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Abstract—This paper presents a characterization of Ama-
zon’s Web Services (AWS), the most prominent cloud provider
that offers computing, storage, and content delivery platforms.
Leveraging passive measurements, we explore the EC2, S3 and
CloudFront AWS services to unveil their infrastructure, the
pervasiveness of content they host, and their traffic allocation
policies.

Measurements reveal that most of the content residing on
EC2 and S3 is served by one Amazon datacenter, located in
Virginia, which appears to be the worst performing one for Italian
users. This causes traffic to take long and expensive paths in
the network. Since no automatic migration and load-balancing
policies are offered by AWS among different locations, content
is exposed to the risks of outages.

The CloudFront CDN, on the contrary, shows much better
performance thanks to the effective cache selection policy that
serves 98% of the traffic from the nearest available cache.
CloudFront exhibits also dynamic load-balancing policies, in
contrast to the static allocation of instances on EC2 and S3.

Information presented in this paper will be useful for develop-
ers aiming at entrusting AWS to deploy their contents, and for
researchers willing to improve cloud design.

I. INTRODUCTION

Last years witnessed the growth of cloud-based services

that provide computing, storage and offloading capabilities

on remote datacenters, offering the opportunity to customers

to reduce costs by virtualizing hardware management. The

leading position in this panorama is taken by Amazon, which

offers a large gamma of cloud-based services, named Amazon

Web Services (AWS). The most well-know Amazon cloud

services are “Elastic Compute Cloud” (EC2), and “Simple

Storage Service” (S3), with “CloudFront”, the Content De-

livery Network (CDN).

Following the definitions provided in [1], AWS represents

an Infrastructure Provider, and EC2 and S3 correspond to

Infrastructure as Service products. In other words, through

virtualization, a large set of computing resources, such as

storing and processing capacities can be split, assigned, and

dynamically sized to satisfy customers’ demand. Customers

are represented by companies aiming at offering their services

without carrying on costs and risks of building and manag-

ing their own hardware and infrastructure. Many successful

companies like Dropbox, Zynga and Netflix to name a few,

successfully relies on AWS.

AWS has gained a large interest within the research commu-

nity too. In particular, many works investigate the possibility
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of exploiting AWS EC2 for research purposes [2], [3]. Others

instead focus on evaluating the performance of AWS com-

puting and networking virtual resources [4], [5]. However, to

the best of our knowledge, all the previous works focus on

the benchmarking of AWS services and infrastructure, and

they all rely on “active” probing. What is missing is the

characterization of Amazon Web Services as perceived by

the end-users, i.e. an evaluation of actual AWS workload and

performance by means of “passive” observation of traffic.

The goal of this paper is to provide an extensive study of

AWS through the passive analysis of network traffic collected

from our University campus and from three large Points of

Presence (PoP) of an Italian national-wide Internet Service

Provider (ISP). Our datasets span more than 60 days, and

collect the traffic generated by more than 50,000 end-users.

In this work, we dig into a one week long portion of

our dataset with a twofold goal: first, we shed light on the

AWS infrastructure itself, proposing a simple yet accurate

methodology to reveal the number of datacenters, their lo-

cations, and resulting traffic allocation policies. Second, we

evaluate which are the services that run on AWS, and how

they are accessed by end-users. Notice that providing such

characterization is a challenging task due to the nature of cloud

services, where encryption schemes and proprietary solutions

are very common.

Our main findings are:

• Among the seven EC2 and S3 datacenters, the one placed

in Virginia is the most used, with more than 6,000 EC2 virtual

machines and 120 S3 nodes regularly accessed by end-users.

It handles alone 85% of total traffic generated by EC2 and

more than 64% for S3 – serving daily more than 15TB of

data to the ISP end-users in Italy. Surprisingly, the datacenter

in Ireland is not the preferred one, and it serves only about

20% of AWS traffic to Italian end-users.

• Web companies that offer their services from AWS systems

tend to rely upon one datacenter only. This makes the network

to pay the large cost of carrying data to far away end-users.

Moreover, it represents a large risk in case of failures, since no

automatic load-balancing and migration are offered by AWS.

• Performance of datacenters in terms of response time

(for EC2) and goodput (for S3) show that the most pop-

ular datacenter is also the worst performing one. Evidence

shows that some services suffer because of under-provisioned

instances or poor design, but we cannot exclude that the whole

infrastructure may be overloaded.

• Considering CloudFront, 24 out of 33 different world-wide
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caches that build the CDN infrastructure have been spotted in

our traces. However, the cache selection policies adopted by

CloudFront wisely serve 98% of traffic from the cache placed

in Milan, the closest to Italian end-users. The remaining 2%

of traffic comes from worldwide caches, possibly because of

load-balancing policies, or by incorrect DNS configuration of

end-user clients [6].

We believe this paper provides useful insights about AWS

infrastructure, helping in understanding the properties of ser-

vices relying on cloud-based platforms EC2, S3 and Cloud-

Front. Provided information may result worthwhile for devel-

opers aiming at entrust AWS to deploy their contents.

II. DATASET

We rely on passive measurements to characterize AWS

services in operational networks. We employ Tstat1, the open-

source traffic monitoring tool developed at Politecnico di

Torino, to analyse packets exchanged by actual end-users

inside monitored vantage points [7]. Tstat was installed in

four different ISP vantage points where it has been collecting

traffic from April to June 2012, observing more than 50,000

end-users normally accessing the Internet.

We restrict our analysis on traffic collected during an entire

week (starting from April 1st, 2012) from an ISP PoP which

aggregates 15,000 ADSL lines. During this week 6M TCP

connections were established with AWS servers, exchanging

about 340GB of data. We considered traffic monitored on

two ISP PoPs and on our Campus network, showing same

characteristics. Hence, findings for considered PoP are general

and not biased. However, we acknowledge that some of the

results in this paper are biased by observing AWS traffic from a

single country. Naturally, we expect that some of these results

may change if we analyse ISP traffic monitored in another

geographical region.

III. ANALYSIS METHODOLOGY

We start our analysis isolating all known Amazons IP

addresses as listed by the MaxMind2 organization database,

or equivalently returned by the whois database. Then, relying

on the information provided by the DNS, we identify flows

addressed to the cloud computing (EC2) AWS services. AWS

indeed follows a strict naming rule for EC2: an instance IP

address a.b.c.d is registered with a Type-A DNS record as ec2-

a-b-c-d.XXXXX.amazonaws.com, where XXXXX is a variable

string. A simple DNS reverse lookup from the IP address

allows to discover that a.b.c.d corresponds to an EC2 instance.

Unfortunately, same procedure cannot be employed to iso-

late S3 and CloudFront severs, since the Type-A records

obtained from their IP address reverse lookup do not always

reveal which AWS service it is. To overcome this, we adopt a

technique named HTTP-knocking, whose detailed description

can be found in [8].

To unveil contents or services delivered by each connection,

we relied on DN-Hunter [9], which let us recover the original

1http://www.tstat.polito.it
2http://www.maxmind.com/app/ip-location

server hostname requested by the clients and being served

by an AWS server. Notice that content is unveiled even

for encrypted traffic. Geographical locations of datacenters

(Availability Zones3 in AWS terminology) are inferred using

traceroute and latency together (details available in [8]). In the

rest of this paper, we use IATA codes to identify datacenters

instead of conventional names of AWS Availability Zones.

IV. MEASUREMENT DEFINITIONS

A. Per-flow Metrics

Among the different measurements provided by Tstat for

each flow, we consider the server IP address, its original

hostname as retrieved by DN-Hunter, the flow RTT, the

amount of bytes exchanged at the Application Layer, and the

presence of TLS/SSL at the Presentation Layer. These metrics

are straightforwardly monitored. More details can be found on

[7]. We then consider also the following additional metrics. In

particular, we define:

1) Response Time: it is the time the server employs to

send the reply after receiving the first request from a client.

Let TAck be the timestamp of the first TCP ACK message

sent by server with relative ACK number greater than 1, i.e.,

acknowledging the reception of some data sent by the client.

Let TReply be the timestamp of the first TCP segment sent

by the server carrying application data. The response time is

defined as

∆R = TReply − TAck. (1)

For HTTP flows, it represents an estimation of the time the

server takes to elaborate and to transmit the response to the

first HTTP request4 (e.g. an HTTP response).

2) Flow Goodput: it is defined as the rate at which informa-

tion generated at Application Layer by the server is delivered

to the client. Let TFirst and TLast be the timestamps of the

first and the last packet data sent by the server and, let D be

the size of the application level data sent by the server. The

server goodput is thus defined as

G =
D

TLast − TFirst

. (2)

To avoid the bias of short-lived flows and of Persistent-HTTP

requests, the server goodput is evaluated only on flows in

which the client sent exactly one data packet, and for which

D > 500kB. Notice that HTTPS flows are automatically

filtered out (requiring more than 1 data packet on the client

side to complete the SSL handshake).

B. Network Cost

We aim at evaluating the cost sustained by the network to

transport data generated by AWS servers to the end-users. To

this extent, we define the Network Cost as the weighted av-

erage of the distance travelled by information units. Formally,

3We will interchangeably use terms datacenter and Availability Zone
hereafter.

4The response time estimation can be affected by client requests that are
longer than 1 TCP segment. We assume these cases are independent from the
server, thus they do not bias the comparison.
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ID #IPs Exchanged Data (%) βRTT [ms] βAS

EC2 S3 EC2 S3 EC2 S3

IAD 6429 121 85.31% 64.22% 113.97 116.18 3

DUB 1167 24 12.65% 35.14% 48.73 43.77 3

SJC 632 12 1.71% – 182.14 174.81 4

NAR 18 0 – – – – 4

SIN 71 0 0.03% – 228.10 – 3

SEA 0 32 – 0.02% – 214.79 4

97.26GB 37.13GB

C
ac
h
es

ID #IPs Exchanged Data (%) βRTT [ms] βAS

MXP 232 98.03% 21.26 3

EU 208.5 1.14% 43.42 2.83

NA 230.5 0.83% 142 3.5

ASIA 76.6 - - 3

104.19GB

Table I
SUMMARY OF MEASUREMENTS ON AMAZON’S DATACENTERS HOSTING

EC2, S3 SERVICES (TOP) AND CLOUDFRONT CACHES (BOTTOM).

given a flow, let b(c, s) be the amount of Application Layer

data a client c exchanges with a server s, and let d(c, s) be the
distance between client c and server s. The resulting network

cost β(s) for a given server s is computed as

β(s) =

∑
c d(c, s)b(c, s)∑

c b(c, s)
. (3)

The average network cost of servers in a datacenter S results

β(S) = E[β(s)|s ∈ S]. (4)

We consider different definitions of distance, d(c, s), in the

following: i) the TCP connection average RTT, ii) the number

of traversed AS on the path5 or iii) the geodetic physical dis-

tance, leading respectively to dRTT (c, s), dAS(c, s), dkm(c, s).
Thus, we obtain different network cost metrics βRTT , βAS ,

βkm, respectively.

V. SPATIAL CHARACTERIZATION

We start by providing some aggregate information in Table I

about the spatial distribution of AWS datacenters and caches,

the traffic they generate toward monitored end-users, and its

cost for the network.

A. EC2 and S3

The top part of the table reports information about both EC2

and S3. Each row in the table represents traffic associated

to a different datacenter. Those located in Virginia (IAD),

Ireland (DUB) and California (SJC) appear to be the most used

datacenters from the perspective of an ISP placed in Italy.

Several observations hold. First, the number of detected

IP addresses associated to EC2 service is much larger than

any other service. This is due to the nature of EC2 service

itself, that thanks to virtualization, it is capable of allocating,

re-sizing and switching on/off independent EC2 instances. In

general, each one could be reached by means of a different

public IP address. For S3 instead, allocating too many IP

addresses is needless since each particular content could

coexist in same servers and can been accessed using different

URIs. The pool of IP addresses needed to the service is thus

much smaller, as confirmed by values in Table I6.

5The number of traversed AS is obtained running a traceroute from the
vantage point and checking the AS of returned routers.

6Same observations hold for CloudFront.

Second, the large unbalance in the number of instances

(number of IP addresses in EC2 column) suggests that the

datacenter located in IAD is the most popular among the ISP

end-users, i.e., the most employed by AWS customers to run

their EC2 instances. Furthermore, the column reporting the

fractions of data generated by EC2 services shows that the IAD

datacenter in the east coast of US is responsible for generating

more than 85% of the total amount of traffic associated to

EC2, i.e., 7 times larger than the volume handled by the

DUB datacenter, the second popular among Italian customers.

This suggests that IAD datacenter is much larger than all the

others7.

Interestingly, IAD EC2 (S3) generates more than 80GB

(23GB) of data traffic in one day. Considering the user

population of the monitored PoP, we can extrapolate that the

IAD datacenter serves about 15TB of data per day to the all

ISP end-users, i.e. 1.38Gb/s on average.

Surprisingly, such large amounts of data are exchanged with

such a distant location. Given that Ireland is much closer

to Italy than US, indeed, one may expect DUB to be the

best candidate to host EC2/S3 instances for serving Italian

(and European) end-users. All but βAS network cost metrics,

indeed, look sizeable for IAD, from 233% to 491% more

expensive than the DUB datacenter. This may suggest that

AWS customers, for the sake of a simple management and/or

economical reasons, are more oriented to deploy their services

on only one datacenter, and IAD may represent the first choice

for AWS customers because of its lower price8.

AWS offers load-balancing-based forwarders for incoming

traffic to enhance performance of instances, but no location-

aware policy is offered. Furthermore, recall that EC2 and

S3 services are statically allocated to datacenters chosen

by customers, and no automatic migration policy for in-

stances/objects among datacenter is provided. This at the

expenses of network cost, and, possibly, user experience.

Observe how βAS looks comparable for all datacenters,

suggesting that Amazon (and the ISP) have good peering

agreements with many providers.

At last, Fig. 1 (left plot) reports the evolution over time of

the volume of data traffic seen from the top three datacenters

for EC2. One point refers to a 4h long time interval; the first

five days of the dataset, starting from Sunday, April 1st, 2012,

are reported. Other datasets and periods of time show very

similar trends: a very periodic pattern that follows busy period

of end-users. IAD datacenter is consistently responsible for

providing much larger amount of traffic with respect to DUB

and SJC, confirming values presented in the top part of Table I.

Same observation holds for S3 service (center plot in Fig. 1).

In this case, DUB exchanges an amount of data slightly lower

than IAD (notice the log scale that flattens differences).

B. CloudFront

Let us focus on CloudFront results reported in the second

part of Table I. We report statistics about MXP (Milan)

7Confirmed by http://aws.amazon.com/about-aws/globalinfrastructure/
8http://aws.amazon.com/ec2/spot-instances/
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Figure 1. Evolution over time of data traffic volume for EC2 (left), S3 (center) and CF (right) services.
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Figure 2. Distribution of response time ∆R for EC2 (left), S3 (center) and CF (right) services.

cache, and statistics for other caches averaged on a continent

basis. Observe how biased is the preference towards the MXP

(Milan) cache, which results the best cache considering any

definition of network costs.

This has been validated by running an active experiment in

which we resolved 100 different services hosted by CloudFront

considering more than 2,000 DNS servers scattered worldwide.

As a side discovery of this process, we identified 33 different

CloudFront caches, each hosting a /24 subnet. The bottom part

of Table I refers to the CloudFront caches whose servers were

detected in our passive measurements too.

Overall, we can conclude that the CDN policy selection

of CloudFront is effective in directing ISP end-users to the

closest cache (MXP in Italy), as expected for a CDN. However

still less than 2% of traffic is delivered from caches far

away from end-users’ position. This may be because of some

end-users employing alternative DNS servers, different from

those provided by their ISP. For instance, both OpenDNS and

Google DNS servers cause requests from the ISP end-users to

be directed to FRA (Frankfurt). This is consistent with findings

in [6].

Fig. 1 (right plot) reports the evolution over time of the

volume of data traffic for the top two European caches, i.e.

MXP and ARN. The pattern is regular for cache placed

in Milan. However, this does not hold for ARN, in Stock-

holm, which presents an unusual peak on the third day of

measurements, precisely from 10pm of April 2 to 6pm of

April 3. Investigating further, we verified that this was due

to an intentional change in the Amazon DNS policies. Indeed,

many end-users that were typically served by MXP had been

redirected to ARN during that period. While it is impossible to

know why this happened, it allows to conclude that CloudFront

policies are dynamic, in contrast with the static allocation of

the EC2/S3 services.

 0

 100

 200

 300

 400

 500

00:00 04:00 08:00 12:00 16:00 20:00

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Time

IAD
DUB

Figure 3. Evolution over time of average ∆R for EC2 datacenters.

VI. PERFORMANCE EVALUATION OF AWS

A. Availability Zones and Caches Performance Evaluation

Fig. 2 depicts the distribution of the estimated response time

for EC2, S3 and CloudFront on left, center and right plot,

respectively. Top popular datacenters/caches are shown. Data

refers to a single day of April 2012.

Focusing on the performance of different locations, EC2

in IAD shows response times larger than 100ms in 30% of

the cases, resulting the worst performing datacenter. How-

ever, the average bad performance of IAD could be caused

by popular and poorly performing services running on con-

gested instances. Indeed we found out that some services

suffer from extremely poor design. For instance, content

proxy.eu.mydlink.com served from DUB, shows ∆R larger

than 100s during some periods! DUB appears to be the best

choice among datacenters for S3, while it competes with SJC

in the case of EC2.

We complement above results with Fig. 3, which reports

the evolution over time of E[∆R] for a period of one day

for EC2 in IAD and DUB. Measurements confirm previous

findings, with IAD consistently performing worse on average

than DUB. Notice that the average is i) a strongly non-

stationary measure (being it biased by the different contents
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retrieved at different times), and ii) practically independent on

the datacenter load.

Moving to CloudFront, right plot in Fig. 2 shows in general

very good performance, being 83% of requests satisfied in

less than 20ms in FRA, the worst performing cache. MXP and

ARN caches serve 80% of requests in less than 3ms; SFO and

FRA serve only 65% of request in less than 3ms, respectively.

Fig.4(a) compares the distributions of goodput G of S3 at

IAD and DUB, together with CloudFront MXP cache. More

than 50% of flows get a goodput G > 2Mbit/s for S3 in DUB

and CloudFront in MXP. For S3 in IAD, only 21% of flows can

achieve G > 2Mbit/s. This difference may be due to the large

RTT running from our vantage point to IAD, that affects the

TCP congestion control, thus, reducing achievable goodput.

B. Per-content Performance Evaluation

Fig. 4(b) reports the distribution of the response time

∆R for different social gaming services hosted by different

datacenters. Notice that all social games, e.g. Farmville, hosted

by IAD present poor performance with respect to those hosted

by DUB and SJC.

Focusing on the performance of CloudFront service, we

report in Fig. 4(c) the distribution of ∆R for several kinds

of contents that end-users downloaded from MXP cache.

Static refers to static content for web pages (e.g. HTML

files), js represents JavaScript files, img refers to binary data

such as images and Instagram is referred to contents related

to the well-known photo-sharing service. Aggregate reports

the behavior of all services together. As previously noticed,

CloudFront shows really good performance, being able to

process 50% of requests in less than 2ms, independently on

the kind of content. However, ∆R is consistently smaller

on average for static and JavaScript files which are mostly

static too, whereas images and Instagram contents show larger

response time. This may be due to the nature of the user-

generated contents that are the most critical to manage for

content delivery services, because of the size of the catalogue,

and of the small popularity of each single content [10].

VII. CONCLUSIONS

To the best of our knowledge, this is the first work that

characterizes Amazon Web Services (AWS) traffic from passive

measurements.

We presented an extensive characterization of AWS offer-

ings, in particular for EC2, S3 and Amazon’s CDN, Cloud-

Front. Results show that there is a big workload unbalance

among different datacenters hosting both EC2 and S3 prod-

ucts; in particular, the datacenter in Virginia is responsible

for 85% of the total traffic sent to Italian end-users, despite

the availability of a datacenter in Ireland. We observed that

companies which rely on EC2 and S3 concentrate their content

mostly on one datacenter, thus i) increasing the cost sustained

by the network to carry data to faraway end-users and, ii)

increasing risk in case of failures. Considering end-users

performance, our results show that the datacenter in Virginia

exhibits in general poorer performance, but we could not

pinpoint the actual causes.

We also found that CloudFront shows excellent perfor-

mance, but presents issues that are typical of other CDN

systems: i) generic DNS servers returning caches far from

end-users; ii) lower performance when processing unpopular

user-generated contents.
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