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ABSTRACT
In this paper we present a software-based traffic classifica-
tion engine running on commodity multi-core hardware, able
to process in real-time aggregates of up to 14.2 Mpps over a
single 10 Gbps interface – i.e., the maximum possible packet
rate over a 10 Gbps Ethernet links given the minimum frame
size of 64 Bytes.

This significant advance with respect to the current state
of the art in terms of achieved classification rates are made
possible by: (i) the use of an improved network driver,
PacketShader, to efficiently move batches of packets from
the NIC to the main CPU; (ii) the use of lightweight statis-
tical classification techniques exploiting the size of the first
few packets of every observed flow; (iii) a careful tuning
of critical parameters of the hardware environment and the
software application itself.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

Keywords
Statistical Identification, Commodity Hardware, Traffic Mon-
itoring

1. INTRODUCTION ANDMOTIVATION
The ability to identify which application is generating ev-

ery single traffic session is recognized as a crucial building
block of today IP networks and unavoidable requisite for
their evolution [6]. Effective techniques could open new pos-
sibilities for actual deployment of QoS, for enforcing user
traffic to comply with policies, for legal interception and in-
trusion detection [14].

Classic techniques based on Deep Packet Inspection (DPI)
have been thoroughly analyzed during the years: though
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specialized hardware based on Network Processor [17] and
FPGAs [18] have been considered, the emergence of multi-
core commodity hardware has gained increasing attention
and exhaustive performance analyses have been reported
also for advanced systems using off-the-shelf Graphics Pro-
cessing Units (GPUs) [28, 27]. Unfortunately, despite the
powerfulness of the underlying hardware none of aforemen-
tioned approaches is able to actually sustain a 10 Gbps
throughput.

The latest years have also seen a flurry of proposals ex-
ploiting different “features” (in machine learning terms) to
perform the classification [20]. Statistical techniques based
on the size and directions of the first few packets of a flow [1,
5] emerged as especially appealing due to their low complex-
ity if compared to current state of the art DPI approaches.
Furthermore, such techniques can be used when traffic is
encrypted, while DPI approaches simply cannot. However,
most of the previous work on statistical classification focused
on assessing the accuracy of the different techniques (that
we take for granted given results in [1, 5, 14, 16]) without
measuring their achievable classification rates.

In this work, we argue that commodity multi-core hard-
ware offers intrinsic scalability at low cost, while providing
the unbeatable flexibility of software-only solutions. Hence,
we take a different twist with respect to works employ-
ing specialized hardware based on Network Processor or
FPGAs: furthermore, our software based solution is the
first to achieve two important milestones. First, using both
real Tier-1 traces and synthetic traffic, we demonstrate that
multi-Gbps statistical traffic classification is feasible with
open-source software on off-the-shelf hardware. Second, our
solution is able to sustain higher classification rates than
previous work [27, 17, 28, 16] with a sizeable gain in terms
of the maximum amount of classification actions per second
and manageable packet rates.

In more detail our software can easily handle a real Tier-1
traffic aggregate (i.e., a CAIDA OC192 trace [29]) replayed
at 10 Gbps, corresponding to 1.6 million packets per sec-
ond (Mpps) and 58 thousand flow classifications per second
(Kfps). Using two interfaces, our system sustains classi-
fication rates of 20 Gbps, 3.2 Mpps, 116 Kfps. Yet, the
upper bound of the system performance is much higher, as
we manage to handle classification rates up to 14.2 Mpps
and 2.8 Mfps without any losses (benchmark with synthetic
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worst-case traffic scenario with trains of 64B packets, 5 pack-
ets per flow, over a 10 Gbps link).

Such astonishing performance follows the use of a light-
weight classification algorithm (which bases its decisions upon
the size of the first 4 packets of every unidirectional flow [1,
5]), as well as of the most recent advances in terms of packet
processing techniques [11]. Yet, as we will see in the follow-
ing, engineering the system so that it sustains wire-speed
classification in the worst-case traffic scenario required in-
vestigation of several delicate architectural trade-offs of the
software, as well as the careful tuning of hardware parame-
ters. We believe the removal of all software bottlenecks in
the workflow to be another major contribution of this paper.

The paper sheds light on traffic monitoring and measure-
ment, giving advices and guidelines for designing high per-
formance traffic analysis tools which may be helpful for re-
searchers and network program designers. In this light, we
have released the code of our implementation to the com-
munity as open-software1 which may enlighten researchers
and designers about how to implement their own network
monitoring tools (or modify the existing ones) to cope with
current high speeds, i.e. 10Gbps and beyond.

Finally, we point out that to stress-test our system, we also
had to develop highly efficient traffic injection engines able
to either generate infinite synthetic traffic or replay huge
traces thus saturating 10 Gbps links during very long exper-
iments. As final contribution of this paper, we make these
latter tools, whose scope of applicability goes beyond that
of the Internet traffic classification, available as open-source
software2 as a research byproduct.

2. RELATED WORK
We present recent advances in (i) packet capturing en-

gines, (ii) flow management and (iii) traffic classification
techniques. We summarize performance for each category in
Tab. 1, further providing a comparison of our results with
respect to the current state of the art.
Packet capturing engines. Although modern Network
Interface Cards (NICs) hardware can handle high packet
rates, standard operating system network stacks are still af-
fected by a few software bottlenecks (e.g., per-packet op-
erations like buffer allocation and transfer to user-space).
To overcome such issues, several approaches bypass stan-
dard stacks by (i) processing multiple packets in batch to
limit IRQs and DMA transactions; (ii) exposing memory of
packet buffers to the user-space for zero-copy access; (iii)
tying every capture thread with its own ring buffer to a
fixed CPU to increase cache memory hits (Non-Uniform
Memory Access, NUMA) and (iv) using Receive Side Scal-
ing (RSS) to split incoming flows among different input
queues/capture threads. We report in Tab. 1 packet capture
performance for a number of systems including: PF RING
with Threaded NAPI [10] and variants [4]; Netmap [24,
23]; PacketShader [11]; and PFQ [2]. As can be seen from
the table, performance at 10 Gbps are impressive and this
demonstrates that off-the-shelf hardware can now be used
in place of costly Network Processors. Finally, since these
systems achieve comparable performance, the choice of a
specific technique is not critical for our purposes, and falls
on PacketShader [11] (see Sec. 3).

1http://www.eps.uam.es/~psantiago/hptrac.html
2http://www.eps.uam.es/~psantiago/hpcap.html

Flow matching. Monitoring at the flow level requires
to match each packet to the correct flow bin. In software
based solutions such as Tstat [25] or YAF [12] this is usu-
ally accomplished using hash-based structures over the flow
5-tuple. To the best of our knowledge, however, perfor-
mance of flow matching code in complex monitoring sys-
tems is rarely evaluated alone and extrapolating such data
from overall measurements can be tough or even mislead-
ing. For instance, [12] describes a flow management module
in detail, explaining how to optimize flow management using
slab allocator [3] for fast recycling of expired flow records,
but benchmarks of the system performance are not pub-
licly available. Otherwise, the performance analysis for flow
matching modules has been done either monitoring real ISP
deployments [9] or over offline traces [25, 30]. However, as
real 10 Gbps traffic is not by itself a stress-test scenario, this
calls for synthetic benchmarks.

Explicit performance are reported instead in [8] where a
dual Xeon box hosts a dedicate Endace DAG card which
achieves matching of up to 6 Mpps. In [22] an Intel IXP2850
Network Processor is shown matching 10 million concurrent
flows at 10 Gbps at full packet rate. Switching to off-the-
shelf setup, an application note from Intel [15] reports flow
matching of trains of 64 bytes packets at 17 Mpps out of
24 Mpps received over 16× 1 Gbps interfaces, where each
NIC is tied to a different core of an Intel multi-core CPU
system (unfortunately the study does not report the number
of concurrent flows). A similar architecture [7] matches up
to 11 Mpps for 1 million concurrent flows at 10 Gbps using
“FastFlow” algorithms spawned over 6 cores. For compari-
son, our system is able to handle aggregate flow rates up tp
2.8 Mfps using just two cores.
Statistical traffic classification. Several techniques have
been proposed for the classification of Internet traffic. Tra-
ditional ones are based either on the analysis of the trans-
port layer port numbers as in CoralReef [19], or on Deep
Packet Inspection of the packet payload as most commercial
tools do. Statistical techniques, instead, observe basic prop-
erties like packet lengths and interarrival times to classify
traffic and are celebrated for their accuracy and speed [20].
However, while the former has been experimentally demon-
strated [14, 16] on real traces, the latter is far from being
assessed. As a result, the classification rates and scalability
of these new algorithms are either unknown or really far from
those needed for real world deployment [6]: e.g., [1, 5] merely
discuss the complexity of the classification technique, while
the most recent performance analysis in [16] reports as few
as 30 · 103 classification per seconds with Näıve Bayes. On
a off-the-shelf setup similar to that used in [16], we achieve
2.8·106 classification per seconds running custom implemen-
tation of Näıve Bayes, thus boosting performance of a factor
of 100.

Furthermore we can compare our results to that achieved
by non-commercial Deep Packet Inspection (DPI) systems [17,
28, 27], that run pattern matching algorithms on multicore
GPUs. It is worth noting that while the amount of GPUs
power is already enough to process up to 40 Gbps traffic,
bottlenecks in the communication subsystem crushes the ac-
tual performance down to a mere 5.2 Gbps corresponding to
1 Mpps and 5 Kfps [28]. Similarly, [17] and [27] achieve
3.5 Gbps and 6 Gbps of aggregated traffic rate, correspond-
ing to less than 2 Mpps. Our technique not only sustains
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Table 1: Maximum processing rate in the state of the art, and advances offered by this work.

Category Ref.
Rates

Comments
MFlow/s MPkts/s Gb/s

[10, 4] - 14.8 10 60B frames
[24, 23] - 14.2 10 64B frames

Packet capture [11] - 14.2 10 64B frames
[2] - 12 10 Sender limitation
this work[11] - 14.2 10 64B frames

Flow handling [8] - 6 10 Using Endace DAG cards
[15] - 17 - Using 16 cores (16x1Gbps interfaces)
[7] 1 10 10 Using 6 cores
this work 2.8 14.2 10 Using 2 cores
[27] - 1.8 6.7 Using a GPU, synthetic traffic
[17] - - 3.5 Using real traffic

Traffic classification [28] 0.005 1 5.2 Using a GPU, real traffic
[16] 0.03 - - Offline experiments on real traffic (Weka)

this work
0.116 3.2 20 Real Tier-1 OC192 traffic over 2×10Gbps NIC
2.8 14.2 10 Synthetic traffic (64B frames, 5pkts/flow)

CHUNK RING JOB RING

SNIFFING
MODULE

FLOW 
HANDLING
MODULE

CLASS
MODULE

Figure 1: System modules.

10 Gbps of aggregated traffic, but potentially much more as
we handle 2.8 · 106 classifications per second.

3. SYSTEM MODULES
We report in Fig. 1 the three main blocks that compose

our classification system, the two data ring structures for
packet/flow queuing and the logical connections that push
information from left to right.
Sniffing module. We capture incoming packets making
use of PacketShader [11], a customized version of the In-
tel ixgbe driver that can fetch chunks of multiple frames
from the NIC using one single DMA data transfer, greatly
reducing the I/O overhead and the per-packet buffer alloca-
tion cost. Thanks to a native feature of the Intel 82599EB
10 Gbps Ethernet controller[13], incoming frames are par-
titioned in RSS queues according to a hash function: one
sniffing module (a thread running in user space that has di-
rect access to the kernel-space buffers) can then be set up
to fetch frames only from a given RSS queue. Following In-
tel paradigm, we also tie every capture thread to a specific
CPU core (thread affinity) so as to keep the data locally
in that CPU cache (hence limiting cache thrashing between
processor sockets). This same feature extends parallelism
from the NIC to the user layer, as RSS queues feed differ-
ent cores with multiple chunks at the same time, pushing
them through multiple lanes of the PCIe bus and hence in-
creasing the overall throughput with respect to a single core
solution. Packets are then organized in a circular ring and
made available to the user space with zero-copy technology.
Here a thread running on the same CPU copies the chunks
from the kernel ring and enqueues resulting data to a Chunk

Ring of Fig. 1: if the ring is full, a chunk might be lost. We
set the chunk size to 128 packets.
Flow Handling module. A thread then dequeues packets
from the Chunk Ring and perform lookup into a Flow Table.
A hash over the packet 5-tuple is used as a primary key to
access a hash table, while collisions are handled by chaining
(a data structure based on linked list of flow buckets). Once
the bucket is found (or a new one is appended if the flow
was not already known), a new feature is added to the flow
structure, namely the length of the corresponding packet
(read from the IP header). Each flow is considered active
within a timeout (default 15 sec) after the reception of the
last packet. When the timeout expires, its position in the
linked list can be reused by a new flow (no deallocation
overhead). Once a configurable number of packets for a
given flow has been seen (4 in this work), a new classification
Job is fired to the Job Ring of Fig. 1 if a position is available
(otherwise, the Job will likely be inserted the next time a
packet from that flow will be analyzed). We set the flow
hash table size3 to 50 millions.
Classification Module. Classification threads run a cus-
tom implementation of Näıve Bayes with Gaussian density
estimation. Given the first four packets of a flow have been
received, the algorithm associates the flow to the protocol
whose model scores the maximum likelihood for the genera-
tion of the flow. For each protocol model the algorithm uses
the size of the packets as indexes into the four lookup tables
that have been associated to that protocol during the train-
ing phase: the values extracted are then summed together,
we optimize, in fact, the algorithm by storing the logarithms
of the table values to avoid products as reported in [26]. By
comparing the values obtained for each of the protocols for
which a model is available, the algorithm chooses the ap-
plication and the classification of the flow terminates: for
more details please refer to [5]. Although classification ac-
curacy, in terms of packets correctly classified, is a key issue,
it is not the goal of this paper because it has been already

3For reason of space, we are unable to report a detailed
sensitivity analysis of the hash table size; here, we merely
stress that we set a hash size large enough to significantly
mitigate the occurrence of chaining.
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Figure 2: Different architectural configurations of
our system.

analyzed. Thus, we have chosen a representative classifi-
cation technique, such as Näıve-Bayes, whose accuracy has
been previously showed as enough for traffic classification
purposes [20]. Once chosen the classification technique, we
evaluated its performance in terms of computational cost
and the feasibility of its implementation on a real system
(based on commodity hardware and open software). Note
that the computational complexity, given a model, is not a
function of accuracy.

To increase the speed at which Jobs are extracted from
the Job Ring, multiple threads can be spawned according
also to the complexity of the algorithm. Each thread ex-
tracts one Job from the ring, processes the data, and writes
the classification verdict in the flow bucket inside the Flow
Table. New packet for that flow will be marked with this
verdict in their Type Of Service (TOS) field of the IPv4
header4. By default, we set only one thread to classify: as
we will see in the next section, this is sufficient to classify
all Jobs generated by flow handling module.

4. SYSTEM CONFIGURATION
Contrary to traditional network applications, new capture

engines extend the capture data rates by several orders of
magnitude. This implies that probably current networking
software is not able to work adequately at this speed. In
addition to this, multi-core hardware opens a new oppor-
tunity to develop applications that take advantage of the
parallelism that such engines allow, whereas current applica-
tions were developed in the pre-multicore area. Thus, care-
ful engineering of the system (e.g., CPU and memory affin-
ity, threads/process choice) is needed to achieve the highest
classification rates of Tab. 1 under worst-case traffic. Con-
figurations explored in this paper are sketched in Fig. 2.
1I-1Q-1P. This is the simplest configuration: traffic re-
ceived at the same RSS queue of a single interface is captured

4For reason of space, we do not assess packet forwarding
after classification in this paper.

by a thread which in turn pushes packets to one chunk ring
in the user space. All packets are matched in the flow table
sequentially: one classification thread works on the single
Job ring. In this case, though, some CPU cores are not uti-
lized. Note that using a single RSS queue may be preferable
to multi-queue in some cases —whenever the performance is
enough to cope with line-rate. For instance: to get smaller
CPU usage (and therefore less power consumption), not to
re-implement monitoring tools which have not been designed
for parallel processing, or to avoid packet reordering issues
due to multi-queue[31].
1I-2Q-1P. This configuration holds the single process model
of the previous one but two RSS queues are used: this means
two threads for fetching packets chunks and two separate
flow matching modules. Each capturing flow is executed on
a different CPU, but only one hash table is used. Since a
single Job ring is used, data coming from two different CPUs
is merged again in a single data flow. In this case, locking
is used to enable concurrent accesses to the flow table, and
this might decrease the overall performance.
1I-2Q-2P. Though similar to the previous configuration
(two RSS queues, two threads for capturing, bound to differ-
ent CPUs), the two threads for flow-handling reside in dif-
ferent processes, each on the same CPU of the corresponding
sniffer. This means that two separated flow tables are main-
tained and no locking is required thanks to the hash function
used at the NIC for dividing packets into the two queues:
each single flow lives on a single queue only (no mixing).
Moreover, the classification code (threads) and data struc-
tures (Job rings) are duplicated and fairly spread among the
two CPUs with no data flow merge. In this case, locking is
solved at the price of doubling the amount of memory.
2I-1Q-2P. The last configuration is exactly as the first one,
but two NICs are used: for each NIC a complete capture
and classification chain is instantiated, each complete chain
lives on a separated CPU. Given the number of cores in
our system, we cannot explore other configurations when 2
interfaces are in use.

5. PERFORMANCE EVALUATION
First, we describe our experimental testbed, covering hard-

ware, software and traffic details. Then, we benchmark sys-
tem performance in two scenarios: (i) we locate and solve
system bottlenecks using synthetic traffic in a worst-case
scenario (64B packets at maximum rate); (ii) we assess our
system in a real scenario, replaying traces from a Tier-1 link
over one or two 10 Gbps interfaces.

5.1 Experimental testbed
Hardware setup. Our setup consists of two general-purpose
servers: one acts as traffic generator, the other receives and
classifies the traffic. Both are equipped with 24 GB of DDR3
memory and feature two Intel Xeon E5620 processors, count-
ing four cores each (with hyper-threading capabilities dis-
abled to obtain actual parallelism among cores) working at
2.40 GHz. Concerning connectivity, each server is equipped
with one dual port 10Gbps Intel X520-SR2 NIC, and servers
are directly connected with a fiber link. This NIC model is
based on 82599 chipset, that enables multi-queue techniques,
up to 16 RSS queues per interface and direction.
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Figure 3: System Performance. Worst-case sce-
nario: synthetic traffic 64B packets, 5 packet/flow.

Software. Ubuntu 10.04 server 64-bit is installed on both
servers with a 2.6.35 Linux kernel. In order to inject traffic,
we have developed a tool on top of PacketShader API to send
traffic at maximum rate: generic tools such as tcpreplay5

can not, in fact, saturate 10Gbps links. Our tool6 instead
is able either to inject infinite synthetic traffic or to replay
very long packet-level traces at maximum speed.
Traffic. We utilized both synthetic traffic and real traces.
Synthetic traffic consists of TCP segments encapsulated into
64B-size Ethernet frames, forged with incremental IP ad-
dresses and TCP ports. We stress once more that, though
all packets have 64B-size, the packet length features are ex-
tracted from the IPv4 header: hence, our benchmark method-
ology does not affect the relevance of the classification re-
sults. For each flow (5-tuple combination), we send 5 pack-
ets, since the 5-th packet will be the first to have the chance
to be classified (on the basis of the packet-length features of
the previous 4 packets). At a maximum rate of 14.2 Mpps
for 64B frames, this translate into 2.8 Mfps. Real traffic
consists of a packet-level trace sniffed in 2009 at an OC192
(9953 Mbps) backbone link of a Tier-1 ISP located between
San Jose and Los Angeles, available from CAIDA [29]. All
the packets in the trace are anonymized and captured with-
out payload, the average of the original packet size in the
trace is 744 bytes and the average number of packets per
flow is 49.

5.2 Stress test: finding the bottlenecks
We first stress test the system in a worst-case scenario, i.e.,

using synthetically generated 5-packets long flows, sending
64B frames at maximum rate, i.e., 14.2 Mpps or 2.8 Mfps
per interface. We measure the amount of packets processed
by each module during 60-second experiments (but we also
tested the system on 24-hr long experiments on the best
configuration without observing losses). Note that using two
interfaces we were only able to send at ≈25 Mpps (instead
of the theoretic maximum 28.4 Mpps) due to limitations in
the sender.

Fig. 3 shows the performance of each module (sniffing,
flow handling and classification) for the different configura-
tions. In the parallel coordinates plot, a negative slope in
the curves reflects a bottleneck: i.e., a module is not able to
process all packets generated by the previous one. Curves

5http://tcpreplay.synfin.net/
6http://www.eps.uam.es/~psantiago/hpcap.html

in Fig. 3 are annotated with the CPU usage of each module:
if a module runs two threads, CPU usage is expressed sum-
ming the two corresponding values.CPU usage is computed
using sysstat utilities7. We obtained the CPU load per
thread every 5 seconds and then we averaged. Background
CPU usage (when there is no classification systems running)
and experimental variance are negligible.
The simplest configuration. The simplest configuration
1I-1Q-1P sniffs traffic from one interface, uses one RSS queue
and one process. In this case, it can be observed that not
all packets can be sniffed using a single RSS queue (a single
core). Particularly, only 12.1 Mpps are sniffed out of the
14.2 Mpps sent: notice that the CPU usage of the sniffing
module is 100% which pinpoints a processing bottleneck.
Similarly, flow module is only able to process 7.9 Mpps out
of 12.1 Mpps sniffed packets. As CPU utilization of the flow
handling module is also 100%, we have strong indication of a
second processing bottleneck. Finally, a slight negative slope
can be observed in the classification module. This is not due
to a CPU bottleneck (39%), but rather to the fact that only
flows with 5 packets can be classified and there have been
packet losses in previous modules. The classification rates
sustained by 1I-1Q-1P configuration are thus 7.9 Mpps and
1.5 Mfps.
Using 2 RSS queues. In order to remove bottlenecks ob-
served in the first configuration, we increment the number
of RSS queues and the number of cores dedicated to packet
sniffing and flow management. Thus, we test two configu-
rations, namely 1I-2Q-1P and 1I-2Q-2P. As shown in Fig. 2
and explained in Sec. 4, the former configuration uses one
process with two threads for sniffing, one per queue, and
two threads for flow handling, having a unique hash table
and a unique classification thread. Conversely, 1I-2Q-2P
configuration uses two processes, one per queue, which do
not share neither data structures nor processing cores. We
can observe that the bottleneck in the sniffing module is re-
moved in both cases: i.e., at 14.2Mpps, two RSS queues are
enough to receive and process the traffic. Besides, the 1I-
2Q-2P configuration with two processes consumes less CPU
power.
Locking issue. The behavior of the flow handling module
is different for 1I-2Q-1P and 1I-2Q-2P. Indeed, 1I-2Q-1P is
not able to process all packets received by the sniffing mod-
ule, and performance are even worse than in the case with
only one RSS queue. The bottleneck in this configuration
is tied to the contention in the access to shared data struc-
tures, such as the hash table and the Job ring. To arbitrate
concurrent access to shared memory, synchronization and
locking mechanisms are necessary but they are detrimen-
tal to overall performance. As in the first configuration, all
flows generated by the flow handling module can be classi-
fied. With 1I-2Q-1P configuration, the performance of the
whole system fall to 2.1 Mpps and 0.4 Mfps.
Wire-speed classification. Using two RSS queues and
two independent processes, we remove both sniffing bottle-
neck and flow management locking issues. With 1I-2Q-2P,
the system sniffs, processes and classifies all packets sent at
wire-speed without losses. Notice further that not even a
single CPU core is saturated (sniffing 77%+78%, flow man-
agement 87%+86%, classification 45%+46%), so that the
remaining processing power could be useful to perform other

7http://sebastien.godard.pagesperso-orange.fr/
documentation.html
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tasks (such as packet forwarding or statistics collection).
This also means that the processing capabilities of 1I-2Q-2P
configuration exceed the maximum data rate at 10Gbps.,
i.e., 14.2 Mpps and 2.8 Mfps.
Using 2 interfaces. The latest configuration, 2I-1Q-2P
uses two interfaces to receive traffic, but a single RSS queue
per interface due to the limit in the number of cores. As
expected, behavior is similar to 1I-1Q-1P, with bottlenecks
in both sniffing (24.2 Mpps received out of 25.2 Mpps sent)
and flow handling (15.2 Mpps processed out of 24.2 Mpps
received).

5.3 Real scenario: classifying at 20Gbps
Original packet size. We now test performance on real
Tier-1 traffic. We replay traces by sending packets back-to-
back at 10 Gbps by filling payload with zeros. Using full
packet size in Fig. 4, all system configurations sustain max-
imum rate: i.e., 1.6 Mpps and 58 Kfps on a single 10Gbps
interface, or 3.2 Mpps and 116 Kfps on two interfaces. CPU
usage and memory occupancy report that cores are far from
being saturated: this proves that our system could classify
more than 20Gbps traffic in a realistic scenario. Notice that
the simplest configuration (only 3 threads) is enough to clas-
sify all traffic with the smallest CPU load (hence the lowest
carbon footprint).
Capped packet size. Finally, in Fig. 5 for each frame
of size Si we control the maximum amount of bytes sent
on the wire as max(Si, L) with L the maximum frame size,
that we vary in the range [64, 1500]B to tune the flow and
packets arrival rates for a fixed datarate of 10 Gbps – hence
finding the packet and flow processing rate bottleneck of
each configuration. From the figure, we gather that the sim-
plest configuration 1I-1Q-1P can sustain up to 3.8 Mpps and
103 Kfps using only 3 cores.

6. CONCLUSIONS
We propose an all software solution for statistical traffic

classification on commodity hardware. Our system achieves
a significant advance with respect to the state of the art in
several ways. First, it demonstrates the feasibility of on-
line statistical traffic classification, that was so far confined
on offline analysis published in the literature. Second, it
significantly outperforms state of the art classification tech-
niques. Indeed, while the raw classification throughput on
real traffic aggregates is about 3× higher than [27] and 4×
higher than [28], however our system is able to sustain flow
classification rates 93× higher than [16] and 560× higher
than [28]. Additionally, this paper sheds light on traffic mon-
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Figure 5: CAIDA trace with capped packet length.

itoring and measurement, giving advices and guidelines for
designing high performance traffic analysis tools which may
be helpful for researchers and designers. In this light, we
released the code of our implementation to the community
as open-software which may be useful for researchers and
designers in order to implement their own network monitor-
ing tools (or modify the existing ones) to cope with current
high speeds (10Gbps and beyond).

Notice that the above performance gap between our work
and the previous ones, is hard to remove. Indeed, on the one
hand, while GPUs in [28] could in principle process 40 Gbps
equivalent of traffic, this is forbidden by a bottleneck in the
path from the NIC to the GPU. That is, current approaches
force to pass through main memory, and waste processing
time, to transfer data between the NIC and the GPU cre-
ating a bottleneck — although there are preliminary results
which may avoid such limitation, they can be only used with
Infiniband technology yet[21]. On the other hand, the statis-
tical technique is anyway much more lightweight than DPI
(only process packet headers), so that it would benefit more
from a GPU. This gap is intrinsic to the nature of the sta-
tistical classification process, that avoid to transfer packet
payload from the NIC to GPUs unlike DPI. Thus, statisti-
cal approaches are unachievable for DPI, even making use
of different hardware, such as GPUs.

While this work constitutes a significant advance, we be-
lieve that further optimization are possible, which are part
of our current ongoing work. First, we aim at wire-speed
performance on two interfaces, which should be achieved
with a 2I-2Q-4P configuration on a 12 core server. Sec-
ond, we plan to implement C4.5 trees, due (i) their known
discriminative power, and (ii) the fact that they can be ef-
ficiently implemented as if-then-else branches. Finally, we
want to optimize flow management, avoiding to compute
hash in software, by exporting the hash computed by the
NIC to map packets to RSS queues, which should requires
only simple modification to the NIC driver.
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