
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

Basic Network Data Analysis

Author(s): EURECOM P. Michiardi, A. Barbuzzi (ed.)
POLITO A. Finamore, S. Traverso,

D. Apileƫ, E. Baralis, T. Cerquitelli, S. Chiusano, L. Grimaudo
FUB A. Rufini, A. ValenƟ, F. Matera
NEC M. Dusi, M. Ahmed
NETVISOR T. Szemethy, L. Németh, R. Szalay
TID Ilias LeonƟadis, Yan Grunenberger
FTW P. Casas, A. D'Alconzo, A. Bär
ENST D. Rossi, Y. Gong

Document Number: D3.1
Revision: 0.2
Revision Date: 1 May 2013
Deliverable Type: RTD
Due Date of Delivery: 1 May 2013
Actual Date of Delivery: 1 May 2013
Nature of the Deliverable: (R)eport
DisseminaƟon Level: Public

318627-mPlane D3.1
Basic Network Data Analysis

Abstract:

This document describes the requirements, input, output for the algorithms needed to perform analyƟc tasks on a large
amount of data, in the context of WP3. StarƟng from the use cases defined in WP1, we idenƟfy the algorithms needed to
address the various scenario requirements. OperaƟng on a large amount of data, these algorithms strive for parallel and scal-
able approaches; the designing and implementaƟon of the algorithm itself can be a challenging research task since today very
liƩle is known concerning how to develop efficient and scalable algorithms that runs on parallel processing frameworks. The
algorithm in the storage layer are characterized by the fact that they operate on a large amount of data, and produce a concise
representaƟon of it, extracƟng features and aggregaƟng it, so that the produced output is easier to handle and understand.
Depending on the amount of data produced, on the scenario characterisƟcs and on the Ɵme constraints, algorithms can re-
quire a real Ɵme (or near real Ɵme) or a batch processing. For each algorithm and use case, the input data and the iniƟal state,
the computaƟon to run and the output produced are described.

Keywords: algorithms, storage, big data

Plane
2

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.
The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane
3

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Contents

Disclaimer. 3

Document change record. 6

1 Introduction. 7

2 Algorithms Description. 8
2.1 Supporting DaaS troubleshooting. 9

2.1.1 Introduction . 9
2.1.2 Input Description. 9
2.1.3 Algorithms Description . 10
2.1.4 Output Description . 10

2.2 Estimating content and service popularity for network optimization . 11
2.2.1 Introduction . 11
2.2.2 Input Description. 11
2.2.3 Algorithms Description . 12
2.2.4 Output Description . 13

2.3 Active measurements for multimedia content delivery . 14
2.3.1 Introduction . 14
2.3.2 Input Description. 14
2.3.3 Algorithms Description . 16
2.3.4 Output Description . 16

2.4 Quality of Experience for web browsing . 17
2.4.1 Introduction . 17
2.4.2 Input Description. 17
2.4.3 Algorithms Description . 19
2.4.4 Output Description . 20

2.5 Mobile network performance issue cause analysis . 21
2.5.1 Introduction . 21
2.5.2 Input Description. 21
2.5.3 Algorithms Description . 24
2.5.4 Output Description . 25

2.6 Anomaly detection and root cause analysis in large-scale networks: trafϐic pattern
analysis . 26
2.6.1 Introduction . 26

Plane
4

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.6.2 Input Description. 26
2.6.3 Algorithms Description . 28
2.6.4 Output Description . 30

2.7 Anomaly detection and root cause analysis in large-scale networks: data mining al-
gorithms . 31
2.7.1 Introduction . 31
2.7.2 Task deϐinition and expected output . 32
2.7.3 Input data . 32
2.7.4 Pre-processing . 33
2.7.5 Item frequency . 34
2.7.6 Rule mining . 34
2.7.7 Rule ranking . 34

2.8 Veriϐication and certiϐication of service level agreements . 35
2.8.1 Introduction . 35
2.8.2 Input Description. 36
2.8.3 Algorithm description. 38
2.8.4 Output description . 40

3 Conclusions. 42

Plane
5

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Document change record

Version Date Author(s) Description
0.1 10 April

2013
A. Barbuzzi
(EUR)

initial draft

0.2 29 April
2013

A. Barbuzzi
(EUR)

draft

Plane
6

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

1 IntroducƟon

This document deϐines and describes basic algorithms that operate on the data storage layer, gener-
ally on very large amounts of data. The repositories expect to receive input data from amultitude of
probes, deϐined in WP2. This data is processed, analyzed and aggregated in the storage layer using
parallel and scalable frameworks, and later served to the Reasoner, deϐined in WP4, which makes
use of it.
WP3 deals with the storage of data from the probes, which produce different kind of data: big data,
real time data, and possibly small data. Some of this input data requires further processing inWP3,
some of it could be even served to WP4 directly. First, WP3 manages the storage of such data. Dif-
ferent technologies can be used, such as traditional DBMS, distributed DBMS, Hadoop File System
(HDFS), HBase, and so on. Some execution engines (e.g., Hadoop, HBase, BlockMon, ...) will use
an underlying storage engine or access directly to a data stream and execute two main classes of
algorithms, according to the requirements of particular use-cases: real time algorithms and batch
processing algorithms. Real Time algorithms should be applied to data as soon as it arrives, results
are produced as soon as possible, and they generally guarantee a response within strict time con-
straints. On the other hand, batch algorithms are applied to the data with no stringent constraints
on completion times. They are delay tolerant (as they operate on large volumes of data) and I/O
(disk and network resources of the computing cluster) plays a crucial role; they are computational
hungry.
Algorithms produce data that is consumed by other algorithms (inWP3) or by the Reasoner (WP4).
The Reasoner, by construction, accepts only data of small size. Therefore, the algorithms typically
aggregate data and extract a set of features conveying a summary of information and whose size is
more convenient and feasible to be treated.
The algorithm deϐinition is use case driven and follows the use cases described in WP1. Therefore,
for each scenarios deϐined in WP1 and described in Section 3 of [2], the required algorithms are
described; for each use case, we identify the available input produced by the probes, the algorithms
necessary to process it and the produced output. Note that, while the description of the algorithms
is related to WP3's tasks and topics, a detailed description of the input and how it is produced is
related to WP2, while the consumption of the output concerns the Reasoner and WP4.
This document is organized as follow. First, a brief introduction is made in Chapter 1. In Chapter 2,
the algorithmsarediscussedandanalyzed, focusingon the input, on theoutput producedandon the
algorithms themselves. Finally, Chapter 3 makes a general summary and draws the conclusions.

Plane
7

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2 Algorithms DescripƟon

This chapter describes the algorithms used in each speciϐic scenario. Each section contains the
following items:

• an Introduction, which brieϐly describes the algorithms motivation and requirements;

• an InputDescription, which describes the data available for the algorithms, produced by the
probes and stored in the storage layer;

• an Algorithm Description, which illustrates the algorithms needed to analyze the data and
to fulϐill the use case requirements.

• an Output Description, which describes the output produced by the listed algorithms.

Note that the output of the algorithm can be stored in the storage layer, and as such can be used
as input for other algorithms, allowing the creation of a pipeline of algorithms. For the complete
scenarios' descriptions, please refer to Section 3 of Deliverable D1.1[2].
Note that both the algorithms and the Input/Output described in this document consist of an initial
deϐinition and they could possibly change and be reϐined during the project evolution. They are
meant to provide the high level description of capabilities and data that the storage layer has to deal
with. Engineered solution must be able to cope with these requirements and offer the scalability
and ϐlexibility needed to cope with the described constraints .

Plane
8

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.1 SupporƟng DaaS troubleshooƟng

2.1.1 IntroducƟon

This section provides an overview of the algorithmswe intend to focus on as for detecting the Qual-
ity of Experience of users accessing content using Desktop-as-a-Service (DaaS) solutions through
thin-client connections, as presented in Section 3.1 in Deliverable D1.1[2]. Together with the al-
gorithms, we describe the input features we plan to gather from the connections and the expected
output of the algorithms, which will be exploited by the reasoner for taking further actions.

Thin-client solutions allow users to connect to remote services and access content offered by a
virtual PC as if they had physical access to the remotemachine. The reasons behind deploying thin-
client solutions and hosting virtual PCs in datacenters are related to easiness of maintenance, cost
optimizations and security. Although thin-client solutions were ϐirstly designed for LAN environ-
ments, where bandwidth and delays between users and their virtual PCs are generally not an issue,
with the advent of the cloud paradigm, hosting virtual PCs in remote datacenters poses challenges
in terms of whether or not the network has enough resources to sustain a good Quality of Experi-
ence (QoE) for end users also in WAN environments.

As users perform real-time activities through thin-client protocols, e.g., reading andwriting emails,
webbrowsing andwatching video content, the responsiveness of the networkbecomes a crucial pa-
rameter to determine the QoE perceived by end-users when interacting remotely with their virtual
PC. Knowing the applications that users are currently running on their virtual PC helps shedding
light on the QoE that they perceive given the actual network conditions: the entity of a bottleneck in
the networkmay be tolerable for a user that is using the thin-client solution for reading a document
on its virtual PC, whereas it may be unacceptable for a user watching multimedia content.

2.1.2 Input DescripƟon

Hereweprovide a description of the intended features thatweplan to collect fromprobes about the
single thin-client connection. Those features will represent the input to the algorithm for detecting
the kind of application being run on top of the thin-client connection.

As thin-client connections usually make use of encryption to protect the content being exchanged,
in the ϐirst placewe plan to collect IP-level features of the packets of the connections, such as packet
size, rate, inter-arrival time, and TCP-level features such as payload length and number of observed
packets, whether they carry data or acknowledge only, TCP ϐlags, etc. These features will be col-
lected on a per-connection basis, i.e., on a per-thin client basis.

The idea is to have the probe to collect such information about the connections as the connections
are active and periodically exporting their statistics. Tuning the timer based on which exporting
the information will be investigated: this timer needs to be a good balance between classiϐication
accuracy and ensuring a continuous and timely classiϐication.

Plane
9

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Figure 1: Overview of the algorithm for supporting DaaS troubleshooting. Input features and out-
put data are shown.

2.1.3 Algorithms DescripƟon

The idea is to consider statistical classiϐication techniques to detect on-the-ϐly the application that
runs inside the thin-client protocols, by passively observing features of packets of the thin-client
connection. Themain goal here is the design of an effective statistical classiϐication techniquewhich
can effectively take advantage of the available features provided by the probes as described in the
previous section.
Given that information, we combine themwith the actual network conditions along the path, which
may affect users experience when using thin-client protocols: an example of such metrics is the
Round Trip Time (RTT) and the available bandwidth. A threshold-based algorithm will be able to
infer users’ QoE, and its design and tuning we envision to be one of the main challenge. Possibly,
more complicated classiϐication algorithms could be used, for example, by considering machine
learning approaches.

2.1.4 Output DescripƟon

At this stage of the work, we think of two possible outputs from the algorithms.
One output could be a time series of alarms that are pushed to the reasoner, for instance to alert
that some users along a given path are experiencing bad QoE. The reasoner can then decide to run
further measurement campaigns, such as active measurements, to better locate the problem, or
query the repository to get a historical log of the path (i.e., its congestion level, uptime, and so on).
Figure 1 provides an overview of how the overall algorithm would work in this case.
Another possible output is to export to the reasoner the kind of application that the algorithmof the
previous sectionhas identiϐied to be running on topof the thin-client connectionunder observation.
The reasonerwill then take care of correlating such informationwith the network conditions along
the path (for instance by querying the repository) and run the threshold-based algorithm to infer
users' QoE. This could represent an advantage in case we manage to have an unique threshold-
based scheme for inferring users' QoE rather than having it distributed. However, at the current
stage this remains an open question that we plan to address.

Plane
10

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.2 EsƟmaƟng content and service popularity for network opƟ-
mizaƟon

2.2.1 IntroducƟon

This section presents the algorithms necessary for the prediction of content popularity, as well
as their inputs and expected outputs. These algorithms will be used mainly in the context of use
case of Section 3.2 as presented in Deliverable D1.1[2]. This use case relies on content popularity
information to optimize the network performance. For instance, by detecting early which content
items will receive attention in the future, it is possible to proactively place these items in caches
closer to the endusers. This results in bandwidth savings aswell as in an enhanced user experience.
Moreover, beyond this use case, the popularity information computed by such algorithms is useful
for several other purposes such as: media advertising, trend forecasting, movie revenue estimation
and trafϐic management. It could be even a key enabler for novel value-added services such as
media curation. In general, it is interesting for operators to understand and predict the collective
behavior of users in their networks. As such, we will deal in this section with the broad topic of
content popularity estimation and prediction based on network measurements. The algorithms
introduced hereafter are therefore applicable for use case 3.2 of D1.1 as well as for future mPlane
use cases that may utilize the popularity information.
At this early point of the project, the details of the algorithms are still under deep investigation.
However, here we plan to provide (i) which input data are going to feed them (Section 2.2.2), (ii)
which output data they will produce (Section 2.2.4) and (iii) a broad overview of the algorithmswe
plan to use (Section 2.2.3). In particular, we are interested in the granularity of the data, the need
of the algorithms for accessing a historical archive and the speed at which data will be consumed
and produced.

2.2.2 Input DescripƟon

A lot of input information can be used to predict popularity. These can range from the simple counts
of number of views tomore ``sophisticated" application speciϐic data (comments related to the con-
tent within blogs, or popularity indexes of social networks etc). However, our aim is to keep our
methodology as general as possible in order to not over-specialize prediction algorithms for a par-
ticular application context. Moreover, information such as comments in blogs would be difϐicult
to retrieve by passive measurement running at the network or transport level using a probe that
performs Deep Packet Inspection.
The algorithm takes in input a time series describing the arrival process of requests (e.g. HTTP
GET) targeting a certain content (i.e. a URL). In particular, each request will be described by a tuple
reporting the id (a hash) of the requested content, the timestamp of the request, the user-id/IP
(properly anonimyzed) corresponding to the user who generated the request, and the location in
the networkwhere the request was raised, i.e., the location of the probe. Such input datamay easily
correspond to the output logs of a trafϐic classiϐier (a probe such as Tstat or BlockMon) performing
measurements at transport and application level on a network link or it can be provided by logs of
proxy servers managed by operators. The output throughput is of course going to be proportional
to the speed of the observed network links, that can span from a few Mb/s to tens of Gb/s.

Plane
11

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Such input data, can be augmented, if needed, with additional application-speciϐic information like
explained above. If this information is proved useful, we might want to obtain it by designing new
active probes that will actively request content items to extract it.
Therefore, as a summary, the input data will have the following format: <ContentID, Time, UserID,
Location, meta data>; where meta data refers to application-speciϐic information (e.g. number of
comments, shares on social networks etc).

2.2.3 Algorithms DescripƟon

Predicting thepopularity of content is in general a challenging task, since it is difϐicult to incorporate
into models the effects of external phenomena (e.g. media, natural, geo-political events). Besides,
cascades of information are difϐicult to forecast. This difϐiculty is further exacerbatedwhen dealing
with short time scales (e.g. hours, days). Indeed, in use cases like the one we deϐined in D1.1, it is
important to estimate the growth rate of content as early as possible: the earlier the network reacts
by adapting content placement, themore bandwidth it saves. Thus, for this use-case, it is important
to rely on almost real-timemeasurements, so that the prediction process can immediately produce
precious insights to proactively distribute the content on the network.
The methodology adopted to predict the popularity of content within a network can be splitted is
described hereafter. First, we need to categorize the behavior of content over time to reveal distinct
patterns of popularity growth. Indeed, it is expected that relatively a few classes of behavior will
be identiϐied. E.g. videos reporting news show very similar popularity trends, being capable of
attracting a fairly large attention for a fewdays, andbecoming completelyunpopular as the reported
event becomesold. We instead expect to see thatmusic videos showa constant over timepopularity
growth.
Even if algorithmsmust be ϐlexible enough to process data arriving at diverse speed, different kinds
of content may exhibit very different dynamics, and then require very different processing perfor-
mance: e.g, network data carrying YouTube trafϐic exhibits much larger volumes with respect to
other UGC VoD (User Generated Content Video-on-Demand) systems, so the corresponding request
arrival rate is expected to be large too. Algorithmsmay indeed need customization towards speciϐic
kinds of services to improve their processing speed.
Based on the input data described in the previous section, i.e. the tuple <ContentID, Time, UserID,
Location, meta data>, other pre-processing algorithms will run a procedure to:

• retrieve the history for content associated to ContentID;

• update the number of hits and its time series.

These steps likely correspond to fairly fast operations, i.e. a query and an insertion, for a relational
database relying on this data structure.
Clustering and predictive algorithmswill be employed to forecast the popularity growth associated
to each content: we plan to estimate the popularity growth over space and time, to get insight not
only on which content is of interest but also if there are speciϐic areas that are attracted by it.

Plane
12

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Figure 2: Overview of the algorithm for estimating content and service popularity. Input features
and output data are shown.

2.2.4 Output DescripƟon

The result of the prediction process may be a simple time series of messages that are pushed to the
reasoner to indicatewhich contents are going to become popular in the near future at speciϐic place
of the network. Similarly to the input data, the output can be seen as a series of couples <ContentID,
Location>. Such information is indeed enough for the Supervisor/Reasoner to proactively push
contents to the caches close to associated location. More advanced forecasting techniquesmay also
predict how long that content is going to maintain its popularity, so that an eviction time may be
speciϐied and exploited to proactively evict unpopular contents from the cache.
The objective of the prediction algorithm may be as well (or in addition) to keep an up-to-date
ranking of the content items that will become popular in the next period (minutes, hous, day, etc).
Such a ranking can be pulled by the reasoner whenever it is needed.
In addition to all the prediction capabilities, the algorithms and database, designed in the context of
WP3, should be able to provide (upon request) some simple historical statistics about popularities
of content items, such as (non-exhaustive list): (i) what were the most popular items in a speciϐic
period (last day, week, month, etc); (ii) what is the number of hits for a certain content during a
speciϐied period.
Figure2provides an initial overviewof the input andoutput features of the algorithm for estimating
content and service populairty that we envision.

Plane
13

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.3 AcƟve measurements for mulƟmedia content delivery

2.3.1 IntroducƟon

In this scenario, mPlane is used to pinpoint or narrow down systems or network segments respon-
sible for degradations in popular multimedia streaming services (e.g. YouTube), as described in
Section 3.3 of Deliverable D1.1[2]. Initially, there are a number of active probes within the net-
work constantly or periodically downloading certain pre-conϐigured streams, and monitoring the
download process to observe the delivered quality of the streams. There are other, also mPlane-
managed probes on the Internet, that are capable of activemonitoring of thesemultimedia stream-
ing services, but are not conϐigured to do so (e.g. to conserve network resources, or to preform
other measurements). There are also other, passive probes on the network observing and mea-
suring trafϐic at network junctions (e.g. ISP peering points, enterprise network uplinks etc.). The
position (geographical, topological) and other connectivity-related attributes of all the probes are
recorded by mPlane in a distributed fashion.
When one of the active probes (probeA) identiϐies a degradation of the streaming service it moni-
tors, an alert (trigger) is raised towards the mPlane Supervisor. Then, the Supervisor needs to be
able to schedule additional measurements for the same stream and/or service in question using
the other ``spare'' probes available on the network. Additionally, it needs to check if there are ϐlow
or trafϐic measurements from passive probes on the network that are relevant in evaluating the ac-
tive probes' results, or can be correlated to them (e.g. trafϐic/availability measurements on a link
or junction taking part of themonitored stream's delivery). The Supervisor also needs to ϐind out if
there are other probes outside of its administrative domainmeasuring the same or related services,
and obtain their measurement results via mPlane interfaces.
In order to accomplish the described tasks, the Reasoner execute a two-step process. First it issues
a query to the repository asking for a list of ``nearby'' candidate probes needs to be obtained, or-
dered by certain criteria (most often somemetric of distance from the probe(s) signaling the prob-
lem). Second, it checks that these probes are indeed capable of performing the additional stream
measurements that are needed to narrow down the problem region.

2.3.2 Input DescripƟon

In this scenario, mPlane data layers are expected to store and work with two kinds of data:

Measurement results represented as time series

Topology data representing the location of the probes from multiple aspects (e.g. geographical
and network topology).

2.3.2.1 Measurement results as Ɵme series data

Multimedia stream delivery is characterized by the followingmetrics. These metrics are computed
by theprobeeverymmilliseconds, and theprobe locallyprovidesn-second-resolutionMin/Max/Avg
aggregations if requested. In practice,m is 1000 andn is 60 thus rawmeasurements are taken each
second and the aggregates are computed for each minute. m and n are of course conϐigurable.

Plane
14

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

These aggregations are computed over 60 1-sec raw measurement values. Counter-type variables
(e.g bytesReceivedCnt) are not aggregated as they monotonically increase. The parameters ex-
ported by the probes are listed in the following table.
Metric Unit Description
nominalBitrate bps content's adverstised momentary bitrate
actualBitrate bps actual bitrate
bytesReceivedCnt bytes bytes received (incrementing counter)
qualityIndex percent momentary ratio of of selected stream alternative's

bandwidth vs. the best one (if available)
bandwidthUtilization percent actual vs. nominal bandwidth
dataInterArrivalJitter msec Jitter of OS-level chunks received by the Player
firstDataDelay msec delay of 1st data item of the transfer (last valid value)
bufferLevel percent (momentary) Player buffer level
httpCode enum last HTTP Status Code

Some of the probes are also capable of measuring the underlying TCP transport characteristics,
also represented as a n-milliseconds resolution time series, and aggregated locally the sameway as
above. All TCP metrics are collected both ways src → dst and dst → src). The additional metrics
collected by these probes are listed in the table below.
Metric Unit Description
windowSize{Init,Min,Max} bytes Initial,Min,Max advertised TCP window size
bytesTransmittedCnt bytes bytes transmitted
bytesReTransmittedCnt bytes bytes retransmitted
msecIdle msec maximum idle time between two consecutive packets

of the stream within the 1-sec sampling period
msecRTT{Min,Max} msec TCP RTT
ooPacketsCnt pkts count of number of Out-of-Order pkts

2.3.2.2 Topology and staƟc network characterizaƟon data

Topologies - as ususal - should be represented by graphs. The exact representation (data model)
within mPlane is not yet ϐinalized. Generally, the following topology information needs to be rep-
resented, with the indication of registered mPlane probes' location within:

• Physical and logical network topology and network information (e.g. nominal link band-
width)

• Routing and proxying/tunneling (to the level that is relevant to the HTTP(s) delivery of the
multimedia services being examined)

• Autonomous Systems interconnection or other information to map administrative/provider
boundaries

Plane
15

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.3.3 Algorithms DescripƟon

The mPlane storage layer is expected to help locating active and passive probes near probeA and
the other probes iteratively involved in the troubleshooting process. Thus, WP3 algorithms need to
ϐind answers queries related the the location and connectivity of each probe. A non-comprehensive
list of queries is listed hereafter:

• probes served by the same ISP or access network as probeA and their relation (in the topol-
ogy)

• show the Network/Autonomous System/Provider→CDN→Consumer path for the network
stream (to the extent possible from the topology data stored)

• probes (active and passive) connected to networks ``upstream'' from probeA

2.3.4 Output DescripƟon

The results are lists of mPlane probes, ordered by their distance from probeA experiencing ser-
vice degradation. While working to ϐind the root cause of the degradation, the Reasoner will try
to determine the set of network endpoints impacted. Thus, similar queries are going to be issues
iteratively, and the results are processed by the Reasoner.
Then, the Reasoner will contact and negotiate capabilities with probes selected based on the above
queries, and program them to execute similar active measurements as the root probe did. As the
Reasoner is working iteratively, the above queries may be repeated for additional probes based on
the ϐindings of the re-programmed probes.
Additionally, if the Reasoner can ϐind passive probes on the network path between the stream
source and the active probe(s) receiving it, it may query and re-conϐigure them to execute trafϐic
measurements for the streams transmitted towards the active probes. This way, link congestion
issues and transmit errors (drops) can be identiϐied and their causes pinpointed. The list of such
passive probes is also provided by the mPlane data layer.

Plane
16

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.4 Quality of Experience for web browsing

2.4.1 IntroducƟon

The algorithmspresented in this section dealwithmechanisms to identify andpinpoint the cause of
performance degradation in web browsing scenarios, as described in Section 3.5 of the Deliverable
D1.1[2]. This scenario uses the input of aweb browser plugin, installed in end-users browsers, able
to log performance indexes related to the loading and browsing of web pages. The collected data is
transmitted to the repository, where it can processed, analyzed and fed to the Reasoner.

2.4.2 Input DescripƟon

When a user loads a Web page, a large number of operations happens behind the scenes. A typical
web page contains up to hundreds of different elements: images, CSS, javascript code, etc. There-
fore, in order to fully render a page, all those elements need to be downloaded, possibly parsed,
executed or decoded.

For each of those elements, we need to keep track of many different metrics, such as the IP ad-
dresses and port numbers of the client and server, the duration delay of the DNS requests, the TCP
handshake duration, the TCP connection duration, the duration of the download, the HTTP return
code, the client load, etc. Moreover, each query should be binded to the user-generated web re-
quest that originated it, in order to be able to process all the elements related to the same request
together.

Even if in the initial deployment the number of probes can be small, the system should be designed
to scale, and to be able to store and process the input from a possible very large number of probes
(in the order of millions).

The parameters logged by the probes can be divided into ϐive main categories: request identiϐiers,
which are the parameters used to identify each request and associate it to the originating user re-
quest; network information, which contains lower level information, such as TCP and DNS status;
HTTP information, which containsHTTPparameters and speciϐicmetrics; information about status
of the client, such as system load and wireless signal strength; general performance metrics, such
as the time required to complete the requests.

The preliminary set of collected metrics is listed in the tables immediately below.

Request identiϐiers

Metric Description
URI Unique Resource Identiϐier of current object (e.g.

HTTP://www.google.com/news/sports/go.img)
Session URI pageURI of thewhole browsing session that current ob-

ject belonging to
Host host/server name for current object

Plane
17

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Network information

Metric Description
Local IP address client IP for current connection
Local port client port for current connection.
Remote IP address server IP for current connection
Remote port server port for current connection (normally 80)
DNS start timestamp DNS event start timestamp
DNS end timestamp DNS event end timestamp
DNS duration delay DNS duration delay (e.g. end time - start time)
SYN timestamp TCP handshake event start timestamp (e.g. SYN packet

is sent)
SYNACK timestamp TCP handshake event end timestamp (e.g. SYN/ACK

packet is received)
TCP connecting duration TCP connecting duration (TCP end time - TCP start

time)

HTTP information

Metric Description
Server connection header HTTP Connection header.. useful to check if persistent

connection is disabled by the server.
HTTP method HTTP query method, such as GET or POST
HTTP response code HTTP response code from the server for current request

(e.g. normally 200)
HTTP request size HTTP request size
HTTP header size HTTP response header size
HTTP body size HTTP response data body size
HTTP cache size if object is from cache, this is the object size
HTTP referrer header HTTP Referrer header
HTTP id random number inserted at HTTP header
HTTP Location header HTTP Location header
Content type content type of current object (e.g. png, ϐlv, html....)
Content length content length declared by the HTTP header
Accept Encoding AcceptEncode HTTP header, set by the browser
Content Encoding ContentEncode HTTP header, e.g. zip, gzip, etc.
Content load timestamp timestamp of browser event of end of parsing current

page
Server HTTP version server HTTP version (normally 1.1 or 1.0)
HTTP request timestamp timestamp of sending HTTP request
first byte timestamp timestamp of receiving the ϐirst bytes from the server

side
Application RTT timedurationbetweenHTTP.sent and receiving1st byte
HTTP end timestamp ending timestamp of current HTTP transfer
Download duration time duration of the whole data download

Plane
18

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Client status

Metric Description
Browser version current browser version
Client OS client operating system info
Client ID a random number unique for each user
Current wifi quality current wiϐi quality (e.g. signal strength in percentage)
Cpu idle current idle CPU resource
Cpu percent browser CPU percentage required by the browser
Free memory total free memory of client PC
Memory used total memory in use of client PC
Browser memory percentage percentage of memory used by the browser
Ping gateway ping delay to the default gateway
Ping nameserver ping delay to the conϐigured DNS server
Ping google ping delay to www.google.com host
Object aborted whether current object is stoppedby theuserbefore ϐin-

ishing downloading all the data
Performance metrics

Metric Description
Request timestamp starting time of the request event in the browser
Session start starting time of the browsing session
Load timestamp timestamp of page fully load event
Full load time Page load time
Content load time Page parsing time
Abort time Page abandoned time
Server operating sytem Server declared operating system at HTTP header
Cache status browser cache status of current object

2.4.3 Algorithms DescripƟon

There are different algorithms that should be applied to the collected data. The algorithms to apply
to the data can be classiϐied in two main categories: ``data preprocessing'' and ``data analysis''.

2.4.3.1 Data preprocessing

Data pre-processing is a fundamental step in the data mining process. Data can be inconsistent,
corrupted or redundant, resulting in out-of-range values, impossible data combinations, missing
values, etc. Without a preliminary pre-processing phase, the analysis of such data can an produce
misleading results. Data pre-processing include different sub-phases such as data cleaning, data
normalization, format conversion, etc.
Data cleaning is the process of detecting and correcting corrupt or inaccurate records, caused, for
example, by user entry errors or corruption in transmission or storage. Data normalization is the
process of reducing data to its canonical form, to minimize redundancy and dependency. Data
transformation converts a set of data values from the data format of the source into the data format
of the destination system.

Plane
19

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.4.3.2 Data analysis

The analysis algorithms aim to allow both a manual and an automatic troubleshooting. Simple
statistic functions are applied to the collected data (mean value, standard deviation, median, etc.).
Such information can be used to do exploratory analysis, understand outages, measure SLAs (avail-
ability, latency, etc.), help ISP to do capacity planning.
Collectedmeasurements can also be clustered, e.g. using for example K-meams algorithm. K-means
clustering is a method of cluster analysis which aims to partition n observations into k clusters in
which each observation belongs to the cluster with the nearest mean. This results in a partitioning
of the data space into Voronoi cells. Such technique allows to discover and explain the performance
differences among users and identify the root causes for poor performances. Clustering techniques
can be used to cluster users, ϐlows, servers, ISP or geographical locations. For example, one pos-
sibility is to exploit the measurement of several clients, e.g. of all the web clients of the different
devices in the same home, in order to improve the potential of identifying more precisely the cause
of the performance impairment. For instance if theWiFi at home is overloaded and some of the end
systems access the Internet viaWiFi while others are connected to the home gateway via Ethernet,
the use of multiple devices should allow to distinguish between congestion of theWiFi link as com-
pared to congestion of the access link of the ISP. Clustering can be exploited to identify problems
in the access link peculiar to speciϐic ISP. It is important to understand that clustering algorithm
requires as input euclidean distances, so the algorithm implementation requires the proper deϐi-
nition and implementation of distance metrics. In k-means, the number of clusters k is an input
parameter: an inappropriate choice of k may yield poor results. As pointed in [5, 4], this choice is
crucial for the performances and the result of the analysis, and should be chosen appropriately by a
domain expert. Other more advanced clustering algorithms could be considered as well. Note that
collected data have a natural temporal ordering. Statistics andmeasurements should be calculated
with different time granularities (e.g. hour, day, week, month).

2.4.4 Output DescripƟon

The produced output is stored in the database itself, and, if required, additional structures are gen-
erated in order to improve the retrieval efϐiciency. Results are analyzed by a manual operator for
exploratory analysis, understanding the cause of possible outages, etc., or retrieved and used by the
reasoner in order to trigger alarms and require further analysis. The clustering algorithm produce
a list of centroids of the observations, and the association between observations and centroids.

Plane
20

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.5 Mobile network performance issue cause analysis

2.5.1 IntroducƟon

This section presents the algorithms necessary for the analysis of the performance of mobile de-
vices, and the identiϐication of the degradation causes, as described in Section 3.6 of the Deliverable
D1.1[2].

2.5.2 Input DescripƟon

A combination of probes across various parts of the network will provide the required input in
order to identify the core causes of poor user experience. The Application probe provides on-
demand information as perceived from the application point of view. The Mobile OS probe offers
on-demand information considering the device capabilities and the device status (CPU, Memory).
Furthermore, an important aspect of this probe is to measure the cellular network conditions (as-
sociated cell tower, signal strength, bit errors, transmit characteristics, power state of the device,
etc). The Mobile ISP probe captures, both passively and actively aggregated information such
as number of associated devices, overall trafϐic, channel utilization, scheduling/QoS policies, etc.
Moreover, information about the ISP's backbone such as capacity, transfer rates and latency can be
measured using acceleration proxies and middle boxes installed in the network. Finally, the Core
Network and Service Provider probes measure the performance of the core network and the
CDN/Service provider.
The data from these probes can be returned as timestamped JavaScript Object Notation (JSON)
strings and eachmeasurementwill be timestamped. Please note that for some installations itmight
not be possible to extract some of the described information due to proprietary drivers/hardware
or luck of available APIs. For instance, some vendors of RNCs/SGSMs/GGSNs use proprietary pro-
tocols across their hardware.
We now present details about the data that are generated by each probe.

2.5.2.1 ApplicaƟon probe

The input from probes provides information as perceived from the application point of view.

• Player Status (playerStatus): The ability of the player to display the required video. Any
errors suchas inadequateCPUormemory,missing codecs, lackof cachingmechanisms, poorly
conϐigureddrivers, lackof hardwareaccelerationare loggedusing thelogEvent sub-attribute.

• Video Information(videoInformation): The sub-attributes contain information about the
current video URL, available bitrate(s), selected resolution, videoCodec, audioCodec and
duration.

• Request Status (requestStatus): The reply(s) from the video server until the video is re-
trieved. The information includes information about redirections, and videos that were
not-found or denied. Furthermore, the IP address of the server that returned each sta-
tus code and a timestamp is logged. Note that in some cases this information might not be
available.

Plane
21

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

• Average Video Bitrate (avgVideoBitrate): The reported average video bitrate is reported
as videos can be encoded using adaptive bitrate. Furthermore, some video players can
switch between different bitrate streams either dynamically or after instructed by the user.
It can be measured by dividing the size of the played video by its elapsed duration.

• Current Video Bitrate (currentVideoBitrate): This is the average bit-rate over a 20-
second sliding window. If a user-initiated bitrate change was requested the window is reset.
This input is only requested on demand by the application probe when an active measure-
ment is required.

• Setup Time (setupTime): This is the interval between the time when the player initiates a
connection to start downloading the video till the time that the player starts playing the video
(i.e., the initial connection and buffering interval).

• Buffering Ratio (bufferingRatio): This is the percentage of the time that the video spent
in buffering and it does not include the initial buffering during the setup period. It is deϐined
as: bufferingRatio = BufferingT ime

BufferingT ime+PlayingT ime .

• BufferingFrequency(bufferingFrequency): This represents the averagenumberof buffer-
ing events per minute of video.

• Average Buffer Fill (bufferFill): The average number of video seconds that the buffer
contains during the streaming.

• Average Transfer Rate (transferRate): The average transfer rate during the video down-
load. If the video is split into multiple chunks, then this metric only include the time when a
chunk was downloaded. Note that in some conϐiguration (e.g., HTML5 players, this informa-
tion might not be possible).

• Dropped Frames (droppedFrames): The number of frames that had to be skipped due to
insufϐicient bandwidth (e.g., for live streaming) or performance (e.g., CPU power). Note that
in some players this information might not be extractable.

• Unique Identiϐier(PID): An identiϐier that is used to identify the problem across different
probes.

2.5.2.2 Mobile OS probe

This probe offers passive and on-demand information considering the device capabilities and the
cellular network conditions. An open-source OS may be used (e.g., FireFoxOS or Android). Notice
that the amount of information that can be collected is bounded by the data that can be extracted
from the cellular modem driver (i.e., Samsung Galaxy S2 devices support the extraction of such
information).

• Device Information (deviceInformation): Is a string that contains the available informa-
tion for this device. Sub-attributes of this ϐield include: the type of the device (i.e., Samsung
Galaxy S3), the OSversion, the screenResolution and the availableMemory.

• Association Information (associationInformation): Encodes the information about the
current (instantaneous) conditionsof the selectednetwork interface: (e.g., associatedTower,
powerState, modulationType, RSSI, connectionStatus).

Plane
22

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

• Signal Information (signalInfo_10sec, signalInfo_60sec, signalInfo_300sec,):
these three attributes provide the signal information for a sliding window of 10, 60 and 300
seconds. Depending on the modem driver, the sub-attributes include:
RSSI (RSSI_avg, RSSI_min, RSSI_max): the average, minimum and maximum RSSI with
the associated base-station.
Modulation Type (modulation_avg, modulation_min, modulation_max): an index that
deϐines the type of the modulation used (e.g, EDGE, UMTS, LTE).
Number of disconnections (numDisconnect): the number of times that the medium had
been disconnected during the selected window.
Time ratio of disconnections (timeDisconnect): the percentage of time during the win-
dow that the terminal was disconnected.
Numberofhandovers(numHandovers): the number of times that the terminal has switched
base-stations.

• Transfer Rate Information (transferRateInfo_10sec, transferRateInfo_60sec,
transferRateInfo_300sec): these three attributes provide transfer rate statistics for the
interface:
Download rate (downloadRate_avg, downloadRate_min, downloadRate_max): the av-
erage, minim and maximum download rate.
Upload rate (uploadRate_avg, uploadRate_min, uploadRate_max): the average, minim
and maximum upload rate.
Packetdelayvariation (PDV)(pdv): Thedelay is speciϐied from the start of thepacket being
transmitted at the source to the end of the packet being received at the destination. Note that
this information might not be available in some ϐlows, operating systems or network drivers.

• Unique Identiϐier(PID): An intensiϐier that is used to identify the problem across different
probes.

2.5.2.3 Mobile ISP probe

Themobile ISPprobe, captures, bothpassively andactively, information about eachmobile terminal
and base-station. Notice that due to the fact thatmost ISPs use a variety of hardware conϐigurations
that support different statistics about their operation, the information described below might be
only partially available.
Passively generated for each terminal:

• Association Information (associationInformation): Encodes the base-station that the
terminal is associated and de-associated. If available, sub-attributes contain the terminal's
powerState, the modulationType and the IPinformation.

At each RNC, passively generated every t seconds:

• Load Information (loadInformation). Information about the load of each sector over of
sliding window of the last t seconds:
Number of associated clients (numClients).

Plane
23

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Number of active clients (numActiveClients): the number of clients that are exchanging
trafϐic at high-power mode.
Channel utilisation (channelUtilisation): the percentage that themedium is busy trans-
mitting/receiving.

At each backbone controller: Since a variety of linksmight be used (e.g., satellite, microwave, ϐiber),
information about the load of the links is returned.

• Link Load Information (linkLoadInformation) for each interface:
Download load (downloadLoad): the aggregate download load.
Upload load (downloadLoad): the aggregate upload load.

• Dropped packets (droppedPackets): packets that had to be dropped due to the buffers
being full or due to CPU overload (if available).

2.5.2.4 Core Network and Service Provider probes

These probes provide information such as core network performance, peering utilization, service
uptime, number of served clients, network congestion, CDN selection at the service provider. Fur-
thermore, the CDN provider can also measure the caching hit-rates, service latencies and report
any issues at the distribution network.

2.5.3 Algorithms DescripƟon

In our scenario we adopt an application-initiated probing model. More speciϐically, as shown in
Figure 3, following the detection of a problem, each probe is incrementally consulted depending on
the collected data. We will now describe in detail the resulting actions.
Application Probe: The main task of the application probe is to identify a potential quality of ex-
perience problem and initiate the probing process. More speciϐically, based on the input described
in the previous section, two main categories of issues can be identiϐied: i) unable to play due to
applicationmiss-conϐiguration and ii) quality of service issues. If the problem does is not related to
application miss-conϐiguration, the phone probe is consulted to further investigate the root of the
problem.
Phone Probe: After receiving a request from the application probe, the phone probe examines
the OS/phone state to detect any local issues. More speciϐically the phone probe will identify prob-
lems related to poor resources and signal/bandwidth issues. If both the application and the phone
probes cannot identify the cause of the problem their data are forwarded to the mobile ISP probe
for further investigation.
Mobile ISP probe: After receiving a request from a device, this probe is responsible to identify
any issues within the ISPs network. Note that it is not necessary to trigger a new on-demand mea-
surement for each request: recent measurements concerning the same user, users associated with
the same cellular location, or about the same service or CDNmight cached to enhance performance.
When an issue is found, a warning is generated within the ISP in order to troubleshoot problematic
conϐiguration of the network. Furthermore, automatic actions can be potentially made to load-
balance the load. Finally, the application can be notiϐied about the cause of the problem depending
on the operator's policy.

Plane
24

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

Applica'on	

probe	

Generate	
 Warning,	

Log	
 event	
 locally	

Generate	
 Warning,	

Log	
 event	
 locally	

Application errors

Phone	

probe	

Limited connectivity

Limited device resources

Limited device capabilities

Phone/Network Issue

Mobile	
 ISP	

probe	

Generate	
 Warning	

Generate	
 Warning	

Cell tower Load/Configuration

Core	

Network	

probe	

Service/CDN Issues

Peering Issues

Backbone congestion

Core/Service issue

Network issue

Mobile	
 Device	

Mobile	
 ISP	

Generate	
 Warning	
 Service/
CDN	
 probe	
 Peering Issues

Core	
 Network	

CDN/Service	

Rooting Issues

Retrieval errors

Service Issue

Figure 3: Workϐlow of identifying the causes of mobile video performance issues.

Core Network an CDN probes: If the problem is not found between the user's mobile device
and the ISPs peering point, the service provider and the content distribution network have to be
probed. Information concerning the nature of the problem (e.g., URL/IP of the service, the type of
the problem and the PID) is forwarded and further actions are taken.

2.5.4 Output DescripƟon

The output of each stage of the investigation is a warning that includes the <PID, Location, UID,
ResourceID, ErrorCode, DetectedCause, ProbeData>. Where required, the data are anonymised and
the association is stored locally at the repository of each party. The output is either forwarded to
the next probe (for further investigation) or to the reasoner in order to get a historical overview of
the issue-cause associations and perform passive analysis. Furthermore, the error code can be also
returned to the application in order to display a warning to the user.

Plane
25

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.6 Anomaly detecƟon and root cause analysis in large-scale net-
works: traffic paƩern analysis

2.6.1 IntroducƟon

This section presents the basic network data analysis techniques necessary for the detection and
Root Cause Analysis (RCA) of trafϐic anomalies in large-scale networks, corresponding to the use
case presented in Section 3.7 of the deliverable D1.1[2]. The description is performed in terms of
the basic algorithms that are employed in the use case, the required input data coming from the
measurements layer and from other repositories, and the outputs of the analysis, which will then
be available for further processing.
The main driver of the anomaly detection and RCA use case is to track and understand anoma-
lous changes in trafϐic patterns, specially in the light of the complex current Internet trafϐic sce-
nario, dominated by the popularity of content providers that leverage Content Delivery Networks
(CDNs) to serve end-users. Indeed, a major portion of today's Internet trafϐic is served by CDNs.
Anomaly detection and RCA is a fundamental task for ISPs, network administrators as well as for
CDN providers, to understand how Internet services use the network (e.g., at speciϐic time of the
day there is a trafϐic shift due to load balancing), to characterize the behavior of the users (e.g.,
due to low performance users stop to use a service), and to optimize or troubleshoot their systems
when the detected changes disrupt the normal operation QoS of their network.
In the general scenario of this use case,mPlane is continuously collecting predeϐinedmeasurements
over time and frommultiple vantage points. Both active and passive measurements can be consid-
ered. Measurements are collected at the measurements layer and stored in the repository where,
at predeϐined time scales, are processed to detect and diagnose anomalous trafϐic behaviors (i.e.,
identify the root causes for such unexpected behaviors).
Someexamples of the changesmPlanedetects anddiagnoses include changes inRTT to speciϐic con-
tent, changes in the average download speed from certain servers, service unavailability, changes
in the trafϐic volume distribution, changes in the number of trafϐic ϐlows, etc. Once an anomaly is
detected, alarms are raised and could eventually automatically trigger the intelligent reasoner anal-
ysis and the corresponding iterative measurements. In the ϐinal and complete approach, when an
anomaly is detected, the corresponding alarms are logged and presented to the mPlane user, and
the most plausible causes for that anomaly are displayed.
It is is important to recall that the kind of analysis techniques that we depict in the following sec-
tions are simple and aremeant to be performed at the repositories and analysis layer of themPlane
architecture. The term simple refers to the fact that the corresponding operations have to run in
potentially huge amounts of data coming from themeasurements layer, and as a consequence, they
cannot represent (in principle) complex analytics.

2.6.2 Input DescripƟon

Given the heterogeneity of services to monitor and types of devices to serve as probes, there is a
huge set of inputmetrics that could be considered as valid examples for the anomaly detection pro-
cess. However, in order to provide a concrete description of the problems and analysis techniques
being addressed, we shall focus on three speciϐic scenarios for anomaly detection and RCA: (i) CDN

Plane
26

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

trafϐic and CDN network analysis, (ii) tracking end-user trafϐic-share evolution, and (iii) de-
tecting unknown behaviors in end-user trafϐic. In the following description, we do not specify
the temporal granularity of input data. Such granularity depends on the speciϐic scenario require-
ments. As a general rule, the temporal granularity to use depends on the temporal behavior of the
events to be detected and characterized.

• CDN trafϐic andCDNnetwork analysis: multiple trafϐic and network features can be consid-
ered as input for analyzing CDNs and detecting anomalies. The following is a non-exhaustive
list of the metrics considered as input for the basic data analysis techniques employed in this
scenario:

– Network distance from a vantage point to a group of CDN servers: for example, RTT,
hop count, and AS count. Analyzing distance-based data of CDN servers permits to track
network architectural changes (e.g., deployment of a new data-center, failure of an al-
ready established data-center). Also, it allows for load balancing analysis and detection
of trafϐic shifts at different CDNs, e.g., by identifying time variant load balancing policies
under different load conditions (including ϐlashcrowd events).

– Per ϐlow download throughput and RTT from different CDN servers: throughput and
delay are related to performance, and are useful to identify trafϐic shifts and congestion
events. For example, a drop in the download throughput or a increase in the RTT at peak
hours can be due to policies redirecting the clients requests to ``far'' data centers, or to
congestion events in the network.

– IP ranges of CDN servers, and organizations owning those ranges: knowing the speciϐic
IPs which correspond to speciϐic CDNs allows for per-CDN analysis, inter-CDN compar-
ison, and cross-CDN detection of anomalies.

• Tracking trafϐic share evolutions: tracking the share of services used by large groups of
end-users and detecting novel trends and anomalous behaviors is useful for many purposes,
from improving network provisioning techniques and operations to supporting marketing
decisions. For example, we can derive trends on the evolution of Internet services such as
YouTubeandFacebook, considering their shareof volumeor their popularity across theusers.
Strong variations in the share of trafϐic which is not classiϐied can also reveal interesting be-
haviors, for example, sharp changes in the amount of generic HTTP trafϐic can hide the pres-
ence of a new application that is becoming popular. Depending on the capabilities of the
probes, some of the input metrics include:

– If the network probes have a trafϐic classiϐication module, then the input data metrics
include (all on a per-application basis): up/down bytes, number of ϐlows, ϐlow time-
stamps (start and end of the ϐlow), and number of users.

– If the probes do not have trafϐic classiϐication capabilities, input data additionally in-
cludes HTTP requests with the headers and DNS resolution queries. We speciϐically fo-
cus on HTTP-based trafϐic as it represents the top source of end-user trafϐic.

• Detecting unknownbehaviors in end-user trafϐic: detecting previously unseen events and
patterns in user trafϐic is achieved through the following input data:

– Performance metrics: per ϐlow throughput, inter-packet arrival times, per ϐlow TCP re-
transmissions, RTT.

Plane
27

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

– Protocol-based metrics: number of TCP ϐlag packets (SYN, FIN, RST, etc.), number of
initiated/concluded TCP sessions.

– Connection-based metrics: number of different IPs source/destination, number of dif-
ferent source/destination ports.

2.6.3 Algorithms DescripƟon

The kind of algorithms which analyze the previous input data can be separated into those running
at the repositories and analysis layer of mPlane, and those running on top of the results provided
by the analysis layer. As we said before, we usually expect that the algorithms running at the repos-
itories and analysis layer are less complex in terms of number of operations w.r.t. those running
on top of their results, as they should be able to process large amounts of data. The following lines
describe the analysis required by each of the aforementioned scenarios:

• Algorithms for CDN trafϐic and network analysis:

– Search and ϐilter CDN ϐlows: the ϐirst step to analyze CDN trafϐic is to isolate those
ϐlows coming from speciϐic CDNs. An easy way to perform this ϐiltering is by origin IP
address: many public databases exist today (e.g., MaxMind, http://www.maxmind.com)
where the organization owning an IP address can be retrieved. Search and ϐiltering can
be achieved in the large scale by efϐicient indexing; we may think on a database-like
repository where all the ϐlows captured at different vantage points are imported every
∆T minutes and indexed by timestamp and IP address.

– CDF of average throughput and RTT per CDN: a characterization of CDN trafϐic per-
formance can be achieved by tracking the average throughput and the RTT of the ϐlows
served by the corresponding CDN. The anomaly detection algorithm we propose works
by detecting differences in a time series of the empirical distributions on different in-
dicators such as throughput or delay. The CDF computation involves sorting, summing,
and thresholding basic operations.

– CDF of minimum RTT per CDN: the minimum RTT of the ϐlows coming from speciϐic
CDNs is directly correlated to the distance from the vantage point to the servers/data
centers. As before, changes in the CDF reveal changes in the distribution of the CDN
servers selected for the speciϐic trafϐic, evidencing for example load balancing policies
at the CDN.

The anomaly detection algorithm works slightly as follows: every ∆T minutes, the ϐlows
served by different CDNs are isolated. The CDF of the average per ϐlow throughput and RTT
are computed, and similar for the CDF of the minimum per ϐlow RTT. The algorithm assumes
the existence of a base CDF reϐlecting the past normal behavior of the system in terms of
the corresponding indicators. If the distance between the current CDF and the based CDF is
above certain detection threshold, the anomaly detection algorithm ϐlags an anomaly; on the
contrary, if the distance is below the threshold, the base CDF is updated by integrating the
current CDF as part of the normal behavior.

• Tracking trafϐic share evolutions:

Plane
28

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

– Pattern matching on HTTP headers: as we said before, the trafϐic shares analysis is
based on HTTP trafϐic ϐlows, which currently carry the majority of the end-user trafϐic.
Every newHTTP ϐlow is parsed and the contacted host name is compared against a set of
deϐined regular expressions or patterns describing different services and applications.
If a matching pattern is found, the ϐlow is assigned to the corresponding service.

– Total HTTP trafϐic volume: every∆T minutes, the total volume of HTTP ϐlows is com-
puted and stored back in the repository, indexed by time stamp. In thisway, a time series
of HTTP trafϐic volume is directly available for further analysis.

– HTTP trafϐic volume variance computation: every ∆T minutes, the variance of the
total HTTP trafϐic volume is computed from the past 10 contiguous HTTP volume mea-
surements. This indicator is used to compute the anomaly detection threshold w.r.t.
abrupt changes in the overall HTTP trafϐic volume, which may evidence the presence of
a new HTTP application which is becoming popular, or even the event of a ϐlashcrowd.

– Per service volume counting: every∆T minutes, the downloaded volume per service
is computed and kept back in the repository, indexed by time stamp. Tracking the vol-
ume per service allows for detection of trends and usage behavior of HTTP services.

– Per service ϐlow counting: every∆T minutes, the number of ϐlows per service is com-
puted and kept back in the repository, indexed by time stamp. Similar to the previous
case, tracking the number of ϐlows per service allows for analysis of trafϐic share behav-
iors.

– Per servicenumberof users counting: every∆T minutes, the number of uniqueusers
per service is computed and stored back in the repository, index by time stamp.

– Inter-service distance computation: a fast approach for characterizing and compar-
ing the trafϐic shares of a predeϐined set of services is by doing clustering analysis. For
each service of the predeϐined set, and for each time stamp (∆T granularity), we de-
ϐine a vector characterizing the service at the given time. Such a vector includes the
up-link and down-link transmitted volume, the number of packets and ϐlows, the num-
ber of users, the average ϐlow size and ϐlow duration, the average andmedian minimum
RTTmeasured on top of the ϐlows, among others. The analysis step computes the inter-
vector distances (i.e., Euclidean distance) and stores them back in the repository. These
distances are then used for clustering purposes.

The HTTP trafϐic shares tracking and analysis algorithm works slightly as follows: every∆T
minutes, the HTTP headers of the ϐlows are matched against a set of predeϐined regular ex-
pressions describing a set of services (e.g., YouTube, Facebook, Netϐlix, etc.). The aforemen-
tioned set of metrics is computed. For each metric, a different detection threshold is com-
puted using the variance of the previous non-anomalous measurements. In addition, the
service vectors are built and the distance among them are computed and stored back in the
repository. These distances are ϐinally used by a clustering algorithm, which runs outside the
repositories and analysis layer.

• Detecting unknown behaviors in end-user trafϐic:

– Counting of number of ϐlows, bytes, speciϐic packet types (TCP SYN, FIN, RST, TCP
retransmissions, HTTPcancellations), different source/destination IPs andports:
every∆T minutes, all these metrics are computed for all the trafϐic ϐlows coming from
a single or ϐixed set of vantage points. The computations done at the repositories and

Plane
29

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

analysis layer are based on ϐiltering and counting, and we assume that all the speciϐic
metrics are already computed at the measurements layer.

– Computation of average per-ϐlow throughput and average RTT: every∆T minutes,
the average per ϐlow download throughput and the average per ϐlow RTT are addition-
ally computed, using simple ϐiltering and counting.

– Inter-time-slot distance computation: for each∆T time slot, we deϐine a vector char-
acterizing the behavior of the trafϐic at the given time. Such a vector includes all the pre-
viously computed metrics. The analysis step computes the inter-vector distances (i.e.,
Euclidean distance) and stores them back in the repository. These distances are then
used for clustering purposes.

The algorithm for detecting unknown behaviors in end-user trafϐic works as follows: the ϐirst
step is the learning phase, in which every time slot∆T is mapped to an n-dimensional vector,
during a period of 24 h. The inter-vectors distance among these learning time-slots are com-
puted and stored back into the repository, which will be then used by a clustering algorithm
identifying groupings and structure. In the analysis phase, every new time slot is mapped to
an n-dimensional vector, and its distance towards the centroids of the clusters identiϐied at
learning time is computed. If this distance is below a certain detection threshold, then the
new time slot is added to the learning time slots; on the contrary, if the distance is above cer-
tain detection threshold, an anomaly is ϐlagged. The speciϐic dimensions in which the new
time slots deviates more from the learning time slots are identiϐied, which are then used for
understanding the causes of the deviation.

2.6.4 Output DescripƟon

Given that the basic analysis algorithms are very atomic, their output is straightforward. For exam-
ple, in the case of CDN trafϐic and network analysis, the main output of the algorithms are selective
per CDN ϐlows and time-series for various CDFs (i.e., sorted vectors) for different analysis features
on top of these ϐlows. In the case of tracking trafϐic share evolutions, the main output of the analy-
sis algorithms are time series on HTTP trafϐic shares and per service characterization features (e.g.,
number of users, of ϐlows, of bytes). In addition, time series of inter service-based-vectors distances
are provided as output, which are then used for clustering purposes. Finally, in the case of detect-
ing unknown behaviors in end-user trafϐic, the main output are the time series of inter time-slot
distances, describing temporal trafϐic behavior and performance.
Note that in the three presented scenarios, the outputs generated by the basic analysis algo-
rithms aremeant to be post-processed by speciϐic structure analysis algorithms (i.e., clustering),
change-detection algorithms (i.e., anomaly detection), and outliers-detection algorithms.

Plane
30

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.7 Anomaly detecƟon and root cause analysis in large-scale net-
works: data mining algorithms

2.7.1 IntroducƟon

This Section addresses the application of data mining techniques to the mPlane network trafϐic
traces, for the detection and Root Cause Analysis (RCA) of trafϐic anomalies in large-scale networks,
corresponding to the use case presented in Section 3.7 of the deliverable D1.1[2], with a particular
focus on distributed and scalable cloud-based association rule extraction.
Data mining focuses on studying effective and efϐicient algorithms to transform huge amounts of
data into useful and actionable knowledge. Industries are attracted by the business opportunities
arising from the exploitation of the extracted knowledge, while researchers are interested in the
challenging issues coming from the application of data mining techniques to new scenarios and
growing datasets, leading into the ϐield of Big Data Analytics.
Different data analytics tools rely on data mining algorithms to gain interesting insights from large
volumes of semi-structured or unstructured data. Data mining techniques allow extracting pre-
viously unknown interesting patterns such as groups of data objects (cluster analysis), unusual
patterns (anomaly detection), correlations and dependencies (association rule mining) [14].
When dealingwith huge data collections, the computational cost of the datamining process (and in
some cases the feasibility of the process itself) can potentially become a critical bottleneck. Parallel
anddistributed approaches canbe adopted to increase themining efϐiciency and improve algorithm
scalability.
Association rule mining is a two-step process: (i) Frequent itemset extraction and (ii) association
rule generation from frequent itemsets [3]. Since the ϐirst phase represents the most computa-
tionally intensive knowledge extraction task, effective solutions have been widely investigated to
parallelize the itemset mining process both on multi-core processors [17, 16, 11, 8] and with a dis-
tributed architecture [15, 6, 9, 18]. However, when a large set of frequent itemsets is extracted, the
generation of association rules from this set becomes a critical task.
In the context of the mPlane project, we plan to design, develop and apply a horizontally-scalable
approach, which consists of a series of distributed jobs run in the cloud. Each job receives as input
the result of one ormore preceding jobs and performs one of the steps required for the datamining
task. As a reference, we expect each job to be performed by one or more MapReduce tasks run on
a Hadoop-like cluster.
The algorithm architecture consists of the following steps:

• Pre-processing

• Item frequency

• Rule mining

• Rule ranking

Plane
31

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.7.2 Task definiƟon and expected output

in this Section, a formal deϐinition of the data mining task is presented and the outputs of the algo-
rithm as a result of its application to mPlane data are formally deϐined.
Let D be a dataset whose a generic record r is a set of features. Each feature, also called item, is
a couple (attribute, value). Since we are interested in analyzing statistical features computed on
trafϐic ϐlows, each feature models a measurement describing the network ϐlow (e.g., Round-Trip-
Time (RTT), number of hops).
An itemset is a set of features. The support count of an itemsets I is thenumber of records containing
I . The support s(I) of an itemset I is the percentage of records containing I . An itemset is frequent
when its support is greater than, or equal to, a minimum support thresholdMinSup. Association
rules identify collections of itemsets (i.e., set of features) that are statistically related (i.e., frequent)
in the underlying dataset. Association rules are usually represented in the formX → Y , whereX
(also called rule antecedent) and Y (also called rule consequent) are disjoint itemsets (i.e., disjoint
conjunctions of features). Rule quality is usually measured by rule support and conϐidence. Rule
support is the percentage of records containing bothX and Y . It represents the prior probability
ofX ∪ Y (i.e., its observed frequency) in the dataset. Rule conϔidence is the conditional probability
of ϐinding Y given X . It describes the strength of the implication and is given by c(X → Y) =
s(X∪Y)
s(X) [14].

Given a dataset D, a support threshold MinSup, and a conϐidence threshold MinConf , the min-
ing process discovers all association rules with support and conϐidence greater than, or equal to,
MinSup andMinConf , respectively.
To rank the most interesting rules, quality indexes can be exploit, such as the rule support, conϐi-
dence, and lift measures [14], In particular, lift is a good candidate since it measures the (symmet-
ric) correlation between antecedent and consequent of the extracted rules. The lift of an association
ruleX → Y is deϐined as [14]

lift(X,Y) = c(X → Y)

s(Y) =
s(X → Y)

s(X)s(Y) (2.1)

where s(X → Y) and c(X → Y) are respectively the rule support and conϐidence, and s(X) and
s(Y) are the supports of the rule antecedent and consequent. If lift(X,Y)=1, itemsets X and Y are not
correlated, i.e., they are statistically independent. Lift values below 1 show a negative correlation
between itemsets X and Y, while values above 1 indicate a positive correlation. The interest of rules
having a lift value close to 1 may be marginal. We expect the mined rules to be ranked according to
their lift value to focus on the subset of the most (positively or negatively) correlated rules.

2.7.3 Input data

Input data for the proposed approach are trafϐic traces collected by passive probes, e.g. Tstat [7, 13].
Tstat is part of mPlane network data collection tools. The probe rebuilds each TCP connection by
matching incoming and outgoing segments. Thus, a ϐlow-level analysis can be performed [13].
Our approach focuses on a subset of measurements describing the trafϐic ϐlow among the many
provided by passive probes. Any other probe or network data collection tool that can provide the

Plane
32

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

same data can be used as input source for the proposed approach. The most meaningful features
we plan to include in the analysis are detailed in the following:

• the Round-Trip-Time (RTT) observed on a TCP ϐlow, i.e., the minimum time lag between the
observation of a TCP segment and the observation of the corresponding ACK.RTT is strongly
related to the distance between the two nodes

• the number of hops (Hop) from the remote node to the vantage point observed on packets
belonging to the TCP ϐlow, as computed by reconstructing the IP Time-To-Live

• the ϔlow reordering probability (P{reord}), which can be useful to distinguish different paths

• the ϔlow duplicate probability (P{dup}), that can highlight a destination served by multiple
paths1

• the total number of packets (NumPkt), the total number of data packets (DataPkt), and the
total number of bytes (DataBytes) sent from both the client and the server, separately (the
client is the host starting the TCP ϐlow)

• the minimum (WinMin), maximum (WinMax), and scale (WinScale) values of the TCP
congestion window for both the client and the server, separately

• the TCP port of the server (Port)

• the class of service (Class), as deϐined by Tstat, e.g., HTTP, video, VoIP, SMTP, etc.

Based on measurements listed above, an input data record is deϐined by the following features:
RTT ,Hop, P{reord}, P{dup}, NumPkt,DataPkt,DataBytes,WinMax,WinMin,WinScale,
Port, Class.

2.7.4 Pre-processing

This step performs the following two activities: (i) ϐiltering, (i) value discretization, and (ii) format
conversion.
Filtering is used to discard irrelevant ϐlows with respect to the analysis task. For instance, if the
number of packets in the ϐlow is below a given threshold (e.g., 10 packets), then ϐlow statistics may
be considered unreliable and hence the ϐlow could be excluded from the analysis.
Associaton rule mining requires a transactional dataset of categorical values, hence the discretiza-
tion step converts continuously valuedmeasurements into categorical bins, and the format conver-
sion step addresses the requirement of a transactional dataset in the form of attribute = value.
Automatic discretization approaches can exploit state-of-the-art techniques to select appropriate
bins depending on data distribution. Otherwise, domain-expert knwoledge can be exploited to se-
lect meaningful static values for the bins.
This task entails an inherently parallel elaboration, considering that can be applied independently
to each record.

1P{reord} and P{dup} are computed by observing the TCP sequence and acknowledgement numbers carried by
segments of a given ϐlow. We refer the reader to [13] for more details.

Plane
33

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.7.5 Item frequency

This step computes the item frequency from the transactions emitted by the pre-processing phase.
Its output is a (key, value) pair for each item in the transaction, where the key is the item itself (e.g.,
RTT=5-10), and the value is its count, i.e., always 1. An aggregation function is then executed to
sum all the values for each key, hence computing the support count of each item. This is a typical
group-by query performed as a distributed job.

2.7.6 Rule mining

This step performs (i) the itemset mining and (ii) the rule extration. It may require multiple jobs to
be run.
For the itemset mining task, we plan to exploit existing state-of-the-art techniques such as the par-
allel FP-growth algorithm, as described in [10].
The rule extraction step, instead, is going to be a novel contribution as a distributed cloud-based
algorithm, since there seems to be no publicily available approaches to be exploited in the context
of the project. Rule extraction may target a subset of the whole association rules that could be
extracted, based on the speciϐic interest of the domain, e.g., rules correlating network service types
or discriminating different network performance metrics.

2.7.7 Rule ranking

A ϐinal step is executed to sort and aggregate the rules according to the consequent and the quality
index measure. Lift is a good candidate as a rule quality measure. Sorting and aggregating on the
consequent helps in analyzing the extracted rules for ϐinding signiϐicant correlations.

Plane
34

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.8 VerificaƟon and cerƟficaƟon of service level agreements

2.8.1 IntroducƟon

This Sectiondiscusses the algorithms required for theveriϐictionof ServiceLevelAgreements (SLAs),
as described in Section 3.8 of the Deliverable D1.1[2] As reported in D1.1 the veriϐication of an SLAs
is technically equivalent to the veriϐication of the implicit guarantees of service made by a provider
offering Internet service. Therefore one of the fundamental task of mPlane will be a group of pro-
cedures to check and verify SLAs between providers and customers of Internet services, deϐining
the minimum level of service provided in terms of one or more measurable parameters. Currently
SLAs are tested in terms of some network performance parameters as ``bandwidth'' (generally ex-
pressed in terms of raw throughput). However, with the evolution of the applications, SLAs will
regard aspects more and more related to user perception. Therefore we ϐirst need to deϐine new
metrics that take into account Quality of Experience (QoE), and investigate on the introduction of
SLAs based thereon. In this scenario, each user may have SLAs with different providers (e.g. ISP,
VoIP, IPTV); we therefore need to consider correlation among different SLAs. This will permit both
the veriϐication of SLAs between providers and customers from either the provider or customer
end, as well as the customer-end veriϐication of advertised throughput for comparison and regu-
latory purposes. In this scenario, we look at both the veriϐication of SLAs between providers and
customers from either the provider or customer end, aswell as the customer-end veriϐication of ad-
vertised throughput for comparison and regulatory purposes. Details on the SLA procedures can
be found in D1.1 chapter 3.8, and according to such a document let us to characterize mPlane data
procedures in terms of SLA operation, in particular how to proceed in terms of SLA contract deϐini-
tion: basic schemawith the QoS and/or QoE parameters, SLA negotiation, SLAmonitoring, and SLA
enforcement, according to deϐined policies. Furthermore it has to be pointed out that SLA veriϐica-
tion is generally a continuous process. Therefore, themPlane infrastructure of the service provider,
or of an enterprise customer, is set up to monitor a given SLA at the time the SLA is committed; the
supervisor then instructs the probes to periodically performmeasurements, either passively or ac-
tively, and compares measured parameters to stored SLA parameters, until such time as the SLA
is discontinued. Periodically generated results or reports are then either forwarded by the super-
visor to the appropriate administrator or regulatory authority, or stored in a repository for later
retrieval. SLA violations can also be alerted by the supervisor; the exact reporting and alerting be-
havior is subject to the terms of the SLA. In general the metrics required for SLA analysis are those
which are used to specify the level of service required; for the scenarios envisioned:

1. simple availability of a service (i.e., a time-series of yes/no states),

2. throughput between two endpoints given application-unlimited demand,

3. throughput between two endpoints given constant-rate demand,

4. latency between two endpoints given a load proϐile, and/or

5. application-speciϐic metrics for QoE measurement.

These measurements should be taken in the presence of other normal background load at both
endpoints. With the service evolution, the trend is to shift the veriϐication towards applications.
This implies that metrics and measurements have to be applied at the application layer; suitable

Plane
35

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

SLA parameters must be deϐined for speciϐic Web services such as YouTube, speciϐied in terms of
application-level measurable parameters (e.g. measured video stall rate). This implies measure-
ment method that is able to exploit all the capacity of the line; the most suitable method here is an
active probe. Since dedicated hardware devices for measurement are prohibitively expensive for
home gateway applications, this active probe should be based on a software tool that a user can
download and run on their home PC, laptop, or tablet. On the other end ISPs have the necessity to
control andmonitor the network trafϐic in each segment of their own network in order to avoid (or
to take under control) SLA problems. Such a network monitoring will be obtained by means of a
passive probe network, that will be used also for ISP network management and trafϐic engineering
procedures.
The supervisor is required to control themeasurements, to generate periodic reports in the format
required by a regulator, to alert the administrator in case an SLA is not met. Furthermore SLA ver-
iϐication is an inherently cross-domain operation, as there are always at least two parties to such
an agreement. However, prior work on SLA veriϐication has focused on veriϐication from the point
of view of a single party. In the case of QoE-based SLA, however, measurements must necessar-
ily be taken at or close to the client; in this case, an mPlane infrastructure at a customer network
could take measurements of controlled video transmission (e.g., with the ISP actively downloading
videos emulating user behavior), and report the results back to the provider network to inform
it of SLA-relevant parameters; the provider could then compare customer-visible measurements
to provider-network measurements in verifying its own compliance to an SLA. Therefore a funda-
mental role is for repositories for storing SLA veriϐication information that must be able to store
the metrics listed above as well acceptance criteria for SLA comparison.

2.8.2 Input DescripƟon

Eachuserwill have at disposal a probe to verify his service and experience. Such aprobehas tomea-
sure a long list of parameters also depending on the kind of physical access at disposal (ADSL, Fiber,
3G, 4G, Wi-Fi,...). For practice reasons the probe is assumed as a software agent that downloading
a ϐile (or a list of ϐiles) is able to test the network quality (active probe). So far such a procedure
has been based operating at OSI Layer 4 making measurement of throughput, delay, jitter and data
loss. Thereforewe can say that periodically the probe simply sends four parameters, but that can be
also more, up to some dimes in the case of wireless environment as we will show below. With the
progress in terms of access capacities (higher and higher than 10 Mb/s) and services (HD TV, 3D,
games,...) measurements at layer 4 could result unsuitable to characterize both ISP SLA and user
perception. Measurements based on TCP permit to quantify the user perception and therefore are
related to MOS (or Quality of Experience). Therefore according to these results we can conclude
that a probe, to give a reliable contest for the user, has to make measurement both with UDP (ver-
ifying the ISP SLA) and TCP (to test the user perception) approach. If we wish to include further
characteristics in terms of QoE for applications for each application running on a device other pa-
rameters related toMOS should be considered. For an instance by looking at You Tube applications
MOS could be measured in terms of stalling (see Pedro) both for number and duration.
Wireline environment
Here we report the data treatment procedure experience for SLA veriϐication carried out in the
framework of the Italian monitoring network “Misura Internet” by means of the Nemesys agent
tool [12]. The environment that was taken into account referred to the Italian wireline broadband
access thatmainly consists of ADSL2+ technologywith a download bandwidth lower than 20Mb/s.

Plane
36

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

These bandwidth delay values allows us to validate the TCP method since the difference among
the nominal and measured bandwidth is small in the current scenario. To better illustrate such
a consideration we report the bandwidth (as measurement ratio=measured bandwidth/nominal
one) vs the bandwidth delay product (BDP) for the tests performed in Italy in the framework of
AGCOM tests. As reported in [12], 96% of the tests have a BDP lower than 30000 that assures a
good reliability in the measurement carried out. The Misura Internet architecture [1] is based on
two different methodologies regarding SLA:

1. a monitoring network consisting of 20 test points distributed along Italy and speciϐically
placed in major Italian cities (i.e., one test point for each region) to monitoring the ISP per-
formance and to provide the users information regarding the quality of the ISP network.

2. End user measurements, concerning throughput and QoS, that are carried out directly at the
user home, using a open source software Ne.Me.Sys (Network Measurement System) that
is developed speciϐically for this project by Fondazione Ugo Bordoni with the aim of verify
the SLA. When a consumer measures its own ϐixed line connection performances, a personal
approach is deϐined. Furthermore, the consumer could compare the obtained results with
benchmark and statistic values.

The server of the couple has been located into a IXP (Internet eXchange Point), also called NAPs
(Neutral Access Points), and the client could be the end user personal computer or a probe located
within one of the government building. For such measurements the client has to (down/up)load
a pseudorandom ϐile to evaluate throughput. The ϐile size is a very important parameter; indeed
it affects the TCP (Transmission Control Protocol) slow start mechanism. To have a reliable de-
scription of the user performance to be compared with SLA several measurements are necessary
along the time. For such an aim several measurements would be necessary along the day to take
into account all the possible variations due to environmental conditions and trafϐic distribution,
but only one day could be not enough since the analysis should require also the week behavior,
but also the month and the year ones. To make a measure, each pseudorandom ϐile is downloaded
(uploaded) 20 times consecutively. More speciϐically one single test is composed by a single ϐile
download/upload, 20 tests constitute a measure. At least one measure per hour during the day is
needed. As far as latency is concerned, 10 PING test constitute a measure, also in this case at least
one latency measure per hour is need. All measures are statistically elaborated, the 5Th (called
minimum bandwidth) and the 95th (called maximum bandwidth) percentile, as well as the aver-
age value and the standard deviation are calculated for each test. Starting from tests, also Packet
Loss Ratio and Unsuccessful Data Transmission rate are calculated. Packet Loss Ratio represents
the ratio between the number of not replied PING commands and the total number of sent PING
commands. Unsuccessful Data Transmission rate is the ratio between unsuccessful data transmis-
sions and the total number of data transmission attempt in a speciϐied time period. The method
adopted by Ne.me.sys allows the user to monitor his wireline broadband access by means of its PC.
Therefore it is necessary a method to avoid that other devices (PCs, tablet, smart TV) connected to
the broadband access disturb the measurement.
One of themost stringent constraint concerning the alien trafϐic; indeed, in the ϐirst release, the user
web-surϐing was forbidden, but sometimes some applications automatically connected themselves
to Internet, without the user permission. In these case Ne.Me.Sys. did not allow themeasure. In the
second release a small amount of alien trafϐic is permitted; in this way the end user can complete
more easily themeasure cycle and themeasures are always valid. In particular a threshold has been
introduced: the alien trafϐic has to be less than 10

Plane
37

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

In terms of data treatment each user transmits to themeasurement server a group of n data (n=4 in
this case: throughput, RTT delay, jitter, data loss) for each measurement test (every 20 minutes for
a maximum of three days). It has to be pointed out that the server has to be able to simultaneously
treats thousands of downloading and uploading of ϐiles for tests and manage repository of ϐinal
data measurements. For future measurements to take into account higher bandwidth networks
(>20 Mb/s) a novel approach is necessary to consider the differences that can be present between
physical layer and application layer as shown in ϐig. x.1. Therefore we assume that we will need at
least data for Layer 1 and Layer 4. The topic is under investigation in mPlane WP2 and currently
we can say that the number of the data is mxn, where m is the number of OSI Layer considered.
Wireless environment
Wireless environment is much more complex than the wireline one since much more information
is necessary to characterize the user quality due to the random behavior of the radio channel. Cur-
rently FUB is investigating about a new measurement approach of Misura Internet in wireless en-
vironment in the framework of the new AGCOM resolution DEL154/12/CONS and here we report
the measurement approach that is experimentally running. To characterize a wireless broadband
access together with QoS parameters typical of wireline environment, further information are nec-
essary corresponding to the characteristics of radio channel as degrading effects due to the signal
propagation and to the cell occupation. We decided to consider all the radio aspects in terms of
“measurement failure” . Therefore this is the list of user measurement to characterize its QoS mo-
bile broadband access:

1. download-upload throughput. As inwireline casewith TCP approach; it is deϐined as the ratio
between the ϐile dimension and the time transmission duration. The transmission duration
is the period that starts from the instant when the wireless network has received all the in-
formation necessary to start the download/upload transmission up to the last bit of the ϐile
test is received.

2. Transmission data failure (down/upload). Percentage among data transmission failure and
the transmission data attempts. Failure can occurwhen the test ϐile is either not totally trans-
mitted or without error within a ϐixed time-out.

3. Packet loss.

4. Transmission delay in termsRoundTrip Time. It is obtained bymeans of EchoRequest/Reply
(Ping) in agreement with protocol ICMP (RFC 792: "Internet Control Message Protocol")

5. Delay variation (jitter).

2.8.3 Algorithm descripƟon

All the log measurement have to contain all Layer 3 information that each probe (meant also as
software agent downloaded on mobile device) exchange with the network. Furthermore log mea-
surement have to contain georefential information to show the measurement location.
The measurement number strongly depends on the statistical approach. According to the FUB ex-
perience on mobile environment it was decided that to have a full wireless environment for Italy
measurements have to be carried out in 20 cities, one for each Italian Region. To have reasonable
statistical information each city was subdivided in several areas 250000m2 wide, called pixel. For
each city the number of the pixels depend on the city dimension. To have an idea for 20 cities we

Plane
38

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

have a total of 16562 pixels. In order to have a more limited number of measurements among all
the pixels we selected 1013 ones as representative. Assuming 25 minutes for each measurement
422 hours should be necessary to obtain measurements on all the selected pixels. Taking into ac-
count the time for traveling with a car measurement test we need at least 600 hours, and assuming
8 hours for day we need 75 days (15 weeks) for a complete characterization.
Customer Experience for these ϐield measurements is based on the following services:

1. http downloading

2. FTP uploading

3. http browsing

4. PING packet loss, RTT as average and variance (Jitter).

According to these consideration some Key Performance Indicator (KPI) have been identiϐied.
Cycle test description
For each test we deϐined the following ϐile dimensions:

1. http downloading: 3MB (mp3 ϐile)

2. FTP uploading: 1 MB (mp3 ϐile)

3. http browsing: ETSI Kepler Web page (800 kB)

4. PING: from 10 to 40 packets for each test.

KPI list
In the following we list the KPI deϐined for wireless environment:

1. FTP uploading unsucces ratio

2. FTP uploading throughput

3. http download unsuccess ratio

4. http download throughput

5. http browsing unsucces ratio

6. http browsing session time

7. RTT

8. packet loss

9. jitter

Plane
39

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

2.8.4 Output descripƟon

Looking at the list of KPI used as representative to characterize the QoS and QoE for a mobile user
we can point out some considerations:

1. eachmeasurement has characterizedby a long sequence of data considering all theKPI values
but including also the information on L3 and Geo information;

2. The measurement architecture has to be able to simultaneously manage thousands of mea-
surements;

3. The KPI introduced in this environment allows us to characterize the user from different lay-
ers point of view (from physical to app), but with the advent of higher capacities mobile envi-
ronment (i.e. LTE)we should introduce novelmeasurement to distinguish the channel capac-
ity from the TCPdegradation as explained in Sect. X.1 forwireline environment. Furthermore
to better characterize the user perception in terms video service performance KPI should be
introduced concerning typical web services (i.e. You Tube) with authomatic Mean Opinion
Score (MOS) methods; it means much more data frommeasurements;

4. This measurement architecture can allow SLA treatment at different levels. The user can
have a full characterization of his device, but it has to be deϐined the wireless contest where
to carry out themeasurement (home, particular locations,...) in order to deϐinemeasurement
procedure with relative duration. Furthermore different SLA can be deϐined, for an instance
with the ISP but also with some service providers;

5. From the collection of the data coming from the user probe each ISP can check the state of
its own network verifying themantainance of all its SLA. In particular two different solutions
are possible for an ISP: a) to use a third party architecture that collect the measurement of
all the ISPs, where each ISP can access to the data belonging to its network, b) use an own
monitoring network.

The QoS measurement architectures carried out by FUB in the framework of the AGCOM activities
to monitoring the internet accesses, with particular interest for SLA certiϐication have illustrated
some characteristics in terms of data treatment and mining. First of all the architectures are based
on ϐile download and therefore particular attention has to be given to server sizes that have to be
able to simultaneously answer to user requests. Particular investigations have been necessary to
deϐine the size of such ϐiles and also the characteristics (HTTP, FTP, PING,...). Each measurement
output can consists of several data, that can be a few as in the wireline case and very much in the
wireless case (if we include also Layer 3 and Geo). Such data from the probe located in the user
device have to be processed to obtain a certiϐicate (PDF) describing the user characteristics, valid
for the SLA comparison. The architecture processor (Reasoner in terms of mPlane) has to be able
to simultaneously elaborate thousands of such data. This architecture can be used also by the ISP
to analyze to state of its network; in particular the data coming from the user can be useful to un-
derstand the levels of network performance and in particular the conditions to satisfy the SLAwith
the users. This architectures are supposed as third party operation, but could be also implemented
by the ISP to have a complete monitoring of the network. It is clear that such amonitoring network
dedicated to an ISP has a cost that can be small if it is considered only in terms of software agent.
It has to be investigated if this kind of architecture can be considered as sufϐicient for an ISP to
characterize all its network not only in terms of SLA satisfation; in fact an ISP is also interested to

Plane
40

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

monitoring the congestion levels in the different segments of its network and in particular to an-
swer to user demand both in terms of bandwidth and service performance (for an instance in terms
of Class of Services also from the business point of view). For the ISP point of view it is necessary
to analyze other architectures based on passive probes located in trafϐic aggregation points (Base
station, GGSN, router,...) and in particular to verify the relationship among measurements carried
out in the trafϐic aggregation points and the ones carried out by users on their IP devices.

Plane
41

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

3 Conclusions

This document describes and maps basic algorithms to perform analytic tasks in WP3, which cor-
responds to different use cases addressed in mPlane, deϐined in WP1.
The WP3 objective is to work on systems to store and pre-process data collected by the mPlane
probes, developed within WP2 context. Essentially, we deϐine such algorithms as black boxes, fo-
cusing on input and output data.
Each scenario has different requirements, in terms of format, volume and velocity of the available
data to process; in terms of computational power needed to analyze the data (CPU or IO bound
algorithms); in terms of analysis frequency (hourly, daily, weekly or occasional) and deadline re-
quirements for the output (delay tolerant, real time); in terms of output to produce (synchronous,
asynchronous, etc.). In the listed algorithms, two main classes of algorithms and requirements can
be identiϐied: real time (or nearly real-time) algorithms and batch algorithms. The former aims
to produce output with strict constraints on the system response, and process data as it comes in,
typically without buffering delays; incoming data is typically processed in memory, without using
intermediate storage. In contrast, batch algorithms typically involve very large amounts of data,
very difϐicult or impossible to be analyzed in real time; data is previously stored and, at a later
stage, analyzed. While many scenarios have a strong connotation on one or the other aspect of the
analysis, some of them requires both real time and batch analysis on the available data.
While many of the considered algorithms are common and their sequential implementations are
well known, their parallel counterparts need to handle a large amount of data and they are not
trivial. Indeed, while certain tasks lend themselves to parallelization because they require that a
large number of independent computations (think for example to low level image processing or
to Bitcon mining), many algorithms cannot be easily split up into parallel portions; in addition,
sometimes naive and simple approaches tend to be extremely inefϐicient. From the description of
the algorithms, it emerges that there aremany commons algorithms across all scenarios: clustering
algorithms, ϐirst order statistics, rank statistics are recurrently appearing, making these algorithms
good candidates for belonging to a common set that can be used by most of the use cases.

Plane
42

Revision 0.2 of 1 May 2013

318627-mPlane D3.1
Basic Network Data Analysis

References

[1] Misurainternet.it. http://www.misurainternet.it.
[2] Use Case Elaboration and Requirements Speciϐication. mPlane Deliverable D1.1, Jan. 2013.
[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB '94,

pages 487--499, 1994.
[4] H. Cui and E. Biersack. Distributed troubleshooting of web sessions using clustering. In TMA 2012, 4th

International Workshop on Trafϔic Monitoring and Analysis, March 12-14, 2012, Vienna, Austria / Also
published in LNCS, 2012, Volume 7189/2012, Vienna, AUSTRIA, 03 2012.

[5] H. Cui and E. W. Biersack. Trouble shooting interactive web sessions in a home environment. In
SIGCOMM HomeNets 2011, ACM SIGCOMM Workshop on Home Networks, August, 15-19, 2011, Toronto,
Canada, Toronto, CANADA, 08 2011.

[6] M. El-Hajj and O. R. Zaïane. Parallel bifold: Large-scale parallel pattern mining with constraints. Dis-
tributed and Parallel Databases, 20(3):225--243, 2006.

[7] A. Finamore, M.Mellia, M.Meo, M.Munafò, and D. Rossi. Experiences of internet trafϐicmonitoringwith
tstat. IEEE Network, 25(3):8--14, 2011.

[8] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-K. Chen, and P. Dubey. Cache-conscious
frequent pattern mining on modern and emerging processors. The VLDB Journal, 16(1):77--96, 2007.

[9] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp: parallel fp-growth for query recommendation.
In RecSys, pages 107--114, 2008.

[10] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp: parallel fp-growth for query recommendation.
In Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pages 107--114, New
York, NY, USA, 2008. ACM.

[11] L. Liu, E. Li, Y. Zhang, and Z. Tang. Optimization of frequent itemset mining on multiple-core processor.
In Proceedings of the 33rd international conference on Very large data bases, VLDB '07, pages 1275--
1285, 2007.

[12] E. M. L.Rea. Italian qos monitoring network: Impact on sla control. In Proceedings of the 2012 Inter-
national Telecommunications Network Strategy and Planning Symposium, NETWORKS '12, pages 1--6.
IEEE, 2012.

[13] M. Mellia, M. Meo, L. Muscariello, and D. Rossi. Passive analysis of tcp anomalies. Computer Networks,
52(14):2663--2676, 2008.

[14] Pang-Ning T. and Steinbach M. and Kumar V. Introduction to Data Mining. Addison-Wesley, 2006.
[15] I. Pramudiono andM. Kitsuregawa. Tree structure based parallel frequent patternmining on pc cluster.

In DEXA, pages 537--547, 2003.
[16] O. R. Zaïane, M. El-Hajj, and P. Lu. Fast parallel association rule mining without candidacy generation.

In Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM '01, pages 665--668,
2001.

[17] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency, 7(4):14--25, Oct.
1999.

[18] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng. Balanced parallel fp-growth with mapreduce. In
2010 IEEE Youth Conference on Information Computing and Telecommunications (YC-ICT), pages 243 --
246, 2010.

Plane
43

Revision 0.2 of 1 May 2013

