
Weighted Similarity Estimation in Data Streams

Konstantin Kutzkov
NEC Laboratories Europe

Heidelberg, Germany
konstantin.kutzkov@neclab.eu

Mohamed Ahmed
NEC Laboratories Europe

Heidelberg, Germany
mohamed.ahmed@neclab.eu

Sofia Nikitaki
NEC Laboratories Europe

Heidelberg, Germany
sofia.nikitaki@neclab.eu

ABSTRACT
Similarity computation between pairs of objects is often a
bottleneck in many applications that have to deal with mas-
sive volumes of data. Motivated by applications such as
collaborative filtering in large-scale recommender systems,
and influence probabilities learning in social networks, we
present new randomized algorithms for the estimation of
weighted similarity in data streams.

Previous works have addressed the problem of learning
binary similarity measures in a streaming setting. To the
best of our knowledge, the algorithms proposed here are
the first that specifically address the estimation of weighted
similarity in data streams. The algorithms need only one
pass over the data, making them ideally suited to handling
massive data streams in real time.

We obtain precise theoretical bounds on the approxima-
tion error and complexity of the algorithms. The results of
evaluating our algorithms on two real-life datasets validate
the theoretical findings and demonstrate the applicability of
the proposed algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Theory; Algorithms; Experiments

Keywords
Recommender systems; Viral marketing; Collaborative fil-
tering; Sketching; Streaming algorithms

1. INTRODUCTION
Similarity computation is a basic primitive in many data

mining algorithms, ranging from association rule mining to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806514.

clustering. However, for many Big data applications, sim-
ilarity computation can be prohibitively expensive, hence
necessitating the need for scalable methods for similarity es-
timation in massive datasets. As such the streaming model
of computation has become extremely popular over the last
decade, because it can handle massive data through sequen-
tially processing the input. Further, streaming algorithms
that need only one pass over the input open the door to
real-time stream processing which considerably extends the
applications domain. For example, Locality-sensitive hash-
ing [17] techniques have found application in numerous re-
search areas, see [11, 28, 30] for concrete examples.

Somewhat surprisingly however, similarity estimation in
streams has received less attention for cases when the un-
derlying similarity measures are weighted. Motivated by
applications in recommender systems and viral marketing,
in this work we consider how to estimate the weighted simi-
larity between real vectors revealed in a streaming setting.

Related work.
Modern recommendation systems work with huge volumes

of data which necessitates the scalable processing of the in-
put. As such, traditional algorithms that work in an of-
fline fashion are often not applicable since we cannot afford
to load the full input in memory. Similarly, in online so-
cial networks, users activity results in huge amounts of data
that needs to be processed efficiently. In the following we
review previous work on stream processing for applications
in recommender systems and viral marketing.

Collaborative filtering is widely applied in recommender
systems. The basic idea is to recommend an item i to a
user u if i has been highly ranked by users who have similar
preferences to u. The similarity between users is defined
based on their rating history, and is represented as a (sparse)
vector whose dimensionality is the total number of items.

Several different similarity measures have been proposed
in the literature, e.g. Jaccard and Cosine similarity, Eu-
clidean distance and Pearson correlation. In a series of pa-
pers [3, 4, 5, 6], Bachrach et al. proposed sketching al-
gorithms to estimate the Jaccard similarity between users
using min-wise independent hashing [7]. Since Jaccard sim-
ilarity only applies to unweighted sets, this is a simplication
of the problem, whereby we are only interested which items
users have rated, not how they have rated them. It is argued
that rating itself is an indication of interest in a given prod-
uct. However since user ratings indicate the level of interest,

i.e. two users may provide conflicting ratings on the same
item, in practice, weighted similarity is commonly used [23].
The state-of-the-art result is [5], which details how to com-
bine the compact bit-sketches from [24] with the method
proposed in [16] that achieve an exponential speed-up of the
evaluation time of a “random enough” hash function. Fi-
nally, in [4], an extension of Jaccard similarity to ranking
estimation is proposed. (Note however that the extension
does not achieve the improved time and space complexity
of [5].)
Influence propogation is widely studied in the context of
viral marketing in social networks. Based on the observation
that influence propagates through the network, the goal is to
detect the influential users that are most likely to determine
the overall behavior of the network. Such users may then
be targeted during advertisement campaigns or used to pre-
dict the success of a campaign before launch. In a seminal
work Kempe et al. [21] introduced the independent cascade
model and presented approximation algorithms for influence
maximization in social networks. Under this model, a user u
influences a neighbor of hers v with a certain probability puv,
however, the authors assume that propagation probabilities
puv are known in advance.

Goyal et al. [18] present methods for inferring influence
probabilities. Informally, they define different measures of
influence probability, whereby a user u is said to have in-
fluenced a user v if an action performed by u is later per-
formed by v within τ time units, for a suitably defined τ .
Note that this approach does not distinguish between how
actions are performed. Building upon this work, Kutzkov et
al. [22] have presented streaming algorithms capable of es-
timating the influence probability between users using only
a small amount of memory per user. In [22], the influence
probability is defined as an extension of Jaccard similarity
with time constraints, and the algorithm extends min-wise
independent hashing to handle time constraints.

Finally, another thread of works has analyzed user behav-
ior in online social networks, in terms of social and corre-
lational influence [2, 14, 19, 20]. In particular, Jamali et
al. [19, 20] have studied the problem of influence propaga-
tion in Social Rating Networks (SRN). The correlational in-
fluence between users is computed as a Pearson correlation
between the rating vectors.

Our contribution.
• Similarity estimation in data streams for collabora-

tive filtering. A simple extension of AMS sketching
for inner product estimation yields new sketching al-
gorithms for cosine similarity and Pearson correlation
between real vectors revealed in a streaming fashion.

• We extend cosine similarity and Pearson correlation
to also consider time constraints in order to model
influence propagation in viral marketing and predict
users behavior. Building upon the STRIP algorithm
from [22], we design new algorithms for the estimation
of the considered similarity measures. The algorithm
is particularly suitable for input vectors with entries
from a small discrete domain, a common situation in
rating networks.

We obtain precise theoretical bounds on the complexity of
the presented algorithms. An experimental evaluation on
real datasets confirms the theoretical findings.

Organization of the paper.
In Section 2 we present necessary notation and formal def-
initions. In Section 3 we present and analyze a weighted
similarity estimation algorithm for collaborative filtering in
data streams. We extend the considered similarity measures
to model influence propagation and present streaming algo-
rithms for their estimation in Section 4. Results from ex-
perimental evaluation on real data are reported in Section 5.
The paper is concluded in Section 6.

2. PRELIMINARIES

Notation.
The k-norm of a vector x ∈ Rn is defined as ‖x‖k = (

∑n
i=1 |xi|

k)1/k.
The 2-norm of x will be denoted as ‖x‖, and the 1-norm as
|x|. Let U be a set of m users and I a set of n items. A
rating given by user u ∈ U on an item i ∈ I is denoted as
rui. A user is described by an n-dimensional real vector.
For the i-th entry in u it holds ui = rui, thus we will also
use ui instead of rui to denote u’s rating on i. The set of
items rated by user u is denoted by Iu ⊆ I. We will denote
by [n] the set {0, 1, . . . , n− 1}.

Similarity measures.
We consider following measures for the similarity between

two vectors.

1. Jaccard similarity computes the probability that an
item i ∈ Iu ∪ Iv is also contained in Iu ∩ Iv:

jaccard(Iu, Iv) =
|Iu ∩ Iv|
|Iu ∪ Iv|

.

2. Cosine similarity.

cos(u, v) =

∑
i∈Iu∩Iv uivi

‖u‖‖v‖

where ‖u‖ = (
∑
i∈Iu u

2
i)

1
2 .

3. Pearson correlation.

ρ(u, v) =

∑
i∈Iu∩Iv (ui − ũ)(vi − ṽ)

‖û‖‖v̂‖

where ũ = 1
|Iu|
∑
i∈Iu ui, ‖û‖ = (

∑
i∈Iu(ui − ũ)2)

1
2 .

Hashing, Probability and Approximation guarantees.
We assume familiarity with basic probability theory nota-
tion. In the analysis of the algorithm we use Chebyshev
inequality defined as follows. Let X be a random variable
with expectation E[X] and variance V[X]. Then

Pr[|X −E[X]| ≥ λ] ≤ V[X]

λ2
.

A family F of functions from V to a finite set S is k-wise
independent if for a function f : V → S chosen uniformly at
random from F it holds

Pr[f(v1) = c1 ∧ f(v2) = c2 ∧ · · · ∧ f(vk) = ck] =
1

sk

for s = |S|, distinct vi ∈ V and any ci ∈ S and k ∈ N.
A family H of functions from V to a finite totally ordered

set S is called (ε, k)-min-wise independent if for any X ⊆ V

and Y ⊆ X, |Y | = k for a function h chosen uniformly at
random from H it holds

Pr[max
y∈Y

h(y) < min
z∈X\Y

h(z)] = (1± ε) 1(|X|
k

)
we will refer to a function chosen uniformly at random from a
k-wise independent family as a k-wise independent function.

Finally, we will say that an algorithm computes an ε-
approximation of a given quantity q if it returns a value q̃
such that q−ε ≤ q̃ ≤ q+ε. In the theoretical analysis of the
algorithms, we will show results stating that certain approx-
imation guarantee is obtained with probability 2/3. Using
the Chernoff inequality this probability can be amplified to
1 − δ for any δ ∈ (0, 1) by running O(log 1

δ
) independent

copies of the algorithm in parallel, c.f. [26]. Note that 2/3
can be replaced by any constant c > 1/2.

Problem statement.
Let S be a stream of triples (u, ri, tu) where u is the user
identifier, ri is the rating the user gives to item i, and tu
is the timestamp of the rating. We assume that each user
rates an item at most once. Throughout the paper we will
often represent the rating given by u on i as ui instead of
(u, rui).
We will consider the following two problems:

1. Collaborative filtering: Given users u and v, what is
the similarity between u’s and v’s ratings for a given
similarity measure? (Note that we disregard the times-
tamps of the ratings.)

2. Influence propagation: Given users u, v ∈ U , compute
simΩ(u, v), i.e., the similarity between the ratings of
u and v under a given similarity measure that satisfies
given time constraint Ω. In particular, when a social
graph G = (V,E) is given, what is the probability
that u influences a friend of hers v, i.e., simΩ(u, v) for
(u, v) ∈ E. (Note that we present concrete examples
for simΩ in Section 3.)

3. WEIGHTED SIMILARITY ESTIMATION
IN DATA STREAMS

Before formally describing the proposed algorithms, we first
provide an overview of our reasoning. We assume that we
can store a sketch for each user’s activity. Sketches are com-
pact representations of a user’s rating history. We observe
that if we can estimate the inner product of uv, then we
can also estimate cos(u, v). This is achieved by comput-
ing ‖u‖ and ‖v‖ in a streaming setting by simply maintain-
ing a counter to record the current value of the squared
2-norm of u and v. Utilising AMS sketches for the estima-
tion of the inner product, as proposed in [12], we obtain an
ε-approximation of cos(u, v).

The Pearson correlation can be rewritten as cos(u− ũ, v−
ṽ), where u − ũ is the vector obtained from u by replacing
ui with ui − ũ, ũ being the mean of u. Therefore, if two
passes over the data are allowed, we can compute in the first
pass the values ũ and in a second pass we can run the cosine
similarity estimation algorithm on the updated vectors u−ũ.
We will show that the linearity of AMS sketches enables us
to compute a sketch u− ũ in a single pass without knowing
ũ in advance.

3.1 Algorithm
Before presenting our algorithm, we briefly present how AMS
sketching works:

AMS sketching
AMS sketches were originally designed as an efficient tech-
nique for estimating the second moment of a data stream’s
frequency vectors [1]. For an (unweighted) stream S =
i1, i2, i3, . . . over a set of items I, let fi denote the frequency
of item i, i.e., the number of occurrences of i in S. Then the
second moment of the stream S is defined as F2 =

∑
i∈I f

2
i .

AMS sketching works as follows: Let s : I → {−1, 1} be
a 4-wise independent function. We maintain a variable X,
and for each incoming item i, we update X as X += s(i).
After processing the stream it holds that X =

∑
i∈I s(i)fi,

and we can show that E[X2] = F2 since E[s(i)s(j)] = 0 for
i 6= j and s(i)2 = 1. Using that s is 4-wise independent,
the variance of the estimator can be bounded by V[X2] ≤
E[X4] = F 2

2 . Since for a constant c, it holds that V(X/c) =
V(X)/c2, the average of O(1/ε2) random variables X, is an
unbiased estimator of F2 and has variance ε2F 2

2 . A standard
application of Chebyshev inequality yields that we obtain an
ε-approximation from the average of O(1/ε2) AMS sketches.
Finally, it was first observed in [12] that AMS sketching can
be also used to estimate the inner product uv of vectors
u, v ∈ Rm. To do so, we maintain random variables X =∑n
i=1 s(i)ui and Y =

∑n
i=1 s(i)vi, then E[XY] = uv and, as

we see next, the variance is bounded by V[XY] ≤ (‖u‖‖v‖)2.
From this, an estimate of cos(u, v) easily follows.

A drawback of AMS sketching is that for each new item
in the stream, we need to update all AMS sketches. The
Count-Sketch algorithm helps to overcome this by im-
proving the update time [10]. Instead of working with many
different AMS sketches, Count-Sketch works with a single
hash table. For a new entry ui, one updates the hash ta-
ble as Hu[j] += s(i)ui where j = h(i) for a suitably defined
hash function h : [n]→ [k]. After processing the vectors u, v,
their inner product can be estimated as

∑
j∈[k] Hu[j]Hv[j].

Intuitively, the larger hash table we use, the better estimates
we obtain because we have less collisions between items.

Pseudocode
A weighted similarity estimation algorithm is presented in
Figure 1. We assume that the input is a stream S of pairs
(u, ri) denoting that user u rated item i with a rating ri. For
each user, we keep a hash table Hu and we run the Count-
Sketch algorithm. We process an incoming pair (u, ri) by
updating Hu with ri. In addition to the sketches Hu, we
keep the following arrays: C – counting the number of items
rated by each user u, N – for computing the squared 2-norm
of u and S – for computing

∑
i∈Iu ui. We also extend the

sketch Hu as follows: in the j-th cell we store an array Signu
such that Signu[j] =

∑
i∈Iu:h(i)=j s(i), we will need Signu

for the estimation of Pearson correlation.
After processing the stream, an inner product uv is esti-

mated from the sketches Hu and Hv. The estimation of co-
sine similarity follows directly from the respective definition.
As we show in the theoretical analysis we compute Pear-
son correlation ρ(u, v) as if we computed cos(u − ũ, v − ṽ).
We show in the proof of Theorem 2 that after processing
the stream, using C[u], S[u], N [u], Signu we can update the
sketches Hu such that we obtain an estimate of the Pearson
correlation ρ(u, v).

ProcessRatings

Input: stream of user-rating pairs S, pairwise independent
function h : R→ [k], 4-wise independent s : N→ {0, 1}

1: for each (ui) ∈ S do
2: Update(ui, h, s)

Update

Input: rating ui, k-wise independent function h : N → [k],
4-wise independent s : N→ {0, 1}

1: Hu[h(i)] += s(i)ui
2: N [u] += ui

2

3: S[u] += ui
4: C[u] += 1
5: Signu[h(i)] += s(i)

EstimateCosine

Input: users u, v, sketches H, array N
1: inner product = 0
2: for i = 1 to k do
3: inner product+ = Hu[i]Hv[i]

4: return inner product/
√
N [u]N [v]

EstimatePearson

Input: users u, v, sketches H, arrays N , S, C, Sign
1: meanu = S[u]/C[u]
2: meanv = S[v]/C[v]
3: inner product = 0
4: for i = 1 to k do
5: Hu[i] −= Signu[i]meanu
6: Hv[i] −= Signv[i]meanv
7: inner product+ = Hu[i]Hv[i]
8: normu = N [u]− 2meanuS[u] + C[u]mean2

u

9: normv = N [v]− 2meanvS[v] + C[v]mean2
v

10: return inner product/
√
normunormv

Figure 1: Weighted similarity estimation through sketching.

3.2 Theoretical analysis

Cosine similarity.

Theorem 1. Let u, v ∈ Rn be revealed in a streaming
fashion. There exists a one-pass algorithm that returns an
ε-approximation of cos(u, v) with probability 2/3 and needs
O(1

ε2
) space. Each vector entry ui and vi can be processed in

O(1) time. The estimation can be computed in O(1
ε2

) time.

Proof. Assume for u and v we keep hash tables Hu and
Hv recording k values, for k to be specified later. We also
keep a counter N that will record the squared 2-norm of each
vector u. Let h : R → [k] and s : N → {−1, 1}. For a new
arrival ui we then update Hu[h(i)] += s(i)ui. Simultane-
ously, we update N [u] += u2

i . After processing the stream,

we return
∑k

i=1 Hu[i]Hv [i]√
N [u]N [v]

as an estimate of cos(u, v).

Clearly, after processing the stream ‖u‖ =
√
N [u] and

‖v‖ =
√
N [v]. Therefore, an ε‖u‖‖v‖-approximation of uv

will yield an ε-approximation of cos(u, v). Let Iij be an
indicator variable for the event that h(i) = h(j). For a pair-
wise independent h it holds Pr[Iij = 1] = 1 if i = j and
Pr[Iij = 1] = 1/k for i 6= j. Note that E(Iij) = E(I2

ij). Let

Z =
∑k
i=1 Hu[i]Hv[i] =

∑
i,j∈[n] s(i)s(j)uivjIij . By linear-

ity of expectation it holds that E(Z) = uv. For a 4-wise

independent s the variance of the estimator can be upper
bounded as follows:

V(Z) = E((
∑
i,j∈[n]

s(i)s(j)uivjIij)
2)−E(Z)2

=
∑

i,j,k,l∈[n]

E(s(i)s(j)s(k)s(l)IijIkl)uiukvjvl−
∑
i,j∈[n]

uiviujvj

=
∑
i,j∈[n]

E(IiiIjjuiviujvj)+
∑
i,j∈[n]

E(Iiju
2
i v

2
j)−

∑
i,j∈[n]

uiviujvj

=
∑
i,j∈[n]

u2
i v

2
j /k = (‖u‖‖v‖)2/k.

The above follows from linearity of expectation and from
observing that for 4-wise independent s, E(s(i)s(j)s(k)s(l)) =
1 if and only if there are two pairs of identical indices. By
Chebyshev’s inequality we have

Pr[|Z −E(Z)| ≥ ε‖u‖‖v‖] ≤ V(Z)

ε2(‖u‖‖v‖)2
≤ 1

ε2k
.

Therefore, for k = O(1/ε2) we can show that Z is an
ε-approximation of uv with probability 2/3.

Pearson correlation.
For Pearson correlation it holds ρ(u, v) = cos(u − ũ, v −

ṽ). Therefore, if we are able to perform two passes over
the data, in the first pass we can compute ũ, ṽ, and in a
second pass update each component as ui − ũ and estimate
the cosine similarity between the vectors. Next, we adjust
AMS sketching to estimate cos(u− ũ, v− ṽ) in a single pass,
without knowing ũ, ṽ in advance.

Theorem 2. Let u, v ∈ Rm be revealed in a streaming
fashion. There exists a one-pass algorithm that returns an ε-
approximation of ρ(u, v) with probability 2/3. The algorithm
needs O(1

ε2
) space. Each vector entry ui, vi can be processed

in O(1) time.

Proof. Assume we know ũ in advance. Let Hu be the
sketch for u− ũ. Then, Hu[k] =

∑
i∈Iu:h(i)=k s(i)(ui − ũ) =∑

i∈Iu:h(i)=k s(i)ui −
∑
i:h(i)=k s(i)ũ. After processing the

stream it holds that Signu[j] =
∑
i∈Iu:h(i)=j s(i), S[u] =∑

i∈Iu ui and C[u] = |Iu|. Let meanu = S[u]/C[u]. We

thus update Hu[j] −= Signu[j]meanu. The squared norm
‖u− ũ‖2 is computed as ‖u‖2 − 2S[u]meanu + C[u]mean2

u.
Thus, in each Hu we have exactly the same values if we had
sketched the vector u − ũ. The complexity and approxi-
mation guarantee of the algorithm follow directly from the
proof of Theorem 1 and the pseudocode.

3.3 Comparison to previous work
In a series of papers Bachrach et al. presented sketch-

ing algorithms for Jaccard similarity estimation [3, 4, 5, 6].
The state-of-the-art result is presented in [5]. The authors
present a min-wise independent hashing algorithm that com-
bines b-bit min-wise hashing [24], and yields optimal space
complexity, with the min-wise independent sampling ap-
proach [16] that achieves the best known processing time
per update.

Inner product estimation using AMS sketching was pre-
sented in [12] but, to the best of our knowledge, extensions
to similarity estimation have not been considered in the lit-
erature. This appears to be surprising since LSH based
approaches might not be suitable when applied to high-
speed streams. Consider for example cosine similarity. The
LSH algorithm proposed in [9] needs space and update time
O(1

Θ(u,v)ε2
) for a relative (1± ε)-approximation of the angle

Θ(u, v), (the algorithm thus estimates arccos(u, v))). From
Theorem 1, we need space O(1

cos2(u,v)ε2
), but the processing

time per update is constant.

4. WEIGHTED SIMILARITY ESTIMATION
WITH TIME CONSTRAINTS

We consider the problem of similarity estimation in data
streams where an additional time constraint is introduced.
In particular, we consider

Ω(ui, vi) =

{
1 if 0 ≤ t(vi)− t(ui) ≤ τ
0 otherwise,

i.e., Ω(ui, vi) is the binary constraint that evaluates whether
user v has rated items i within τ time units after user u has
rated item i. When clear from the context, we will write Ω
instead of Ω(ui, vi). This allows to model propagation and
influence as discussed in the introduction. Note that the
approach presented in the previous section does not seem
to apply here. AMS sketching is a linear transformation
of the stream, i.e., the order in which we sketch the items
does not affect the final result. However, when sketching the
stream of ratings we have to also record information about
the time when items were rated. We will thus present a
different solution building upon the STRIP algorithm [22]
that estimates Jaccard similarity with time constraints. In
the following we extend the considered similarity measures
to also include time constraints, briefly present the STRIP
approach and discuss how to generalize it to weighted simi-
larity measures estimation.

Similarity measures with time constraint.
We extend the considered similarity measures as follows:

• Cosine similarity.

cosΩ(u, v) =

∑
i∈Iu∩Iv uiviΩ(ui,vi)

‖u‖‖v‖

• Pearson correlation.

ρΩ(u, v) =

∑
i∈Iu∩Iv (ui − ũ)(vi − ṽ)Ω(ui,vi)

‖û‖‖v̂‖

The STRIP algorithm.
Assume we are given a social graph and a stream of user-
action pairs (u, ai) denoting that user u performed action ai.
Actions can denote any activity like liking a photo, sharing a
video or rating an item. For a possible set of n actions, user’s
activity is represented by a (sparse) binary vector where the
i-th entry denotes whether a user has performed the action
ai. In our context an action corresponds to rating an item,
whereby we are not interested in the exact rating but only
in the fact that the item was rated. We want to detect users

that appear to have high influence on their neighbors. Since
we are only interested which items a user has rated, we can
assume that the items rated by user u correspond to an n-
dimensional binary vector ru such that rui = 1 iff user u has
rated item i. Following the definition from [18], the influence
probability is defined as

puv =
|Aτu2v|
|Au|v|

,

where Aτu2v is the set of actions that have propagated from
u to v within τ time units, i.e., u has done the action within
τ time units before v. Au|v is the set of actions performed
by either u or v, independent of time. In our setting actions
correspond to item ratings without distinguishing how the
item is rated.

The STRIP algorithm works by extending min-wise inde-
pendent hashing [7]. Let h : A → [0, 1] be a random hash
function that maps actions to values in the interval [0, 1].
(As shown in [22], we can assume that h is injective with
high probability.) A user-action-timestamp triple (u, ai, ti)
is then processed as follows: For each user u we keep a sam-
ple Hu that records the k action-timestamp pairs with the
smallest hash values. If h(ai) is smaller than the largest en-
try in Hu, or Hu contains less than k entries, we add (ai, ti)
to Hu and remove the (k + 1)-th largest entry, if any. Im-
plementing Hu as a priority queue guarantees fast update.
Once the stream has been processed, the influence probabil-
ity puv of user u on user v is estimated as

Ωτ (Hu, Hv)

k

where Ωτ (Hu, Hv) denotes the set of actions in both Hu and
Hv which satisfy the time constraint Ω.

The new approach.
Assume that ratings are small integer numbers. (Clearly,
such an assumption is justified in practice, users usually rate
items on a 5- or 10-scale.) We extend the STRIP approach
to handle weighted similarity measures by treating each rat-
ing as being composed by rmax binary ratings, rmax being
the maximum rating. More precisely, a rating ru can be ex-
pressed as ru =

∑rmax
i=1 cui , where cui ∈ {0, 1}. The product

of two ratings ru, rv can thus be written as

rurv =

rmax∑
k=1

cuk

rmax∑
k=1

cvk =

rmax∑
k=1

rmax∑
`=1

cukc
v
` .

For example, let ru = 1, rv = 3 and rmax = 3. Then,
ru = 1 + 0 + 0, rv = 1 + 1 + 1 and rurv = (1× 1 + 1× 1 +
1× 1) + (0× 1 + 0× 1 + 0× 1) + (0× 1 + 0× 1 + 0× 1).

Let cuk ∈ {0, 1}n be the binary vector that corresponds to
the k-th position of u’s ratings. For example, assume n = 5,
rmax = 5 and a user u has given following ratings: ru1 = 3,
ru4 = 5, ru5 = 1, items 2 and 3 have not been rated by u. We
have cu1 = (1, 0, 0, 1, 1), cu2 = (1, 0, 0, 1, 0), cu3 = (1, 0, 0, 1, 0),
cu4 = (0, 0, 0, 1, 0) and cu5 = (0, 0, 0, 1, 0).

We can rewrite an inner product uv as the sum of r2
max

inner products of binary vectors:

uv =
n∑
i=1

uivi =
n∑
i=1

rmax∑
k=1

cui
k

rmax∑
`=1

cvi` =

ProcessStream

Input: stream of user-rating-timestamp triples S, pairwise
independent function h : N→ [k]

1: for each (u, rui, tu) ∈ S do
2: Let c = (c1, . . . , crmax) such that c` = 1 for 1 ≤ ` ≤

rui and c` = 0 for rui + 1 ≤ ` ≤ rmax.
3: for j = 1 to rui do
4: STRIPUpdate(u, i, tu, j, h)
5: N [u] += r2

ui

6: S[u] += rui
7: C[u] += 1

STRIPUpdate

Input: user u, item i, timestamp tu, sample number j, hash
function h : I → (0, 1].

1: if h(i) < Hj
u.getMax() then

2: Hj
u.pop()

3: Hj
u.add(h(i), tu)

MinWiseEstimate

Input: sketches Hk
u , H

`
v, constraint Ω

1: Let Mins be the s pairs (h(i), t) with the smallest hash
value in Hk

u ∪H`
v

2: return |Ω(Mins)|
s

EstimateSum

Input: user u, user v, sketches H, constraint Ω
1: sumu = 0
2: for k = 1 to rmax do
3: sumu += MinWiseEstimate(Hk

u , H
1
v ,Ω)

4: return sumu

EstimateInnerProduct

Input: users u, v, sketches H, constraint Ω
1: ip = 0
2: for k = 1 to rmax do
3: for ` = 1 to rmax do
4: ip += MinWiseEstimate(Hk

u , H
`
v,Ω)

5: return ip

EstimateCosine

Input: users u, v, sketches H constraint Ω
1: ip = EstimateInnerProduct(u, v,H,Ω)

2: return ip/
√
N [u]N [v]

EstimatePearson

Input: users u, v, sketches H, arrays N , S, C, constraint Ω

1: ip = EstimateInnerProduct(u, v,H,Ω)
2: nnzΩ(u,v) = MinWiseEstimate(H1

u, H
1
v ,Ω)

3: sumu
Ω =EstimateSum(H,u, v,Ω)

4: sumv
Ω =EstimateSum(H, v, u,Ω)

5: mu = S[u]/C[u], mv = S[v]/C[v]
6: normsu = N [u]− 2muS[u] + C[u]m2

u

7: normsv = N [v]− 2mvS[v] + C[v]m2
v

8: ip −= musum
v
Ω +mvsum

u
Ω − nnzΩ(u,v)mumv

9: return ip/
√
normsunormsv

Figure 2: Similarity estimation with time constraint.

=

rmax∑
k=1

rmax∑
`=1

n∑
i=1

cui
k c

vi
` =

rmax∑
k=1

rmax∑
`=1

cukc
v
` .

The above suggests the following algorithm. For each user
we maintain rmax sketches. Thus, for each user we can
consider rmax separate binary substreams. For each such
stream we will run the STRIP algorithm and maintain a
min-wise independent sample. Let (ui, tui) be an incoming
rating-timestamp tuple. We have to update u’s k-th min-
wise sample, 1 ≤ k ≤ rmax, iff rui ≤ k. Once the stream has
been processed, the inner product uvΩ(τ) can be estimated
as
∑rmax
k=1

∑rmax
`=1 est(cukc

v
`Ω(τ)) where est(cukc

v
`Ω(τ)) is the es-

timated constrained inner product of the binary vectors cuk
and cv` . A pseudocode based on the above discussion is pre-
sented in Figure 2.
Pearson correlation. Clearly, an estimation of uvΩ results
in an estimation of cosΩ(u,v). However, for Pearson correla-
tion we need to estimate (u− ũ)(v − ṽ)Ω. Let sumu

Ω(u,v) =∑
i∈I:Ω(ui,vi)

ui, i.e., we sum over the ui for which Ω(ui, vi) is

satisfied. Let nnzΩ(u,v) =
∑
i∈I:Ω(ui,vi)

1, i.e., the number of

entries in uvΩ. By rewriting the inner product we obtain (u−
ũ)(v− ṽ)Ω = uvΩ− ũsumu

Ω(u,v)− ṽsumv
Ω(u,v) +nnzΩ(u,v)ũṽ.

Thus, we need to estimate sumu
Ω(u,v), sum

v
Ω(u,v) and the

number of nonzero entries in uvΩ. We observe that we
can rewrite sumu

Ω(u,v) as
∑n
i=1

∑rmax
k=1 cui

k c
v
1Ω(u,v)

. This can

be easily verified: we consider exactly those ui for which
Ω(ui, vi) and for each of them we add up exactly ui 1’s.
The number of nonzero entries in uvΩ is exactly the number
of indices i for which Ω(ui, vi) is true, i.e., cu1 c

v
1 .

Lemma 1. Let z ≥ 0, x ≥ 1 and 0 < ε < 1/2. Then
z
x+ε
≥ (1− ε) z

x
and z

x−ε ≤ (1 + 2ε) z
x

.

Proof. For ε > 0 it holds z
x+ε
≥ z

(1+ε)x
= z

x
− εz

(1+ε)x
≥

z
x
− εz

x
= (1− ε) z

x
.

Similarly, for ε < 1/2 we have z
x−ε ≤

z
(1−ε)x = z

x
+

εz
(1−ε)x ≤

z
x

+ 2εz
x

= (1 + 2ε) z
x

We first show that an inner product can be approximated
using min-wise independent hashing.

Theorem 3. Let S be a stream of vector entries ui, 1 ≤
i ≤ m arriving in arbitrary order for different vectors u ∈
Nn. Let ui ≤ rmax for all vector entries. There exists a
one-pass algorithm that computes a sketch of the user activ-
ity using O(rmax

ε2
log rmax) space per user and

O(rmax log rmax log2(1
ε
)) processing time per pair. For a

vector pair u, v ∈ Rn, after preprocessing the sketches of u
and v in time O(rmax

ε2
log(rmax

ε
)) we obtain an εrmax(|u|+

|v|)-approximation of the inner product uv with probability

2/3 in time O(
r2max
ε2

).

Proof. Consider an incoming entry ui. We update all
Hk
u for which it holds ui ≥ k. In Hk

u we keep the s pairs
(h(i), tu) with smallest hash values. (Under the assump-
tion that h is injective, the s pairs are well-defined.) We
assume h is implemented as (1/c, s)-min-wise independent
function [16], thus h(i) can be stored in space O(s) and
evaluated in time O(log2 s). Implementing Hk

u as a priority
queue, the total processing time is O(rmax log2 s).

We next show the quality of the estimate in terms of the
sample size s. Let A,B ⊆ [n] be two subsets. Let α =
J(A,B) denote the Jaccard similarity between A and B.
We first show how to obtain an ε-approximation of α. Let

minhs (A∪B) denote the s smallest elements in A∪B under
h. Let X be a random variable counting the number of
attributes from A ∩ B in minhs (A ∪ B). Clearly, it holds
E[X] = αs. The number of attributes from A ∩ B in size-s
subsets follows hypergeometric distribution with s samples
from a set of size n and αn successes. Thus, for s > 1 we
have

V [X] = α(1− α)s
n− s
n− 1

< αs.

By Chebyshev’s inequality we thus have

Pr[|X − E[X]| ≥ εs] ≤ V [X]

ε2s2
<

α

ε2s
.

For s = O(1/ε2) we thus can bound the probability to 1/c
for arbitrary fixed c. For h being (1/c, k)-wise independent
we will thus obtain ε-approximation of α for s = O(1/ε2)
with probability 2

3
.

We obtain an approximation of |A∪B| as follows. It holds

α = |A∩B|
|A∪B| = |A∩B|

|A|+|B|−|A∩B| . Thus, |A ∩B| = α(|A|+|B|)
1+α

.

Consider an ε-approximation of α. For the approximation
error of |A ∩B| we obtain

(α± ε)(|A|+ |B|)
1 + α± ε =

α(|A|+ |B|)
1 + α± ε ± ε(|A|+ |B|)

1 + α± ε .

By Lemma 1 and using α ∈ [0, 1] we can thus bound the
approximation error by O(ε(|A|+ |B|)).

The total approximation error for estimating an inner
product uv is then bounded by

rmax∑
k=1

rmax∑
`=1

cukc
v
` ± ε(|cuk |+ |cv` |) =

uv±ε(
rmax∑
`=1

rmax∑
k=1

|cuk |+
rmax∑
k=1

rmax∑
`=1

|cv` |) = uv±εrmax(|u|+ |v|).

In order to guarantee the ε-approximation error with prob-
ability 2/3, we work with t = O(log rmax) independent hash
functions and sketches. By taking the median of the esti-
mates from the t sketches, by Chernoff bounds each binary
inner product cul c

v
` is approximated with probability 2

3r2max
.

By the union bound we obtain an ε-approximation of uv
with probability 2/3.

The s smallest elements in the intersection of two sets
with O(s) elements each can be found in O(s) time after pre-
sorting the sets in time O(s log s). Thus, from the sketches
Hu and Hv the inner product uv can be estimated in time

O(
r2max
ε2

). The time and space bounds follow directly from
the above discussion.

We next extend the above result to estimate time constrained
inner product uvΩ.

Theorem 4. Let S be a stream of entry-timestamp pairs
(ui, tui) arriving in arbitrary order for different vectors u ∈
Nn such that ui ≤ rmax. There exists a one-pass algorithm
that computes a sketch of the user activity using O(rmax

ε2
)

space and O(rmax log2(1
ε
) log rmax) processing time per pair.

Let Ω be an appropriately defined time constraint. For any
two users u, v, from the sketches of u and v we obtain an
ε(|u|+|v|)-approximation of the inner product uvΩ with prob-

ability 2/3 in time O(
r2max
ε2

).

Source # users # items # ratings

MovieLens1 71,567 10,681 10M

Flixster2 1M 49000 8.2M

Table 1: Evaluation datasets. Both ratings sets are for
movies, and in 5-scale with half-star increments.

Proof. Consider the estimation of the time constrained
inner product of two binary vectors ckc`Ω. As in the proof
of Theorem 3, we consider two sets A,B and apply minwise

independent hashing in order to estimate αΩ = |A∩BΩ|
|A∪B| (A∩

BΩ are the elements in A∩B that satisfy Ω). Let α = |A∩B|
|A∪B| .

By the very same reasoning as in the proof of Theorem 3 we
obtain an ε-approximation of αΩ using O(1/ε2) space and
O(log2(1

ε
)) processing time.

Assume we have computed an ε(|A|+ |B|)-approximation
of |A∩B|. (By Theorem 3 we need again O(1/ε2) space and
O(log2(1

ε
)) processing time.) It holds

|A ∩B|Ω = αΩ|A ∪B| = αΩ(|A|+ |B| − |A ∩B|).

With some simple algebra we can bound the approximation
error to O(ε(|A|+|B|)). The claimed time and space bounds
follow directly from the above and the discussion in the proof
of Theorem 3.

The above two theorems yield following approximation guar-
antees for the considered similarity measures.

Corollary 1. Let u, v ∈ Nn be revealed in a streaming
fashion. Let ui, vi ≤ rmax. There exists a one-pass stream-
ing algorithm processing each entry in time O(rmax log rmax log2(1

ε
))

and returning a sketch for each vector using O(rmax
ε2

) space.
After preprocessing each sketches in time O(rmax

ε2
log(rmax

ε
))

we compute εrmaxcos(u, v)-approximation of cosΩ(u, v) and

ρΩ(u, v) in time O(
r2max
ε2

).

Proof. Observe that for u, v ∈ Nn it holds

|u|+|v| =
n∑
i=1

(ui+vi) ≤ 2

n∑
i=1

max(ui, vi) ≤ 2

n∑
i=1

uivi = 2uv.

(The last inequality follows from ui, vi ≥ 1.) Thus, for q ≥
uv − εrmax(|u|+ |v|) we have

q

‖u‖‖v‖ ≥
uv − εrmax(|u|+ |v|)

‖u‖‖v‖ ≥ (1− 2εrmax)uv

‖u‖‖v‖ =

(1− 2εrmax)cos(u, v).

Similarly, for q ≤ uv + εrmax(|u|+ |v|) we obtain

q

‖u‖‖v‖ ≤ (1 + 2εrmax)cos(u, v).

Rescaling ε, we obtain the claimed bound for cosine similar-
ity.

Consider now Pearson correlation. As shown in the proof
of Theorem 3, we obtain an ε(|cu1 + cv1 |)-approximation of
the inner product cu1 c

v
1Ω ≤ uvΩ, and an εrmax(cu1 + |v|)-

approximation of cu1
∑rmax
k=1 cvk ≤ uv and nnzΩ(u,v), within

the claimed time and space bounds. Since |cu1 | ≤ |u| for any
u ∈ Nn, we obtain an O(εrmax(|u| + |v|))-approximation
of (u − ũ)(v − ṽ)Ω. Dividing by ‖u‖‖v‖ yields the claimed
approximation bounds.

(a) Cosine similarity.

(b) Pearson correlation

Figure 3: Similarity distribution for the MovieLens dataset.

5. EXPERIMENTAL EVALUATION
In this section, we present experimental evaluation of the

algorithms presented in Sections 3 and 4. The main purpose
of the evaluation is to validate the theoretical findings on
real data. Note that the approximation quality does not
depend on the dataset size. Therefore, for larger dataset
the space saving becomes more pronounced. We use two
publicly available datasets, MovieLens and Flixtser detailed
in Table 1. The two datasets consist of movie ratings on a
5-star scale, with half-star increments. In Figure 3 we plot
the distribution of cosine similarity and Pearson correlation
for the MovieLens dataset. In addition, the Flixster dataset
contains a who-trusts-whom social network containing links
between users. For more details on the properties of the two
datasets we refer to [20, 29].
Implementation: The algorithms are implemented in the
Python programming language using its standard data struc-
tures for the hash tables and priority queues. All experi-
ments were performed on commodity hardware. We worked
with a single hash function implemented using tabulation
hashing [8]. Even if tabulation hashing is only 3-wise in-
dependent, it is known to simulate the behavior of a truly
random hash function, see Pǎtraşcu and Thorup [27] for
Chernoff-like concentration bounds for the randomness of
tabulation hashing. (Note that working with several hash
functions in parallel and returning the median of the esti-
mates results in more accurate approximation. However,
this comes at the price of slower processing time and in-
creased space usage.)

Assume all keys come from a universe U of size n. With
tabulation hashing, we view each key r ∈ U as a vector
consisting of c characters, r = (r1, r2, . . . , rc), where the i-

th character is from a universe Ui of size n1/c. (W.l.o.g. we

assume that n1/c is an integer). For each universe Ui, we
initialize a table Ti and for each character ri ∈ Ui we store
a random value vri obtained from the Marsaglia Random

Cosine Pearson

s aae 1-dev 2-dev aae 1-dev 2-dev

100 0.0727 0.7282 0.9706 0.0818 0.6694 0.9482
200 0.0522 0.7184 0.9696 0.0568 0.679 0.9539
300 0.0426 0.7184 0.9694 0.0459 0.6818 0.9552
400 0.0421 0.6528 0.9442 0.0404 0.6761 0.9512
500 0.0338 0.7079 0.9646 0.0362 0.6747 0.9525
600 0.031 0.7059 0.9651 0.0322 0.686 0.9572
700 0.0382 0.5557 0.8941 0.0308 0.6694 0.9505
800 0.0345 0.5636 0.9035 0.0305 0.6417 0.9377

(a) MovieLens dataset.
Cosine Pearson

s aae 1-dev 2-dev aae 1-dev 2-dev

100 0.0795 0.687 0.9514 0.081 0.6801 0.9492
200 0.0518 0.7382 0.9734 0.0577 0.6683 0.9480
300 0.0451 0.6906 0.9582 0.0463 0.6779 0.9559
400 0.0376 0.7088 0.9691 0.0394 0.6861 0.9573
500 0.0346 0.7067 0.9652 0.0347 0.6946 0.9559
600 0.0342 0.6534 0.9431 0.0325 0.6795 0.9542
700 0.0265 0.7425 0.9769 0.0297 0.6874 0.9572
800 0.0281 0.6614 0.958 0.0277 0.6908 0.9588

(b) Flixster dataset.

Table 2: Quality of the similarity approximation for varying
sketch sizes.

(a) Cosine similarity.

(b) Pearson correlation.

Figure 4: MovieLens approximation for sketch size s = 200,
for pairs with similarity at least 0.1.

Number CDROM 3. Then the hash value is computed as:

h0(r) = T1[r1]⊕ T2[r2]⊕ . . .⊕ Tc[rc]

where ⊕ denotes the bit-wise XOR operation. Thus, for a
small constant c, the space needed is O(n1/c logn) bits and
the evaluation time is O(1). In our setting keys are 32-bit
integers (the item ids), and we set c = 4. Clearly, this yields
a very compact representation of the hash function.

3http://www.stat.fsu.edu/pub/diehard/cdrom/

Evaluation: After sketching the activity for each user, we
consider only users that have rated at least 1,000 movies. In
MovieLens there are 840 such users and 1,204,445 ratings,
and in Flixster there are 1,231 such users and 2,050,059 rat-
ings. For the quality of approximation, we report i) the

average approximation error (aae):
∑n
i=1

|ri−r̃i|
n

, where r̃ is
the approximated value of a rating r. ii) Given an approx-
imation parameter ε, we report the quality of approxima-
tion in terms of the number of estimates r̃i that are within
[ri−ε, ri+ε] (denoted as 1-dev), and within [ri−2ε, ri+2ε]
(2-dev). Finally, for all experiments we compute 1-dev and
2-dev w.r.t. ε = 1/

√
s4, and not the more complicated form

of the approximation guarantee we showed in Theorem 3.
Note that the approximation guarantees in Section 4 also
depend on rmax and the cosine similarity between users.
Since the approximation quality scales with s, we present
the approximation guarantees in terms of the sketch size
per position, i.e., the total space usage is srmax.

For the scalability of the algorithms, we report the mem-
ory requirements in terms of the sketch size (s) used, i.e., the
number of entries stored in the sketch. Finally, we briefly
report the run times of the algorithms on the datasets. The
precise run times and actual space used highly depend on
low-level technical details that are beyond the scope of the
paper; we refer to [13] for a discussion on the evaluation of
different implementations of streaming algorithms.

5.1 Weighted similarity estimation using AMS
sketches

Having run the algorithms described in Section 3 on the
datasets, we evaluated the impact of varying the sketch size
(s) from 200 to 800 in increments of 100. The processing
time varied between 90 - 110 seconds for MovieLens and
80-100 seconds for Flixster when varying sketch sizes.

To evaluate the approximation error (aae) and the per-
centage of good estimates (1-dev and 2-dev), we randomly
sampled two separate groups of 300 users for each dataset
and computed the similarity for every pair of users. In both
MovieLens and Flixtser there are almost 90,000 pairs with
cosine at least 0.1, while in MovieLens there are about 48,000
pairs with Pearson at least 0.1, and in Flixster – less than
10,000 pairs. Table 2 summarizes the results for MovieLens
(Table 2a) and Flixster (Table 2b) respectively.

We observe as expected, the estimation error falls in re-
sponse to increasing the sketch size (s). From the values
1-dev and 2-dev, we observe that the quality approximation
is very high; the 2-dev ranges between 0.89 - 0.97 across
both measures and data sets. Furthermore, the average er-
ror is always smaller than the ε-approximation given in The-
orem 1 and Theorem 2. Figure 4 plots the exact alongside
the approximated cosine similarity (Figure 4a), and Pearson
correlation (Figure 4b) for MovieLens, with s = 500. As we
see, despite working with a single hash function there are no
outliers in the estimates.

5.2 Influence propagation probability estima-
tion

We evaluated the algorithm listed in Section 4 on the
two data sets, and tracked the influence probability between
users for a period of 6 months. In order to speed up the
processing time, we discretized the rating to be in a 5-star

4For example, for a sketch size s = 400 we have ε = 0.05

Cosine Pearson

s aae 1-dev 2-dev aae 1-dev 2-dev

50 0.0562 0.9347 0.999 0.0842 0.8207 0.9767
100 0.0394 0.9341 0.9981 0.0711 0.748 0.9563
150 0.0271 0.967 0.9995 0.0489 0.8206 0.991
200 0.0243 0.9565 0.9987 0.0439 0.8036 0.9735
250 0.0256 0.9159 0.9924 0.0431 0.7698 0.9595
300 0.0201 0.9508 0.9975 0.0428 0.7264 0.9536
350 0.0227 0.8938 0.9826 0.0369 0.7815 0.9658
400 0.0183 0.9367 0.994 0.0331 0.779 0.9742

(a) MovieLens dataset.
Cosine Pearson

s aae 1-dev 2-dev aae 1-dev 2-dev

50 0.0453 0.9794 0.9992 0.109 0.7194 0.9387
100 0.0394 0.9398 0.9991 0.0867 0.6644 0.9187
150 0.0365 0.9432 0.9868 0.0586 0.7551 0.9633
200 0.033 0.8911 0.9964 0.0508 0.7592 0.9529
250 0.0291 0.9154 0.9957 0.0448 0.7439 0.9727
300 0.0254 0.9091 0.9967 0.0419 0.7139 0.9384
350 0.0245 0.8861 0.9952 0.0408 0.6926 0.92658
400 0.0241 0.8824 0.994 0.0395 0.6319 0.8995

(b) Flixster dataset.

Table 3: Quality of approximation of the influence probabil-
ity for varying sketch sizes.

(a) Cosine similarity.

(b) Pearson correlation.

Figure 5: Approximation of the influence probability for
Flixster dataset for sketch size s = 200.

scale using ceiling rui to druie. However, we compute the
exact similarity using the original 10-scale ratings. Because
the social graph of the Flixster network is very sparse, to
demonstrate statistical significance, we have increased the
density of links. This is achieved by adding a new link be-
tween a pair of users u and v if d(u)·d(v) ≥ 1/r for a random
number in (0, 1], where d(u) is the number of neighbors of
u in the network. Note that there is no social graph in the

MovieLens dataset. As discussed in the introduction, we are
interested in users whose behaviour is a good predictor for
the behaviour of other users and we consider all user pairs.

Table 3 again reports approximation error when varying
the sketch size (s). We observe very precise estimates for
cosine similarity for both datasets; Table 3a for MovieLens
and Table 3b for Flixster. In fact these numbers are con-
siderably better than what the theoretical analysis suggests.
This is not very surprising, in [3] the authors also report a
gap between theoretical and empirical approximation.

Furthermore, from Table 3 we observe that unsurprisingly,
the approximation error for the Pearson correlation is higher
than the corresponding Cosine similarity error. This is due
to the fact that we need to estimate four different quanti-
ties which makes inaccurate estimates more likely. However,
again the results show a lower error than the bounds we
would expect from Theorem 3.

In Figure 5 we plot the approximation error for the Flixster
dataset for sketch size 200. As evident, the approximation
of the Pearson correlation is not so precise and there are a
few significant outliers.

With respect to the datasets considered, space savings are
made for smaller sketch sizes. For example, for a sketch size
of 200 and ratings on a 5-scale, in the MovieLens dataset
we need to store 840,000 samples, while for Flixster we need
more than 1,2 million samples. (The pre-processed Movie-
Lens and Flixster datasets contain 1,204,445 and 2,050,059
ratings respectively.) Finally, we observe higher running
time compared to the AMS-sketch based algorithm, for Movie-
Lens it varies between 170 and 190 seconds and for Flixster
between 160 and 180. (However, this might be due to dif-
ferent time formats in the two datasets.)

6. CONCLUSIONS
We presented the first streaming algorithms for handling
weighted similarity measures in data streams. The algo-
rithms extend state-of-the-art techniques for scalable stream
processing and are shown to be applicable to real-world do-
mains. A few remarks are in place here. In [22] the algo-
rithms were extended to min-wise independent hashing from
sliding windows [15] where we are interested only in more
recent user activity and to sublinear space usage where we
are only interested in users whose activity is above certain
threshold, i.e., have rated a certain amount of items. It is
straightforward to extend the influence probability learning
algorithm from Section 4 to also consider these extensions.
However, it does not appear easy to extend the AMS sketch
based algorithm from Section 3 to similarity estimation over
sliding windows and active user mining. Finally, we note
that it is easy to extend the here presented algorithms to the
estimation of Euclidean distance, but due to lack of space
we omit this result.
Acknowledgements. The research leading to these results
has received funding from the European Union under the
FP7 Grant Agreement n. 318627, “mPlane”.

7. REFERENCES
[1] N. Alon, Y. Matias, M. Szegedy. The Space Complexity of

Approximating the Frequency Moments. J. Comput. Syst. Sci.
58(1): 137–147 (1999)

[2] A. Anagnostopoulos, R. Kumar, M. Mahdian. Influence and
correlation in social networks. KDD 2008: 7–15

[3] Y. Bachrach, R. Herbrich. Fingerprinting Ratings for
Collaborative Filtering - Theoretical and Empirical Analysis.
SPIRE 2010: 25–36

[4] Y. Bachrach, R. Herbrich, E. Porat. Sketching Algorithms for
Approximating Rank Correlations in Collaborative Filtering
Systems. SPIRE 2009: 344–352

[5] Y. Bachrach, E. Porat. Sketching for Big Data Recommender
Systems Using Fast Pseudo-random Fingerprints. ICALP (2)
2013: 459–471

[6] Y. Bachrach, E. Porat, J. S. Rosenschein. Sketching Techniques
for Collaborative Filtering. IJCAI 2009: 2016–2021

[7] A. Z. Broder, M. Charikar, A. M. Frieze, M. Mitzenmacher.
Min-Wise Independent Permutations. STOC 1998: 327–336

[8] L. Carter, M. N. Wegman. Universal Classes of Hash
Functions. J. Comput. Syst. Sci. 18(2): 143–154 (1979)

[9] M. Charikar. Similarity estimation techniques from rounding
algorithms. STOC 2002: 380–388

[10] M. Charikar, K. Chen, M. Farach-Colton. Finding frequent
items in data streams. Theor. Comput. Sci. 312(1): 3–15
(2004)

[11] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R.
Motwani, J. D. Ullman, C. Yang. Finding Interesting
Associations without Support Pruning. IEEE Trans. Knowl.
Data Eng. 13(1): 64–78 (2001)

[12] G. Cormode, M. N. Garofalakis. Sketching Streams Through
the Net: Distributed Approximate Query Tracking. VLDB
2005: 13–24

[13] G. Cormode, M. Hadjieleftheriou. Finding the frequent items
in streams of data. Commun. ACM 52(10): 97–105 (2009)

[14] D. J. Crandall, D. Cosley, D. P. Huttenlocher, J. M. Kleinberg,
S. Suri. Feedback effects between similarity and social influence
in online communities. KDD 2008: 160–168

[15] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794 – 1813, 2002.

[16] G. Feigenblat, E. Porat, A. Shiftan. Exponential time
improvement for min-wise based algorithms. Inf. Comput.
209(4): 737–747 (2011)

[17] A. Gionis, P. Indyk, R. Motwani. Similarity Search in High
Dimensions via Hashing. VLDB 1999: 518–529

[18] A. Goyal, F. Bonchi, L. V. S. Lakshmanan. Learning influence
probabilities in social networks. WSDM 2010: 241–250

[19] M. Jamali, G. Haffari, M. Ester. Modeling the temporal
dynamics of social rating networks using bidirectional effects of
social relations and rating patterns. WWW 2011: 527–536

[20] M. Jamali, M. Ester. TrustWalker: a random walk model for
combining trust-based and item-based recommendation. KDD
2009: 397–406

[21] D. Kempe, J. M. Kleinberg, E. Tardos. Maximizing the spread
of influence through a social network. KDD 2003: 137–146

[22] K. Kutzkov, A. Bifet, F. Bonchi, A. Gionis. STRIP: stream
learning of influence probabilities. KDD 2013: 275–283

[23] Y. Kwon. Improving top-n recommendation techniques using
rating variance. RecSys 2008: 307–310

[24] P. Li, A. C. König. b-Bit minwise hashing. WWW 2010:
671–680

[25] P. Massa, P. Avesani. Trust-aware recommender systems.
RecSys 2007: 17–24

[26] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[27] M. Pǎtraşcu, M. Thorup. The Power of Simple Tabulation
Hashing. J. ACM 59(3): 14 (2012)

[28] D. Ravichandran, P. Pantel, E.H. Hovy. Randomized
Algorithms and NLP: Using Locality Sensitive Hash Functions
for High Speed Noun Clustering. ACL 2005

[29] A. Said, B. J. Jain, S. Albayrak. Analyzing weighting schemes
in collaborative filtering: cold start, post cold start and power
users. SAC 2012: 2035–2040

[30] A. Shrivastava, P. Li. Asymmetric LSH (ALSH) for Sublinear
Time Maximum Inner Product Search (MIPS). NIPS 2014:
2321–2329

	Introduction
	Preliminaries
	Weighted similarity estimation in data streams
	Algorithm
	Theoretical analysis
	Comparison to previous work

	Weighted similarity estimation with time constraints
	Experimental evaluation
	Weighted similarity estimation using AMS sketches
	Influence propagation probability estimation

	Conclusions
	References

