requires looping over all
the outgoing edges of the tasks already in the schedule. This givesO(|E|) per call.
Since the algorithm iterates |V | times, and, clearly, at every iteration there are no more than |V | schedulable
tasks, for which tmb_cost is evaluated, the overall complexity of the greedy algorithm isO(|V |2|E|).

HeurisƟc Algorithm

Our ϐinal algorithm is calledHeuristic. In contrast to the greedy algorithm, which only examines the tmb_cost
of adding every schedulable task to the current schedule in each iteration, the heuristic algorithm computes a
complete feasible schedule for each schedulable task in every iteration, and chooses the taskwith the lowest-
cost complete schedule. However, to keep the running time manageable, the heuristic algorithm cannot ex-
plore every possible feasible schedule (as does the A* algorithm). Instead, the complete schedules for each
schedulable task are heuristically computed via deepest-ϐirst traversal, as explained below.
First, the heuristic algorithm pre-processes the precedence graph G by adding depth information to each
node, corresponding to the distance to the furthest ancestor. For instance, in Fig. 3.11, the depth of tasks
zero and 1 is zero, the depth of tasks 2 and 4 is one, the depth of task 5 is two, and the depth of task 3 is also
two (its distance to task zero is one, but the distance to its other ancestor, task 1, is two).
Next, we illustrate what happens in the ϐirst iteration using Fig. 3.11 as input. Initially, the only schedulable
tasks are zero and 1. We need to build complete schedules starting with zero and 1, respectively, compute
their tmb_cost, and choose the task whose complete schedule has a lower tmb_cost (and we break ties arbi-
trarily).
The complete depth-ϐirst schedule that startswith task 1 is computed as follows. After task 1 has been sched-
uled, the schedulable tasks are zero, 2 and 4, of which either 2 or 4 have the largest depth. Let us assume
task 2 is chosen next. The schedulable tasks then become zero, 4 and 5, of which is chosen because its depth
is the largest. With the partial schedule now ⟨1, 2, 5⟩, the schedulable tasks are zero and 4. We choose 4, and
ϐinally zero and three. This gives the complete schedule s = ⟨1, 2, 5, 4, 0, 3⟩. Its tmb_cost is three for task 1, 4
for task 2, and one for task zero, which gives 8.
Similarly, the complete depth-ϐirst schedule that starts with task zero is computed as follows. After task zero
has been scheduled, the only schedulable task is 1, so we choose it. Next, we have a choice between tasks 2

Plane 60 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

0,1 (9)

1 (9)

0

0,2,4 (8)

1

2,4 (9)

0

0,2 (6)

4

0,4,5 (8)

2

2 (7)

0

0,5 (6)

2

0 (6)

5

3,5 (6)

0

3 (7)

5

5 (6)

3

(6)

5

Best Path

Path to candidate

Deepest first estimate

Candidates Cost

3,5 (6)

Figure 3.15: Visualization of a run of the Heuristic algorithm on the candidate search graph created
from the precedence DAG in Fig. 3.11.

and 4, both of which have the same depth, so let us say we choose task 2. Then, the schedulable tasks are
3, 4 and 5, of which 3 and 5 have the highest depth, so let us say we choose task 3. This leaves tasks 4 and
5, and we choose 5 ϐirst because its depth is higher. This gives a complete schedule of ⟨0, 1, 2, 3, 5, 4⟩, whose
tmb_cost is three for task 0, 4 for task 1 and 2 for task 2, which is 9.
Thus, at the end of the ϐirst iteration, the Heuristic algorithm chooses task 1 and the second iteration be-
gins. Note that the complete schedules calculated in the ϐirst iteration are now discarded and new complete
schedules will be built in the second iteration, all of which will have task 1 scheduled ϐirst.
Fig. 3.15 summarizes the way in which the heuristic algorithm traverses the candidate search graph using
Fig. 3.11 as input. Aswe described above, in the ϐirst iteration, two complete schedules are built, one starting
with task zero and one starting with task 1. The latter is chosen by the heuristic algorithm, indicated by the
bold arrow. The tmb_cost is also shown in the ϐigure; note the cost of 9 if we choose task 0, versus the cost of 8
if we choose task 1. In the second iteration, the heuristic algorithm considers tasks 0, 2 and 4, and computes
the corresponding three depth-ϐirst schedules. Choosing task 4 next is the best option. After task 4 has been
selected, the algorithm computes two new depth-ϐirst complete schedules corresponding to adding tasks 0
and 2, respectively, to the existing partial schedule of ⟨1, 4⟩. Adding task 2 is cheaper, as shown in the ϐigure.
The complete schedule generated by the heuristic algorithm is indicated by the bold arrows: ⟨1, 4, 2, 0, 3, 5⟩.
Its tmb_cost is 6.
The intuition behind computing complete schedules in a depth-ϐirst manner is to schedule successors right
after their ancestors; notice that when a task with a higher depth than the previous task is chosen, these
two tasks should be very close together in the topological sort of the precedence graph. However, any other
heuristic for building possible complete schedules for a given schedule preϐix is compatible with the frame-
work we have described in this section.
Finally, we discuss the time complexity of the heuristic algorithm. Pre-processing the precedence graph to
compute depth information (i.e. longest paths to a root in G) can be done via a linear-time shortest-paths
algorithm onGwith negative edgeweights (this is only possible becauseG is a DAG, where after edgeweight
negation no negative cycles are possible). Now, one iteration of the algorithm involves computing multiple
complete schedules in a deepest-ϐirst manner. For each such complete schedule, exactly one task is moved

Plane 61 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

from the schedulable set to the actual schedule, and the successors of this task are added to the schedulable
set. Therefore, each node and edge inG need to be visited only once. If the set of schedulable tasks is main-
tained in a data structure such as a binary heap that allows retrieval and deletion of the minimum-depth
node and insertion inO(log |V |), computing one complete schedule requiresO(|E|+ |V | log |V |).

The overall heuristic algorithm iterates |V | times. In each iteration, there are at most |V | schedulable tasks,
each of which requires a complete schedule to be built, at a cost of O(|E| + |V | log |V |), and its tmb_cost
must be computed, but the former dominates the runtime. This gives the overall runtime complexity of the
heuristic algorithm asO(|V | · |V | · (|E|+ |V | log |V |)) = O(|E| · |V |2 + |V |3 log |V |).

The code to run all the above algorithms canbe foundon github at https://github.com/arbaer/schedule.

3.3 RepoSim: a simulator to assist the fine-tuning of repository
performance

repoSim is an ns2-based simulator aimed at assisting the ϐine-tuning of mPlane repository performance.
From a teletrafϐic point of view, the mPlane repository can be seen as a data center network where jobs of
different type compete for the same physical resources (CPU, storage and bandwidth). Depending on how
the repository network is managed, this architectural implication has possible consequences not only on the
timeliness of the results (e.g., results stuck behind a large transfer), but also possibly about the accuracy of
the results themselves (e.g., control messages in iterative drill-down analysis slowed down by bulk transfer)
and need careful investigation.

The overall goal of repoSim is to use simulation as a preliminary, necessary step to investigate a broad spec-
trum of solutions for trafϐic management in mPlane repositories. As output of this phase, hopefully a few
candidate solutions will emerge that are worth implementing in real operational mPlane repositories. The
need for a tool such as repoSimcanbe clariϐied considering a few illustrative examples, that areworthmaking
to better cast the above general observations and ϐlow taxonomy to the mPlane use cases.

3.3.1 repoSim mPlane model

Being a simulator, repoSim does not pretend to fully model all mPlane system details. Rather reposSim has
a precise simpliϐied view of mPlane as a holistic system generating a workload that insists (or, stresses) a
peculiar data center network: namely, the mPlane repository network.

With this goal in mind, repoSim embeds a simpliϐied view of the mPlane control and data ϐlows crossing a
repository. This view is depicted in Fig. 3.16, that represent a general mPlane workϐlow, valid for both active
or passivemeasurements. The picture shows a reasoner, or intelligent user, interactingwithmPlane through
a supervisor, triggeringWP2 active/passivemeasurement nodes [yellow arrows], that generates aworkϐlow
that will solicite WP3 repositories.

While repoSim does not aim at fully implementing intelligent reasoners, users, probes, etc., it is however
aware that each of the above mPlane components pose a different stress to the architecture. As such, as
opposite to a microscopic detailed view of the mPlane system, repoSim takes a more narrow view of the
mPlane repository component. The repository is then represented as a data center network, whose inter-
action with other mPlane components is abstracted in terms of a heterogeneous mix of network ϐlows, each
having speciϐic requirements (e.g., throughput vs delay), as we detail next.

Plane 62 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 3.16: repoSim: holistic view of mPlane architecture, with a focus on the repository (boxed)

3.3.2 repoSim flow taxonomy model

As depicted in Fig. 3.16, amixture of ϐlows insists onmPlane repository: i.e., ϐlows that enter or exit the repos-
itory, or even ϐlows that are conϔined within the repository data center. Speciϐically, interactions of mPlane
components (e.g., intelligent reasoners, users, supervisors, probes, etc.) are abstracted by means of several
kind of ϐlows:

• store raw data (eg CSV, binary, …) [thick black arrow]
• access raw data (eg FTP, HTTP, …) [thick black arrow]
• export raw data (eg IPFIX, …) [thick black arrow]
• receive/issue instructions (e.g., speciϐication) [thin red arrow]
• cooking data to some extent according to received instructions (e.g., MapReduce, or other algorithms)
[thick gold arrow]

• generate results and events (i.e., outcome of the above) [dotted black arrow]
• state all the above (i.e., capability) [thin blue arrow]

For the sake of clarity, with reference to the large-scale data analysis algorithms introduced in the earlier
section, these data ϐlowmay include features pertaining touser ofWebbrowsing sessions, or video streaming
sessions, or Cloud services, possibly overmobile phones. In case of passive analysis, feature vectorsmayhave
the form of per-ϐlow logs (e.g., Tstat logs) that need to be periodicallymoved to the repository networks (e.g.,
through Tstat log_sync), generating large volumes of data [incoming thick black arrows].
Depending on the use case, the instantiated Intelligent reasonerworkϐlows, can further trigger additional ac-
tivemeasurement, as for instancewhen iterative drilling for root cause analysis in the Cloud troubleshooting
use case [incoming thick black arrows].

Plane 63 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 3.17: repoSim: simpliϐied view of mPlane control and data ϐlows crossing a repository

In case a repository exports multiple analysis capabilities [thin blue arrow], it also possibly receives triggers
(i.e., mPlane speciϐications) to run different analysis in parallel [thin red arrow]. Results of the analysis can
either be exported in raw format [outgoing thick black arrow] or more likely in forms of events [outgoing
dotted black arrow].

3.3.3 repoSim moƟvaƟons

Narrowing down our focus to the repository and simplifying even further, from a system point of view, it
emerges thatWP3 large-scale data analysis involves a handful of concurrent ϐlow types. Such ϐlows are either
conϐined within the repository itself, or cross its interface toward other parts of mPlane infrastructure (or
external networks).
These ϐlows share the same physical medium, i.e., the repository network: as multiple reasoners can run
their analysis concurrently on the same repository, statistical multiplexing not only involves ϐlows of a single
use case. Additionally, even for a single use case, control and data workϐlows are intermingled, and possibly
interdependent (e.g., since a data transfer/processing is not launched until the corresponding speciϐication
is not received and parsed by the repository).
It should also be clear that these ϐlows are rather heterogeneous in their size (big data vs short control ϐlows)
and consequently requirements (high throughput vs lowdelay respectively). Indeed, fat data transfers either
within (map phase of aMapReduce job, gold arrow) or across (data import or export) the repository network
are intermingled with short control ϐlows (incoming speciϐications, outgoing events and capabilities).
Whereas data transfers need to be optimized for throughput, short control exchanges privileges low delay.
Since both kinds of ϐlows coexist on themPlane repository, it is imperative to efϐiciently manage the trafϐic in
the repository network. We explain the reason why trafϐic management in the repository network is crucial
for mPlane with the help of Fig. 3.18, that illustrates the requirements and interdependence of short vs long
ϐlows.
In more details, Fig. 3.18 shows a dual interdependence of the short vs long transfers. Short transactions
are used in mPlane repositories to either advertise capabilities of data processing, instantiate new data pro-
cessing, and timely exporting crucial results of these processing via events. Long transactions are instead
either useful to import/export data to/frommPlane repositories, or to move data within the repository net-
work during data processing. The typical workϐlow is thus that a short transfer (speciϐication) will trigger a

Plane 64 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 3.18: repoSim: synopsis of short vs long ϐlows requirements and interdependence.

long one (data import/export/processing, etc.), whose completionwill possibly trigger short transfers again
(events, etc.).
Intra use-case dependency is tied to the fact that these transactions happen in sequence, so that for instance
a slow data transfer rate may delay the reception time of events. Inter use-case dependencies instead arise
when, for instance, a speciϐication of a new processing request, or an event message at the end of a data
processing phase, queues behind a large transfer, delaying the start or end times respectively. In case of
iterative workϐlows, these delays may accumulate and harm the system responsiveness.
Fromageneric teletrafϐic point of view,weargue that systems shouldbeoptimized for thedataplane through-
put, as long as this does not hurt the control plane delay. However, as shown in Fig. 3.18, these two objec-
tives tradeoff: when the sending rate exceeds the system capacityC , the throughput saturates, but the delay
grows due to buffering. When the sending rates falls below C , short transactions complete timely, but the
data transfer is longer due to reduced efϐiciency. Hopefully, repoSim can assist tuning this delicate tradeoff.

3.3.4 repoSim modules

Abstracting from the mPlane workϐlows, from a teletrafϐic point of view, we can model this resource sharing
as a multiplexing of different ϐlows of type, size, and load, both within and enter/exit the repository infras-
tructure, as exampliϐied in Fig. 3.19 where arrows have different sizes.
Under this light, the challenge is to design, implement andevaluate an efϐicient repositorynetwork to support
mPlane operations. As previously explained, the goals of the design are mainly:

• Sustained throughput to avoid slowdown of data cooking (e.g. elephant MapReduce data transfer in a
map phase)

• Low-delay communication for short transactions (e.g. mice control ϐlows)

To achieve these goals, several design aspects can be considered, which include planning decisions, hardware
implementations and software operating at multiple layers:

• topology design (e.g., FatTree vs BCube vs Jellyϐish, etc.)
• L2 scheduling (e.g., Stocastic Fairness Queueing, fq_codel, etc.)
• L2/3 switching and routing (e.g., Spanning tree, TRILL, ECMP, etc.)
• L4 congestion control (e.g., TCP, DCTCP, MPTCP, low-latency TCP, transaction TCP to avoid 3-way
handshake for short ϐlows, etc.)

• L7 application layer solutions (e.g., MapReduce schedulers, RepFlow to replicate short ϐlows, etc.).

Plane 65 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

It appears that the overall issue of mPlane repository management is larger than the scope of what can be
donewithin a single class. That is to say, while it is imperative to schedule jobswithin theMapReduce frame-
work, this L7 scheduling knob will only enforce fairness among MapReduce jobs, but will otherwise left un-
touched the problem of short transfer congestion behind MapReduce jobs: for the perspective of a short
transaction, being queued behind one or another MapReduce jobs will be perfectly equivalent.
Notice also that only recently the datacenter community has started investigating the use of joint design
choices at multiple levels, so their analysis is a green ϐield so far. repoSim aims at assisting the design, by e.g.,
allowing to understand which of the above ``ingredients'' would make a successful ``recipe'' for a mPlane
repository network.
For the sake of the example, let us consider scheduling at L2 vs scheduling at L7: repoSim could assist in
evaluating the beneϐits of each approach alone, or their combination. This is particularly interesting, as
during mPlane we already have discovered unexpected and negative interactions of uncoordinated design
choices having the same goal (notably, a vicious interaction between low-priority L4 congestion control and
L2 scheduling). repoSimwould allow avoiding selecting solution for a repository network that could exhibit
such undesirable behavior. Ultimately, it hopefully assists in selecting an mPlane repository architecture
that tradeoffs implementation complexity and performance.

3.3.5 Results

repoSim simulates a combination of ϐlows transferring simultaneously in a mPlane repository data-center
network. It allows user to specify parameters of different components involving network performance, such
as the network topology conϐiguration, ϐlow size and arrival pattern, transport protocol, and scheduling pro-
tocol. As output, wemeasure the ϐlow completion time, that is directly relevant for short ϐlows, as well as for
long transfer (since low completion time implies high throughput).
In the current stage, we are simulating generic workloads from the literature, to have a broad comparison of
our new solutions that is easier to cross compare with the state of the art. An example of the performance
gathered with repoSim is shown in Fig. 3.19 that shows state of the art results (taken from pFabric[3], in the
left) and our own comparison of the state of the art with alternative architectures. Speciϐically, the picture on
the right contrast the pFabric[3] state of the art (that as can be seen in the left hand side pictures, obtains near
optimal performance) with very simple scheduling solutions that only act at L2 (namely a SFQ scheduling
discipline vs a RED active queue management solution). As a function of a growing data center load on the
x-axis, the picture shows the average ϐlow completion time, normalized to the ideal one (so that a FCT of 1
implies optimal performance).
As it can be seen from our preliminary results, simple L2 solutions, such as SFQ, that have been so far neglected
by the data center community, are within a factor of 2 from the optimal performance, which allows to expect
that a reasonably simple design formPlane repository that also have near optimal performance can be found.
On the long run, the aimwould be to perform simulations with real mPlaneworkload (e.g.,trace driven taken
from real mPlane repository usage). This will be instrumental to ϐine tune and benchmark the real mPlane
repository under real workloads.
A preliminary version of this tool, with a guide on how-to use it, is available from the project website at
https://www.ict-mplane.eu/public/reposim.

3.4 Performance of compuƟng plaƞorms

To process the data coming from the probes, the requests from the reasoner and the algorithms as speciϐied
in the analysis modules of each use case, the repository has to implement enough computational power. To
achieve that, several computing platforms are available: examples are Hadoop, which is oriented to the off-
line processing of data, and Storm, which is oriented to the on-line (stream) processing of data.
To investigatewhat are the capabilities of the current data-analytics platforms in processing unbound streamof

Plane 66 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

Figure 3.19: repoSim: performance evaluation contrasting existing data center architectures (left,
state of the art from [3]) with classic scheduling schemes in repoSim (right).

data, wehaveanalyzed theperformanceweachievewhen runningapplicationson the twostream-processing
platforms Apache S4 and Storm, and on BlockMon [21], a platform originally designed for running packet
processing operations on a single multi-core node, which we extended to execute applications which are
distributed across machines.
To this end, we implemented on all platforms two stream-monitoring applications: VoIPSTREAM [12], a
phone anomaly detection system, and Twitter trending, a system that monitors topics discussed by Twit-
ter users over time. In the former case, we investigate how the platforms help speed up the execution of
applications that need high-computational power: the application is designed to one probe sending (dis-
patching) data to multiple aggregation point. In the latter case, we focus on how the platforms handle data
transfer over the topology: the application is designed to have multiple probes sending data to one aggrega-
tion point. Please refer to [42] for a complete description of the applications and of the platforms. As amatter
of fact, multiple probes and multiple aggregation points might concur to form any service-monitoring appli-
cation: by assessing how the distributed streaming platforms perform in each separated scenario, we aim at
gaining insight on how such platforms perform in a broad range of applications, such as the ones considered
under the mPlane umbrella.
We release distributedBlockMon to the public [13]. A code release is also available from themPlanewebpage
at https://www.ict-mplane.eu/public/blockmon: in this release, we make available some applications
being used for testing the performance of BlockMon against the other stream-computing platforms, together
with the necessary blocks for executing distributed applications, that is, importer and exporter blocks for
exchanging data across machines.

3.4.1 Experimental analysis

Given the target of assessing performance, we assume no failure during the experiments and we focus on
scalability and costs in terms of CPU and memory usage.
Our testbed is composed of 14 commodity machines, each one hosting two AMD Opteron(tm) Processors
246 (single core) and 4GB RAM. A 16-port switch connects the 1GbE interfaces of all machines. We estimate
the value of each machine to be around $1000 on today's market.
For the Twitter trending application, we considered a dataset composed of around 20 millions of tweets, in
the JSON format as provided by GNIP. As for VoIPSTREAM, we used a dataset composed of few tens of million
of anonymized Call Detail Records (CDR) collected over a period of several consecutive weeks, thanks to the
collaboration of a small European telecom operator.
Figure 3.20(a) shows the performance of Twitter trending as the number of the hashtag ϐinders (HF) in-
creases. On all the platforms, the application scales linearly, with a gain in performance of 23.5x (34.2x)
when we use BlockMon compared to Storm (Apache S4). Note that this scaling behavior is expected: as by

Plane 67 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

1 2 3 4 5 6
102

103

104

105

#Hashtag finders

Pr
oc

es
se

d
ha

sh
ta

gs
 p

er
 s

ec
on

d

BlockMon
Storm
Apache S4

23.5x 34.2x

Theoretical

(a) Twitter trending: scalability (y-axis is in log scale).

1 2 3 4 5 6
0

500

1000

1500

2000

#Hashtag finders

Pe
rc

en
ta

ge
 o

f C
PU

 u
sa

ge

0

5

10

15

20

25

30

35

M
em

or
y

(G
B)

BlockMon
Storm
Apache S4

(b) Twitter trending: total CPU (solid line) and memory
(dotted line) usage.

designwe increase the number of both tweet sources and HFs in the topology, the rate of processed hashtags
must increase linearly as long as network capacity towards the hashtag counter is not a bottleneck. In the
ϐigure, we report the theoretical behavior for each platform as a dashed black line. Figure 3.20(b) shows the
total cost of memory and CPU required by the three platforms to run Twitter trending. As all machines in our
testbed are identical, we computed the overall memory and CPU usage as the sum of the resources used on
each machine. The CPU load of the hashtag counter is even in the worst case (with six HFs on Storm) always
below 4%, thus suggesting that one is enough to cope with multiple HFs, which account in turn for around
75% of the total CPU resources.
When testing the computing platforms with the VoIPSTREAM application (not shown here, details in [42]),
we observe that the processing rate with BlockMon is up to 2.5x faster than Storm. As for Apache S4, we
observed that the bottleneck is due to the communication between the adapter and the cluster where the
application runs, which prevents the application from scaling at all: in this case, VoIPSTREAM on BlockMon
runs up to 11.2x faster. Interestingly, we were not able to run Apache S4 on the whole testbed: under high-
memory consumption cases, the communication between the node and ZooKeeper hungs, thus partitioning
the cluster. Developers of Apache S4 are aware of this issue.
Our results point out that existing stream-processing platforms have serious issues when it comes to per-
formance, which are not due to mechanisms for high availability or dynamic message routing: improving
performance is possible, and our enhanced BlockMon showed that. We believe that our ϐindings can help
improve existing architectures to target stream data processing for network stream monitoring.

Plane 68 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

4 Conclusions

In this deliverable we have described the progress on the design and implementation of scalable algorithms
that operate on very large amounts of data. To make things more practical, those algorithms have been
presented in the context of each use case, and their results have been shown.
A core part of this deliverable has focused on the design, implementation and evaluation of scheduling pro-
tocols for the efϐicient and fair allocation of computing resources to network data analysis jobs. Essentially,
we have proposed new components for scheduling analytic tasks in parallel processing frameworks by con-
sidering the particular computational workloads generated by the mPlane infrastructure. As a result of this,
within mPlane we have realized three tools that can be used at the repository: Hadoop Fair Sojourn Protocol,
a scheduler for Apache Hadoop; schedule, a tool for cache-oblivious scheduling of shared workloads; and
repoSim, a ns2 based simulator to ϐine-tune the mPlane repository performance. For each of them we have
provided documentation and a software release through the ofϐicial mPlane website. For more information
about it, please visit http://www.ict-mplane.eu/public/software.
Furthermore, we have provided a performance comparison of three distributed stream-computing plat-
forms, by comparing our open-source platform Blockmon against the platforms Storm and Apache S4: in
both the applications being tested, Blockmon showed to perform better.
As future directions, we plan to continue our work in the implementation of large scale data analysis algo-
rithms, and the integration of the tools that have been designed in this phase into the mPlane architecture.

Plane 69 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

References

[1] CDH 4 installation guide -- tips and guidelines.
[2] Page replacement design.
[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal

near-optimal datacenter transport. In Proceedings of the ACM SIGCOMM, pages 435--446, 2013.
[4] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and I. Stoica. Pacman:

Coordinated memory caching for parallel jobs. In USENIX NSDI, 2012.
[5] Apache. Hadoop. http://hadoop.apache.org/.
[6] Apache. Hadoop fair scheduler. http://hadoop.apache.org/docs/stable/fair_scheduler.html.
[7] Apache. Hadoop MapReduce JIRA 1184. https://issues.apache.org/jira/browse/

MAPREDUCE-1184.
[8] Apache. PigMix. https://cwiki.apache.org/PIG/pigmix.html.
[9] Apache. Spark. http://spark.incubator.apache.org/.

[10] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces. 2013.
[11] A. Bär, P. Casas, L. Golab, and A. Finamore. DBStream: an Online Aggregation, Filtering and Processing

System forNetworkTrafϐicMonitoring. InProceedings of 5th InternationalWorkshop onTRafϔic Analysis
and Characterization, Nicosia, Cyprus, page 6. IEEE Computer Society, Aug. 2014.

[12] G. Bianchi, N. d'Heureuse, and S. Niccolini. On-demand time-decaying bloom ϐilters for telemarketer
detection. Comput. Commun. Rev., 41(5):5--12, Sep. 2011.

[13] BlockMon. http://blockmon.github.com/blockmon (accessed 2012-11-10).
[14] D. Bovet and M. Cesati. Understanding The Linux Kernel. O'Reilly & Associates Inc, 2005.
[15] Y. Chen, A. Ganapathi, R. Grifϐith, and R. Katz. The case for evaluating mapreduce performance using

workload suites. InMASCOTS. IEEE, 2011.
[16] Y. Chen, A. Ganapathi, R.Grifϐith, and R. Katz. The case for evaluating MapReduce performance using

workload suites. In Proc. of IEEE MASCOTS, pages 390--399, 2011.
[17] E. G. Coffman and P. J. Denning. Operating systems theory, volume 973. Prentice-Hall, 1973.
[18] P. Crescenzi and V. Kann. A compendium of np optimization problems, 1998. ftp://ftp.nada.kth.

se/Theory/Viggo-Kann/compendium.pdf.
[19] M. Dell'Amico, D. Carra, M. Pastorelli, and P. Michiardi. Revisiting size-based scheduling with estimated

job sizes. CoRR, abs/1403.5996, 2014.
[20] P. J. Denning. Thrashing: Its causes and prevention. In Fall Joint Computer Conference. ACM, 1968.
[21] A. di Pietro, F. Huici, N. Bonelli, B. Trammell, P. Kastovsky, T. Groleat, S. Vaton, and M. Dusi. Blockmon:

Toward high-speed composable network trafϐic measurement. In Proceedings of the IEEE Infocom Con-
ference (mini-conference), 2013.

[22] E. J. Friedman and S. G. Henderson. Fairness and efϐiciency in web server protocols. In SIGMETRICS
Performance Evaluation Review, volume 31, pages 229--237. ACM, 2003.

[23] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., 1979.

[24] M. Garey, D. Johnson, and L. Stockmeyer. Some simpliϐied np-complete graph problems. In Theoretical
Computer Science 1(3), pages 237--267, 1976.

[25] L. Golab, J. S. S. T. Johnson, and V. Shkapenyuk. Stream warehousing with datadepot. In SIGMOD, pages
847--854, 2009.

Plane 70 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

[26] S. Gorinsky and C. Jechlitschek. Fair efϐiciency, or low average delaywithout starvation. In ICCCN, pages
424--429. IEEE, 2007.

[27] M. Harchol-Balter. Queueing disciplines. Wiley Encyclopedia of Operations Research and Management
Science, 2009.

[28] M. Harchol-Balter et al. Size-based scheduling to improve web performance. ACM TOCS, 21(2):207--
233, 2003.

[29] K. Hayashi and R. Fujimaki. Factorized asymptotic bayesian inference for latent feature models. In
C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, editors, NIPS, pages 1214--1222, 2013.

[30] A. A. I. Psaroudakis, M. Athanassoulis. Sharing data and work across concurrent analytical queries. In
PVLDB 6(9), pages 637--648, 2013.

[31] L. Kleinrock. Theory, volume 1, Queueing systems. Wiley-interscience, 1975.
[32] S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss models: from data to decisions, volume 715. John

Wiley & Sons, 2012.
[33] D. Lu, H. Sheng, and P. Dinda. Size-based scheduling policies with inaccurate scheduling information.

InMASCOTS, pages 31--38. IEEE, 2004.
[34] J. Nagle. On packet switches with inϐinite storage. IEEE TCOM, 35(4):435--438, 1987.
[35] C. Papadimitriou. The np-completeness of the bandwidth minimization problem, computing, 16(3).

pages 263--270, 1976.
[36] M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell'Amico, and P. Michiardi. HFSP: size-based scheduling for

Hadoop. In Big Data. IEEE, 2013.
[37] M. Pastorelli, M. Dell'Amico, and P. Michiardi. Os-assisted task preemption for Hadoop. In Proc. of

DCPerf, 2014.
[38] M. Pastorelli et al. Practical size-based scheduling for MapReduce workloads. CoRR, abs/1302.2749,

2013.
[39] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of LAS scheduling for job size distributions with

high variance. SIGMETRICS Performance Evaluation Review, 31(1):218--228, 2003.
[40] L. E. Schrage and L.W.Miller. The queueM/G/1with the shortest remaining processing time discipline.

Operations Research, 14(4):670--684, 1966.
[41] B. Schroeder andM. Harchol-Balter. Web servers under overload: How scheduling can help. ACM TOIT,

6(1):20--52, 2006.
[42] D. Simoncelli, M. Dusi, F. Gringoli, and S. Niccolini. Stream-monitoring with blockmon: convergence

of network measurements and data analytics platforms. SIGCOMM Comput. Commun. Rev., 43:29–36,
2013.

[43] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of trafϐic scheduling algo-
rithms. IEEE/ACM TON, 6(5):611--624, 1998.

[44] TPC. Tpc benchmarks. http://www.tpc.org/information/benchmarks.asp.
[45] D. Tsaih, G. Wu, C. Chang, S. Hung, C. Wu, , and H. Lin. An efϐicient a* algorithm for the directed linear

arrangement problem. InWSEAS Transactions on Computers, 7(12), pages 1958--1967, 2008.
[46] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, et al. Apache Hadoop Yarn: Yet another resource negotiator. In SoCC. ACM, 2013.
[47] T. White. Hadoop: The Deϔinitive Guide. O'Reilly Media, 2009.
[48] A. Wierman. Fairness and scheduling in single server queues. Surveys in Operations Research and

Management Science, 16(1):39--48, 2011.

Plane 71 of 72 Revision 1.0 of 31 Aug 2014

318627-mPlane D3.3
Algorithm and Scheduler Design and ImplementaƟon

[49] A. Wierman and M. Nuyens. Scheduling despite inexact job-size information. In SIGMETRICS Perfor-
mance Evaluation Review, volume 36, pages 25--36. ACM, 2008.

[50] M. Zaharia et al. Delay scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In Proc. of ACM EuroSys, pages 265--278, 2010.

Plane 72 of 72 Revision 1.0 of 31 Aug 2014

