
On Flow Concurrency in the Internet and
its Implications for Capacity Sharing

Brian Trammell
Communication Systems Group

ETH Zurich, Switzerland
trammell@tik.ee.ethz.ch

Dominik Schatzmann
Communication Systems Group

ETH Zurich, Switzerland
schatzmann@tik.ee.ethz.ch

ABSTRACT
Flow concurrency is the measure of the number of active
flows at a given point in time at a given point in the net-
work, and can be used as a complement to traffic volume
to understand the dynamics of a measured network. It is of
particular interest given the spread of devices through the
network which keep per-flow state. In this work, we first
present a simple methodology for measuring flow concur-
rency using network flow data, then apply this methodol-
ogy to a long-term data archive captured at the border of
a national-scale research network to measure flow concur-
rency in selected example network configurations (e.g., at a
content consumer network, on a content provider network,
at an interconnect point).

Flow concurrency is interesting in the context of capac-
ity sharing efforts in two ways. First and most obviously,
devices which verify and enforce policy compliance for ca-
pacity sharing must keep per-flow state on either end of a
flow; flow state requirements therefore dictate where such
devices may be placed in the network, and the trust proper-
ties of the algorithms they run. Second, as the deployment
of flow-state-keeping devices in the network increases, flow
state itself becomes a “congestible” resource just as queue
space is: future work in capacity sharing may consider ad-
dressing this.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscel-
laneous

Keywords
Internet measurement, flow concurrency, fairness

1. INTRODUCTION
Many devices deployed within today’s Internet must keep

per-flow state, and their performance is therefore a function
not just of the observed or handled packet rate, but of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSWS’12, December 10, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1780-1/12/12 ...$15.00.

number of concurrent flows as well. This class of devices in-
cludes network address translators, many packet-inspecting
middleboxes such as stateful firewalls, and monitoring and
measurement devices such as flow meters and intrusion de-
tection devices. The use of such devices is growing in the
Internet.

This work provides a simple methodology for measuring
flow concurrency in section 2, which is related to per-flow
state requirements for a given application on a given link
within a network. We then aim to give general guidance
for flow state requirements for given network types in sec-
tion 3, by applying this methodology to a NetFlow data set
collected at the border of a national-scale research network
to derive trends in flow concurrency for networks of various
types.

“Rules of thumb” derived from community experience can
be used in designing and provisioning these devices to han-
dle the traffic on the networks on which they are deployed;
these generally err on the side of massive over-provisioning.
However, this work shows that heterogeneity of flow con-
currency both in space and time make it difficult to simply
predict state requirements at a given measurement point.
In addition, changes in application usage patterns over time
may break implicit assumptions made by these estimations.

This work follows a long line of Internet traffic studies
showing the growth of traffic and characteristics of traffic
on different networks [11, 3]. Flow concurrency as a metric
in itself is not directly treated by these works. However,
there is a wide body of work treating flow concurrency im-
plicitly, as it based on analysis of the concurrent flow set
at a given observation point, especially for network security
and troubleshooting applications. For example, Tellenbach
et al. [14] identify anomalies such as DDoS attacks through
analysis of the set of concurrent flows. FACT [13] is an
online troubleshooting application that helps network op-
erators to track connectivity problems occurring in remote
autonomous systems, networks, and hosts by analyzing the
set of concurrent flows.

As for the implications of these findings for capacity shar-
ing efforts, this work was initially inspired by ongoing work
in the IETF conex working group [5]. The authors realized
the policy verification and enforcement functions required
by the protocol, described abstractly in [12], have per-flow
state requirements. This follows earlier work in the area,
e.g. [4], which implicitly evaluates flow state requirements,
though the performance evaluation of the audit function is
primarily focused on its correctness in terms of fairness ben-
efit provided.

The algorithms proposed to date only keep state close to
the edge, thereby avoiding links with very high flow con-
currency; this work provides measurements to support this
choice. We discuss this further in section 4.1, which comes
to the admittedly unsurprising conclusion that at current
levels of flow concurrency, policy verification and enforce-
ment at the edge is scalable, but algorithms which must be
placed at large network exchange points should continue to
be avoided. This implies that in multi-provider networks,
audit algorithms must function without requiring trust be-
tween components.

The problem of flow state proliferation as in section 4.2
has been addressed from several different angles in recent
literature. The realization that flow-state-related resources
at middleboxes should be subject to fairness in addition to
bandwidth has been treated in [9]; here, the authors present
a scheduling algorithm for middleboxes which provides supe-
rior throughput by accounting for state and CPU separately
from bandwidth, and enforcing fair allocation thereof. Ad-
ditionally, Honda et al. [10] evaluated such middleboxes for
their impact on various features of TCP, and [7] focuses on
end-user visible application performance and functionality
impact. While neither of these address the flow-state prob-
lem directly, the methodologies there could be adapted and
augmented to begin to estimate the amount of state avail-
able along a path.

2. METHODOLOGY
Simulations or direct measurements of flow-state-keeping

devices can measure flow concurrency trivially: the size of
the flow table is a necessary variable for the operation of
such devices, and can be directly observed. However, when
estimating flow concurrency from traffic traces at the packet
or flow level, some analysis is necessary.

The methodology we apply in this work is straightforward.
We start with unsampled flow data taken from six routers
at the border of SWITCH1, the Swiss national research and
education network (NREN). This network originates about
2.4M IPv4 addresses (the rough equivalent of a /11). Typi-
cal daily traffic volume is between 50 and 100 TB. This flow
data includes the standard “5-tuple” (source and destination
address and port, plus protocol), as well as start and end
timestamps with an effective resolution of seconds2; there
are additional fields present concerning flow treatment (in-
terface, BGP information, next-hop address) which we do
not consider in this work.

We maintain a rolling window of n bins of a set inter-
val t, such that n · t > TOactive + Dmax, where TOactive is
the active timeout of the flow collection infrastructure (i.e.,
the time after which any flow will be expired from the flow
meter’s cache, or alternately, the maximum duration of any
exported flow) and Dmax is the maximum observed export
delay. Therefore, we are guaranteed that any observed flow
can be assigned to all bins it covers. This interval t repre-
sents the maximum amount of time flow state will be un-
necessarily kept for a closed flow.

For each flow, we add its 5-tuple flow key to the set of
known flows for the bin containing its start time, the bin

1www.switch.ch
2The flow metering technology used has an inherent limita-
tion on timing resolution of one to two seconds, as detailed in
[16]; the corrections described in that paper are not applied
to the source data in this work.

containing its end time, and all bins in between. When a
bin expires out of the rolling window, we then simply count
the flow keys in the set. This produces a non-conservative
flow count as defined in [15].

We note that while we chose 5-tuple flow keys, the pre-
sented methodology can be trivially generalized to determine
flow concurrency for any granularity of flow key, e.g. by pre-
fix, to estimate flow state requirements for applications at
higher degrees of aggregation.

We also count unique active hosts per bin inside and out-
side the border of the observed network, in order to normal-
ize state requirements per active host; a host is considered
active in a bin if is participates in at least one flow.

Our study is limited to TCP flows, since TCP flows are
those with which capacity sharing approaches are generally
concerned. In general, we choose a t of 5 seconds, as this is
close to the maximum resolution of the timing information
we have available, and represents a rather aggressive timeout
strategy to be applied by flow-state-keeping middleboxes.
This allows us to report best-case numbers, as we discuss
further in section 3.1. For each given data set, we report
median, 95th percentile, and peak numbers – though in many
cases concurrency varies widely based on diurnal seasonality,
as the state requirements are generally driven by human
activity, flow-state-keeping devices must be provisioned to
handle peak load.

In interpreting results taken from this network, it is impor-
tant to note that it is an access and interconnection network
for research institutes and universities without a significant
residential population, and is therefore somewhat biased to-
ward weekday, working-hour traffic. However, we focused on
several subsets of the traffic collected, in order to attempt
to derive general number for flow concurrency on the wider
Internet from this traffic set:

• All traffic crossing the border of the network at large;
we use this as a proxy for a large interconnect point.

• Traffic crossing the border for one university using the
network for Internet access, representing 5 /18s, about
80,000 addresses.

• Traffic crossing the border for a set of about 13,000
addresses on predominantly client networks at the uni-
versity, and for a set of about 13,000 addresses on pre-
dominantly server networks at the university.

• Traffic crossing the border from three external ASNs
representing large content provider networks.

3. FINDINGS
Our key findings are as follows:

• Flow concurrency per link / per network depends greatly
on the type of network observed. Content provider net-
works see much greater flow concurrency than access
networks, for example.

• Flow concurrency per active host is relatively stable
given the type of activity each host is engaged in:
clients generally have a concurrency of at least 4 and
median concurrency of about 6 flows, while server flow
concurrency is generally higher, and dependent on server
popularity.

0

50000

100000

150000

200000

250000

300000

0:00 6:00 12:00 18:00 0:00
time of day

co
nc

ur
re

nt
 fl

ow
s

Figure 1: Diurnal rhythm in flow concurrency:
smoothed, uniformly sampled, t = 5s

• Measured flow concurrency, and therefore state require-
ments for flow-state-keeping devices, increases nearly
linearly with the timeout interval t chosen; this indi-
cates that such devices should use timeouts that are
as aggressive as possible.

• The trend in flow concurrency increases year over year,
reflecting the use of increased network capacity.

First we examine TCP flow concurrency with t = 5s for
the entire measured network, which originates about 2.4 mil-
lion IPv4 addresses. Over several sampled days in 2011, me-
dian flow concurrency was 148 kflows, with 95th percentile
322 kflows, and peak 436 kflows. In the same bins, median
utilization of advertised address space was 1.27%, 95th-%ile
2.54%, and peak 10.9%3. On longer timescales (5 minutes),
we see that about a quarter of the advertised address space
is used at any given time.

This activity is strongly diurnal, as shown in 1. From
08:00 to 20:00 local time, median / 95th-%ile flow concur-
rency is 253,000 / 343 kflows, while overnight, it falls to
91.4 / 166 kflows. However, night-time transient peak con-
currency is comparable to that during the day.

Drilling down to a subset of the traffic, we examine a single
university, consisting of 5 /18 networks. Here we see median
flow concurrency of 3.20 kflows, 95th-%ile 4.30 kflows, and
peak 22.900 kflows.

This initial analysis would indicate a rule of thumb to di-
mension flow-state-keeping devices to handle on the order
of 10,000 - 20,000 concurrent flows per /16 of address space
behind the device, assuming comparable utilization, traffic
mix, and timeouts to those in use on the measured network.
However, as utilization and traffic mix vary widely, we de-
cided to focus on both client and server traffic separately, to
generate numbers on flow concurrency per active host.

Examining the data from a set of 13,792 addresses on
predominantly client networks at the university examined
above shows that flow concurrency per client is quite stable

3These wildly outlying bins indicate scanning activity or
transient bursts; we have not filtered out such activity as,
naturally, any flow-state-keeping device must also cope with
it.

flow concurrency median 95th peak
all (/11) 148k 322k 436k
university (5x/18) 3.2k 4.3k 22.9k

flows/active hosts median 95th peak
clients 5.8 11.8 53.8
servers 10.3 13.4 23.0
content 16.5 43.3 49.8
all 5.2 7.7 9.7

Table 1: Summary of results

but potentially long-tailed, due to highly active clients as
well as scanning activity. There are 5.8 concurrent flows
per active client in the median 5-second bin, 11.8 in the
95th-%ile bin, and 53.8 in the peak bin. Of note is that, in
very few bins, is the number of concurrent flows per active
host less than 4: the5th-%ile bin already has 3.8 concurrent
flows per active host; we interpret this to be an effect, in
part, of the dominance of Web traffic in client networks, and
the common browser behavior of opening four simultaneous
sockets per transaction.

Similarly, for 13,376 addresses on predominantly server
networks at the same university, we see higher flow concur-
rency per internal host, as would be expected: 10.3 concur-
rent flows per active host median, 13.4 95th-%ile, 23.0 peak.

Turning to content provider networks, we looked at all
traffic crossing the border of the measured network from
AS 15169 (Google), AS 20490 (Akamai in Europe), and AS
36040 (also Google); these 709 prefixes account for about 1.4
million IP addresses, although only very few of these are seen
in our data set: in the peak bin, only 1,254 unique hosts from
these prefixes are observed. We assume that all the internal
hosts communicating with these networks represent clients,
and the distribution of flow concurrencies is consistent with
this (5.6 flows per active internal host median, 7.1 95th-
%ile) However, we see higher flow concurrency per external
(server) host: 16.5 flows per active server median, 43.3 95th-
%ile, 49.8 peak. Note that these numbers are biased by
the fact that we only observe traffic crossing our border,
so represent a lower bound on flow concurrency for these
networks.

At higher levels of aggregation, active hosts are balanced
out by inactive hosts, transients are amortized over a larger
address space, and observed flow concurrency per host goes
down: for the entire network in aggregate, we observe 5.2
flows per active internal host median, 7.7 95th-%ile, 9.7
peak.

From these findings we determine that client concurrency
per active host is relatively stable, while server concurrency
per active host is (1) generally higher than client concur-
rency and (2) highly dependent on server popularity.

3.1 The effect of short flows
Figure 2 shows the cumulative distribution of the dura-

tions of 150,000 flows uniformly sampled from the data set.
As seen here, most flows are short: the median flow duration
is just 256ms, and 30.7% of flows have a duration of 0ms4.

4As noted in [16], flow durations in our data set are quan-
tized to 64ms by the implementation of the metering process;
these are therefore single-packet flows (23.0%), or durations
less than the minimum timing resolution.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60
Flow duration (s)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

of
 fl

ow
 c

ou
nt

Figure 2: Flow count by duration

These short flows account for very little total traffic vol-
ume but account for the majority of concurrent flows at any
given instant: flows with duration 256ms or less account for
51.7% of flows, but only 8.34% of packets and 5.61% of bytes
in the examined traffic sample. Much of this short-flow traf-
fic is related to scanning or other nonproductive activity.

This has important implications for flow concurrency. First,
it means that observed flow concurrency is highly depen-
dent on the chosen t, as most flows are short. Flow keys for
client-generated traffic rarely repeat in the short term due
to ephemeral port selection, so newly-initiated flows almost
always take a new entry in the flow table. This effect can be
seen in figure 3, which shows flow concurrency over a single
hour of the data for multiple values of t.

Examining 95th-%ile concurrency, we find that while dou-
bling t from 5s to 10s increases observed by about a third,
from 301,000 to 407,000 flows, doubling t from 15s to 30s
nearly doubles it, from 534,000 to 912,000.

As each subsequent doubling of t over 15s shows a nearly
linear doubling of observed concurrency, the numbers in the
findings above can be roughly linearly scaled to generate flow
concurrency estimates for different timeouts. at t = 30s,
for instance, the rule of thumb derived from the measured
network would indicate a peak flow concurrency of about
70,000 per /16.

A second effect of short flows can be seen in the correlation
of flow concurrency with traffic volume. Obviously, since
each flow contributes to the total traffic volume, concurrency
and volume are positively correlated. However, since large
flows contribute more to total volume than to flow count, the
two metrics weigh short and long flows differently. This can
be seen in the correlation between the two, which is 0.668
with t = 5.

3.2 Long-term trends
To this point we have presented a picture of the state of

the network as of 2011; we look at how this trend has de-
veloped over time to predict future developments. Here, we
look at comparable weekday time spans and traffic across

0e+00

1e+06

2e+06

3e+06

●

5 10 15 30 60 120
Timeout (s)

flo
w

s

Figure 3: Flow concurrency by timeout

the entire network in 2003, 2005, 2007, and 2009, and com-
pare these to 2011.

We find that flow concurrency does indeed grow along
with general traffic volume over the 8-year period exam-
ined, as shown in figure 4. This indicates a need to continue
scaling flow state with traffic growth. However, we do not
see a strong long-term trend in concurrent flows per active
internal host on the network: 95th-%ile numbers increase
slightly from 5.90 in 2003 to 7.74 in 2011. This effect can be
explained both by changing usage patterns on the measured
network over the 8-year period as well as a potential slight
increase in overall flow concurrency per host. However, we
see no compelling evidence to conclude that change in net-
work protocols and applications has led to an increase in
flow concurrency at this level of aggregation.

4. DISCUSSION
These findings on flow concurrency apply to capacity shar-

ing in two ways: with respect to scalability and deployability
of audit devices used to enforce sharing, and with respect to
flow state in the Internet itself as a congestible resource; we
discuss these in this section.

4.1 Scalability of audit devices
Moving audit and drop to the network edge, as in conex

[12], greatly increases scalability of these functions. Assum-
ing a peak load around 12 concurrent flows per active client,
and on the order of 64 bytes per flow of required storage
(keys, mark counters, and additional statistics), each client
/24 requires a maximum of 200kB of state, in the case that
every host is active all the time; an average /24 on the ob-
served network would require only 50kB.

Concurrency on server networks, however, greatly depends
on the server’s popularity, as shown in section 3. It is there-
fore more difficult to provide guidance for server networks.
However, even assuming two orders of magnitude higher con-
currency at servers, a conservative estimate based on our
data, 20MB of state per /24 will not impose particularly
difficult requirements on audit devices designed for content

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

●●

●
●●●
●●●●●●●●●●●●

●
●●
●●●●

●●●●●●

●

●●●

●

●

2003 2005 2007 2009 2011
year

flo
w

s

Figure 4: Flow concurrency by year

provider networks. These state requirements can of course
be reduced by adding graceful degradation such as deter-
ministic sampling to handle peaks in flow concurrency, at
the cost of audit fidelity.

In any case, the relationship between observed concur-
rency (and therefore flow state requirements) and timeout t
shown in section 3.1 would give clear guidance to build audit
devices that aggressively time out idle flows, with timeouts
on the order of 15 seconds or less, in cases in which flow
state may be a limited resource.

4.2 Flow-state congestion
While auditing has the luxury of edge deployment and

the possibility of graceful degradation to deal with high flow
concurrency, many applications requiring flow state do not,
e.g. NAT devices for IPv6 transition. These, by design, must
be deployed at large interconnection points, and must deal
with peak load, or will cause entire flows to drop. While it
is to be hoped that such devices will only be temporarily
deployed, it is possible that transition to IPv6 will require
the use of address translation in the network for multiple
decades.

Given long-term trends in flow concurrency, and the un-
sustainability of over-provisioning of flow tables in flow-state-
keeping devices, we foresee that flow state within these de-
vices may become a resource which may become congested,
and for which fair allocation is necessary, just as space in
queues.

As discussed in section 1, this problem is indeed addressed
in the literature, focusing on fair allocation of resources on
flow-state-keeping devices in order to increase the load these
devices can handle. In essence, the aim of this work is to
keep up with increasing middlebox deployment by continu-
ing to increase the packet rates and flow concurrencies the
devices can handle. Improvements in scheduling as in [9],
which take state requirements into account in scheduling,
build on prior improvements, e.g [8]. As the only degree of
freedom these devices have is the order in which they service

incoming packets, this work all builds in some way on fair
queueing [6].

In addressing flow-state fairness through scheduling, the
only way to reduce flow concurrency at a given point is tem-
poral offload: delaying or rejecting packets that would neces-
sitate new entries in the flow table (e.g. TCP SYN packets).
As shown in section 3, peak concurrency is generally much
higher than median concurrency, so most of the state in such
devices is transient. As shown in section 3.1, most flows are
short, so entries may be aggressively timed out. Therefore
a strategy based on delaying SYNs for space in the flow ta-
ble may indeed allow middleboxes to keep up with transient
peaks above their nominal flow table capacity.

However, in the larger sense, this simply moves the prob-
lem around. A delayed SYN which cannot be processed
within a short period of time must be dropped. A dropped
SYN, or a SYN delayed too long, will lead to retransmission
by the connection initiator, which in turn increases non-
productive traffic in the network. Delays and drops are also
visible at the application layer, leading to long-user visible
delays, and are indistinguishable from a link or host outage
condition.

Considering flow state congestion across multiple devices
along a path complicates this, as flow state congestion is
more likely to occur closer to the network core, where higher
degrees of aggregation lead to greater concurrency. This is
counter to the common assumption that the access link is
the bottleneck link. Of course, coming closer to the core of
the network one encounters fewer and fewer devices keep-
ing state per flow, because it is not necessary for routing
decisions. However, the proliferation of middleboxes and
deployment of “carrier-grade” NAT begins to call this as-
sumption into question. State exhaustion closer to the core
will cause wasted flow state in devices earlier in the path, as
they will have already set up state for the flow on the initial
SYN.

Approaches for flow reservation on TCP/IP networks are
impractical at the end-system level precisely given the dom-
inance of short flows. Indeed, all such approaches (e.g.
RSVP-TE[1]) operate at higher levels of aggregation, and in
the cases in which they are applied, the reservations are used
for relatively small groups of long-duration, high-volume
flows.

On a yet larger scale, spatial offload of flow state could be
possible out-of-band via routing table manipulation: chang-
ing intra-domain routes in order to balance state from over-
utilized devices to under-utilized devices in advance of state
exhaustion. However, this would introduce yet another con-
straint on routing, which is already a difficult problem, and
has convergence times much longer than most transient peaks
in flow concurrency. Further, intra-domain routing changes
may impact inter-domain routing, with implications for global
routing stability. We therefore see this as a tool too blunt
to be useful for this application.

Finding no satisfactory approach to flow-state offload, we
turn to approaches to discourage flow state congestion, by
analogy with capacity sharing approaches. Current in-band
signaling to discourage queue congestion is not well-suited
to addressing flow state congestion, as it requires two-way
communication to be established for signaling to begin, i.e.,
after flows are already taking up state in the network.

Given the relative dominance of short flows, a signaling
method in which senders declare the planned duration of

a flow in advance would allow devices in the network to
plan flow table occupancy in the short term, and to give
different incentives to short and long flows. We note that
the information required to make this work is often avail-
able at the application layer and can be heuristically deter-
mined ay lower layers; we further note that application-layer
approaches for performance enhancement which use multi-
plexing (e.g. Google’s SPDY [2]) show that it is possible
to reduce flow concurrency due to a given end system. By
analogy with queue capacity sharing, this facility would re-
quire an audit function to verify the honest participation of
senders.

We present this as a point for discussion.

4.3 Conclusions
In this work, we have presented a simple methodology for

measuring flow concurrency from network flow data, which
can be used to estimate flow state requirements for flow-
state-keeping devices in the network. We apply this to flow
data captured from a national-scale network, and find that
flow concurrency is generally positively correlated with traf-
fic volume, and stable on a per-active-host basis depending
on the aggregate activity of the hosts on a network. We ad-
ditionally find that flow concurrency is dominated by short
flows, which indicates the use of aggressive timeouts on flow-
state-keeping devices.

Flow state requirements derived from flow concurrency
measurements on a production network confirm the archi-
tectural assumption that as long as audit devices for capacity
sharing are deployed at the network edge, flow state require-
ments are not the limiting factor in their deployment.

However, increasing use of flow-state-keeping devices sug-
gests that fair allocation of flow state, as queue space, may
become necessary in the future.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge SWITCH for pro-

viding the data used in this study, and Simon Leinen for
discussions on the subject. Thanks to Elias Raftopoulos
for his assistance in identifying clients and servers, and to
Stephan Neuhaus for his comments. This work is partially
supported by the European Commission under grant agree-
ment FP7-318627 (mPlane).

6. REFERENCES
[1] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan,

and G. Swallow. RSVP-TE: Extensions to RSVP for
LSP Tunnels. RFC 3209 (Proposed Standard), Dec.
2001.

[2] M. Belshe and R. Peon. SPDY Protocol. IETF
Internet-Draft (work in progress):
http://tools.ietf.org/pdf/

draft-mbelshe-httpbis-spdy-00.pdf.

[3] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and
K. Cho. Seven Years and One Day: Sketching the
Evolution of Internet Traffic. In Proc. IEEE
INFOCOM, 2009.

[4] B. Briscoe, A. Jacquet, C. D. Cairano-Gilfedder,
A. Salvatori, A. Soppera, and M. Koyabe. Policing
congestion response in an internetwork using
re-feedback. ACM SIGCOMM CCR, 35(4):277–288,
Aug. 2005.

[5] B. Briscoe, R. Woundy, and A. Cooper. Congestion
Exposure (ConEx) Concepts and Abstract
Mechanism, July 2012. IETF Internet-Draft (work in
progress): http://tools.ietf.org/pdf/

draft-ietf-conex-concepts-uses-05.pdf.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. SIGCOMM
Comput. Commun. Rev., 19(4):1–12, Sept. 1989.

[7] C. Donley, L. Howard, V. Kuarsingh, and J. Berg.
Assessing the Impact of Carrier-Grade NAT on
Network Applications, October 2012. IETF
Internet-Draft (work in progress):
http://tools.ietf.org/pdf/

draft-donley-nat444-impacts-05.pdf.

[8] N. Egi, A. Greenhalgh, M. Handley, G. Iannaccone,
M. Manesh, L. Mathy, and S. Ratnasamy. Improved
forwarding architecture and resource management for
multi-core software routers. In Proceedings of the 2009
Sixth IFIP International Conference on Network and
Parallel Computing, NPC ’09, pages 117–124, 2009.

[9] A. Ghosdi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet processing. In
Proc. of ACM SIGCOMM, 2012.

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend TCP? In Proc. ACM Internet Measurement
Conference, pages 181–194, Berlin, Germany, 2011.

[11] C. Labovitz, S. Iekel-Johnson, D. McPherson,
J. Oberheide, and F. Jahanian. Internet Inter-Domain
Traffic. In Proc. of ACM SIGCOMM, 2010.

[12] M. Mathis and B. Briscoe. Congestion Exposure
(ConEx) Concepts and Abstract Mechanism, July
2012. IETF Internet-Draft (work in progress):
http://tools.ietf.org/pdf/

draft-ietf-conex-abstract-mech-05.pdf.

[13] D. Schatzmann, S. Leinen, J. Kögel, and
W. Mühlbauer. FACT: Flow-based approach for
connectivity tracking. In Proc. Passive and Active
Measurement Conference, 2011.

[14] B. Tellenbach, M. Burkhart, D. Schatzmann,
D. Gugelmann, and D. Sornette. Accurate network
anomaly classification with generalized entropy
metrics. Computer Networks, 55(15):3485–3502,
October 2011.

[15] B. Trammell, B. Claise, and A. Wagner. Flow
Aggregation for the IP Flow Information Export
(IPFIX) Protocol, August 2012. IETF Internet-Draft
(work in progress): http://tools.ietf.org/pdf/

draft-ietf-ipfix-a9n-06.pdf.

[16] B. Trammell, B. Tellenbach, D. Schatzmann, and
M. Burkhart. Peeling away timing error in NetFlow
data. In Proc. Passive and Active Measurement
Conference, 2011.

